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S1 Supplementary Material for Section 3

S1.1 Proof of Lemma 3.1

PROOF. Let @ be an arbitrary frequency. Observe that by Corollary 3.4 from

Schlemm and Stelzer| (2012) one has

bl (A—iwl)le=—
Denote

F(t) =bT (A —iol)~'eAi@ 1 c0,T],
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t
G(1) = / e AvedL(u) 1€10,T].
0
Observe that G(0) = 0 and since F is continuous and of finite variation, we get
[F,G] =0, where [-,-] denotes the usual quadratic covariation of semimartingales
(see e.g. |Protter| (2004)). Applying the (multidimensional) integration by parts
formula

T T
/0 dF(1)G(t) = F(T)G(T) — F(0)G(0) — /0 F(1)dG(t) - [F, G|

T

— F(T)G(T) - / F(1)dG(1)

0

we obtain

T T , "
/ dF (1)G (1) = / b (A —iol) (A — i@l)eA—iolr / o Aved L (u)dt
0 0 0
T rt .
:/ /bTeA(t”)edL(u)e’w’dt
0o Jo
T
_ b7 (A —iool)lA-i0NT / e AledL(1)
0
/ b’ (A — i)~ eATIOD = Aleq (1)

L T N b(iw) (T _.
—hwTl(A_; 1 —ioT A(T—t) it
b7 (A —iol) e /0 M edL () + /0 O,

Thus

Ji JabT eAt—WedL (u)e " dr (S1.1)

— b7 (A — i)~ e 10T [T AT edL (1) + 22 [T p-ivtgy 1),

Using the form of the strictly stationary solution of (2.3) given in (2.4) we
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get

T
/ AT DedL(t) = X(T) — ATX(0). (S1.2)
0

Moreover, since fOT eA—iOD gy — (il — A) =1 (I — eA~7®DT) we have

T . .
/ b7 eA-ODX (0)dr = b (il — A)~ (I — eA~@DT)X(0).  (S1.3)
0

We have

To get the equivalent form note,
T .
VT.Z(Y)(0) =bT (iol —A)~! {e / e "dL(u)+ (X(0) — e"“’TX(T))]
0
ELD y7 (i1 — A)!

y {/T (e‘"”“ _e—ia)TeA(T—u)> edL(u) + (I_e(—ia)l+A)T> X(O)] 7

0

which completes the proof of this Lemma. O

S1.2 Moments of the truncated Fourier transform

In addition to the main paper we calculate here moments of the truncated Fourier

transform. First, recall the so-called compensation formula: 1f (L;),>0 is a Lévy
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process with finite first moments and f is a bounded deterministic function, then

T T
E {/ f(u)dLM} :E[Ll]/ f(s)ds. (S1.4)

0 0
Secondly, observe that the solution of the system (2.2) and (2.3) is of the
form (2.4), where X is the process with mean m(t) = E[X(¢)] and Px(t) =

E[X ()X ()] satisfying
mx (1) = eA my (0)

t
Py(t) = APy (0)eA ! + 62 / Al el A (1=1) gy (S1.5)
0

In particular, for stationary processes these solutions are constant and the so-

called Lyapunov equation
APy +PxAT +o%ee’ =0 (S1.6)

holds true. For Lévy-driven CARMA processes the form of the autocovariance
function in terms of solutions of Lyapunov equations is formulated e.g. in Propo-
sition 3.13 of Marquardt and Stelzer| (2007).

We are first going to show that the truncated Fourier transform of a stationary
CARMA process is a zero-mean random variable. Next, we find the covariance
between the truncated Fourier transform at two different frequencies. As we

have mentioned earlier, the spectral density function plays a central role.

Theorem S1.1. Let X and Y be processes given by the state-space representation

(2.2) and (2.3). Suppose that Assumptions 2.1, 2.2, 2.3. and 2.4 are satisfied.

4
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Then E(Zr(Y)(®)) =0 for all ® € R. For @, @, € R we have

b(ioy)|?
ZM-I-—K(T,(LM,—(DI), if 0 =—0

E[Fr(Y)(o) FZr(Y)(mn)] =0 alio) " T

(S1.7)

and

E[F7(Y)(0) (V) (@) = pKi(T,01,0), i 0% -0, (518

where K is a bounded function of T given by (S1.10) below and

K\(T,01,») =K(T, 01, @)

exp(—Ti(m, —i—a)z))e

1—
+b (i ] —A) 62 (o1 T o)

el (iwpl —AT) " b.

PROOF. For the first part it is enough to observe that by the compensation
formula E ( I e’i“’“dL(u)> = 0 and E[X(¢)] = 0. For the second part observe

that using Lemma 3.1 and Formula (3.10) we have

F1(V)(01).Fr(Y)(@)] = b (il — A)~!

T
B { /OT oo _ twlTeA(Tfu)> edL(u) + <I_e(ficoll+A)T> X(O)))
x ( /0 Ter (e7om — 7T AT L )+ X(0)" (1—e<—i‘*’2’+AT>T)>]

l ~
x (ionl —AT)"'b= b7 (i1 — A) ' I(iant — AT) "D,

RS

where [ = L + L+ I3+ 1 with

T . .
L =E {/ (e_m"“ — e_’wlTeA(T_“)> edL(u)
0
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T . .
></ eT (efzwzu _efza)zTeAT(T—u)) dL(u)]
0
- T . ' .
L:=E / (e_’“’l" - e_’“’lTeA(T_”)) edL(u)X(0)" (I— e(_’“’zH'AT)T)}
0

- | T . .
L:=FE (I— e(_’“’lHA)T) X(O)/ e’ <e_"°2” — e_’szeAT(T_u)> dL(”)}
i 0

IL:=E :(I_e(—ia)]H-A)T) X(0)X(0)7 (I_e(—iwzHAT)Tﬂ .

We have that I, = I3 = 0 since (L;);>0 is independent of X(0). Observe that
by the Itd isometry, the compensation formula and the fact that E[[L,L]] =

Var(L(1)) = 6 we have

T T .
Il :=E {/ e Oted( )/ eTe_’wzudL(u)}
0 0

Thus

c’Teel, w = —m,

SR
I

(S1.9)
o2 Lexp(Ti(w +a))

ooy €€ O F 0.

Thus, if w; = —a», then
%bT(iwll—A)_llll(ia)ZI—AT)_lb
= TGQTbT(ia)ll—A)’leeT(ia)zl—AT)’lb
= 0°bT (A —iw]) eel (i I +AT)"'b
—o (o) (i) _ e plicn)

a(ion) a(—ioy) |a(icr)|?
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Now

T . T . T
F:=F [/ e’w”‘edL(u)/ el g7 iT oA (T”)dL(u)}
0 0

= ¢ T [/T e_iwlueeTeAT(T_”)d[L,L]M}
0

. r .
:e_’wZTIE[[L,L]l]/ e i@ugeT AT (T—1) gy
0

T
_ _ T(r_
—e ta)zTGZ/ e za)lueeTeA (T u)du.
0

In the same way

T

r .
L:=E {/ e_’wlTeA(T_”)edL(u)/

eTe_"“’Z“dL(u)}
0 0

. T .
_ e—lwlTGZ/ eA(T—u)eeTe—la)zudu‘
0

Combining these two we arrive at

+ (il +A)"! (e(f“’z”A)T —1) eeT] .

Now
T T
It:=E {/ e_iwlTeA(T_”)edL(u)/ eTe_i“’zTeAT(T_”)dL(u)}
0 0
— il +@)T 52 /T AT 1) goT AT (T—1) 7,
0
Now

I =E[X(0)X(0)7] — e T ATE[X(0)X(0)7] — e " ®TE[X(0)X(0)7]eA T
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i@ )T ATEX(0)X(0)7]eA' .
By stationarity we have
E[X(0)X(0)7] =: Py = Px(0) = Px(T),
where Py satisfies (SI.6). Combining this with (S1.5) we obtain

If Iy =Py — e—ia)lTeATPX . e—i(ozTPXeATT +e—i(w1+a)2)TeATPXeATT
+e—i(w1+a)z)T(PX . eATPXeATT)
—eioTp, (1 _ eAT> 4ol (1 _ eAT> Py

Py (1 _eionT _ —ionT +€—i(w1+a)2)T> ‘
Since A is a stable matrix, eA” is bounded. Thus

K(T,wy, ;) =b” (i ] —A)~! [e"(“’l“’z)%z {eeT(ia)lH—AT)l
% (e(iw11+AT)T —I) + (il +A)! (e(isz+A)T —I) eeT]
feionTpy (1 . eATT> il (1 . eAT> Py (S1.10)

+ Py <1 _e*iwlT _efisz_f_efi(wl‘F(l)z)T) :| (la)zI—AT)ilb

is bounded in T for fixed o, € R. O

Now we give the form of the covariance matrix. Put
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RIr(Y)(01) | |RFr(Y) (o)

SZr(Y) ()| |SFr(Y)(n)
Lo, @) = [Lijli<ij<a=E

RIr(Y) ()| | RFr (V) ()

3Fr(Y) (@) | |3Fr(Y)(w)

Theorem S1.2. Let X and Y be processes given by the state-space representation
(2.2) and (2.3). Suppose that Assumptions 2.1, 2.2, 2.3 and 2.4 are satisfied. For

) # wy and | # —, there exists a bounded matrix K, € C*** such that

Z(wl,wz):%ozdiag(‘b@“’l)’z bio) [bliey)? \b<ia>z>|2) I

. 9 . 9 . 9 . _KZ'
la(ion)[*” |a(ion)[*" |a(ion)* la(im)? )~ T

Proof. For k,l = 1,2 let us denote
Zi(wr, @) == E[RFr(Y)(0)RF7(Y) ()],

Zo(w1,02) :=E[SF7(Y)(01)3 77 (V) ()],
S3(o1,0) = E[RFr(Y)(0)3Fr(Y)(a)].

All entries X; ; of the matrix ¥ are of one of the above forms. Indeed, X1, X33
are of the form X for k =1 and k,l € {1,2}. Similarly, X5, X44 are of the form
Y, fork=1and k,l € {1,2}. Moreover, X3, £3; are of the form ¥ for k # [ and
k,l € {1,2} and Xp4, X4, are of the form X, for k # [ and k,1 € {1,2}. All other

elements are of the form X3.
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Observe that for each @ we have

RFr(Y)

(

)

2
Fr¥)o)—FrY)(—w
321 () = ZH@) = FH )0
Using Theorem [ST.T| we obtain
( 260)% | 1
9 |a(0)|2+TK(0)7 ) = =0;
1 2 |bian))? —
>0 +—K171((D1), 0] = W;
vy = | RN
10° i + 7K12(@1), o = ~oy;
| rKis(on o), o # oyand oy # —ay,
0, @) =0or w =0;
b(i 2
e oo
22(0)170)2) T )
B
—3 2}6,821;{2 — 1Ko (@), 0 = —0;
\ +Ko3(01, ), ) # @ and ® # — @y,
)
0, w =0;
(o, m) =9 1Ky (an), O = W01 O = —;
\%K&z(wl,wz), o # @ and 0 # — .

Here K is given by (ST.10) and K; ; are bounded in T for i, j = 1,2,3. O
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S1.3 Proof of Lemma 3.2

Proof. Observe that

~ 1 .
1Z(T)| = ﬁbT(iwI—A)_l [X(0) — e *TX(T)]
1 T/- -1 T
Sﬁ‘b (il —A)~'X(0)| + \/_}b (il —A)~'X(T)].
Obviously,

hm—\bT iol —A)"'X(0)] =0 as.asT — oo,

T—eo /T

Because of stationarity, X(7') is bounded in probability and \/LT converges to

zero thus

1
— b (il —A)~'X(T)| — 0 in probability.
\/T‘ ( ) ( )} p y
Therefore

P— lim |Z(T)| =0.

T—o0

This completes the proof. O

S1.4  Proof of Theorem 3.3
\%% (T). By the stan-
dard Central Limit Theorem d — lim7r_e \/LTL(T) = .#(0,02). Therefore d —
- LbO) oy — b(0))? 52
limy e \/_Ta_O)L<T) =N <O, (m) (0 >

Observe that for all n € N the random variable &Z?) ~ A4 (0,1). Then by

b(0)

the continuous mapping theorem we have d —lim7_, #

Proof. Observe that fOT dL(t) = L(T), thus Z(T) =

a(0)Z(T)
b(0)

‘2 ~x*(1). O
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S1.5 Proof of Theorem 3.4

uN
Proof. We first show that \/Lﬁ Jo@ e '®dL(r) is asymptotically normal. For

NeNandje{0,...,N—1} put

2n(j+1)/
v X} _ f;j/w ® cos(ot)dL(t)
= :
2m(j+1
X2 Lo a V1 sin(er)dL(r)

Observe that X; are independent and identically distributed random vectors with

. .o 2
mean zero and the covariance matrix X := 1. Therefore,

2N

e " dL(1) Z X;.
0

Applying the classical CLT we obtain

lNl ZKJ
( ZX) \/_/ e OGL(1) — N ~ N (0,5]) as N — oo,

— 2
221 = %ngz. Put

So YO [°8 o=i0tgL (1) = K (0,%,), where Tj —
0 ,X1), where X = 5%

V2nN

Observe that
2N/
4 \/Wf cos(t)dL(t) _ RZ(27N)
L2 s 22N/® Gin( oot )dL(t) 3Z(27N)

Thus Z = AX is normally distributed with mean zero and the covariance matrix

_ AT AT — o |blio) [?
Y =AY A —% W‘ Ly, O
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S1. SUPPLEMENTARY MATERIAL FOR SECTION 3

S1.6 Proof of Theorem 3.5

PROOF We use the notation of the proof of Theorem 3.4. Thus |Z|? is propor-

tional to chi-square random variables with two degrees of freedom, i.e. |Z|? =

o2

2

. 2
zglgg‘ X, where X ~ x2(2).

.12
bliw) ’ > so |Z|> ~ Exp (62

a(io)

Thus |Z|? ~r(1,%2

b(io) |*
a(iw)’ ) -
S1.7 Proof of Theorem 3.6

PROOF For fixedn € Nand k= 1,...,n, put
(2i-1) 2k
X, (o) ::/ cos(@;t)dL(t),
2(k—1)7
2km

e [ i, i1t
2(k—1)7

Let (s,(fi_l))z =Y} | Var [Xk(%_l)(a),-)} and (s,(fi))z =Yy ; Var [X,gzz.)(a)i)]

Put

n oy (2i1) n o x)
i Yio1X (@) 2i Lic1 % (@)
2 () = EE T 2 (@) = B

n n

Then we will show that by the Cramer-Wold-device the random vector Z € R??

. : T
with Z = [Z,gzl_l)(wi),z,(,h)(wi) . converges to A (0,h4x24) in distribu-

i=1,...,
tion.

We first apply the Lindeberg-Feller Central Limit Theorem (see Billingsley

(1995), for instance) to each coordinate of the vector Z. Observe that for all

13
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i=1,...,d by the Itd isometry we obtain

(2i-1) 2km 5 2km 5
Var (Xk (Coi)) = Var /2 cos(wit)dL(t) | = o /2 cos”(wjt)dt

(k=1)m (k—1)m
_ 52 4me; + sin(4mwwik) — sin(4maw;(k— 1))
4;

Thus

(2i—1) 2 /L (2i—1) 24n717(1),~ + Sin(47l'(1)in)
S = ) Var (X (w)| =0 :
( > kgl |: k ] 40),'

In the same way,

(2i) 2 1l (2i) 24n7750)i — sin(47ta),-n)
S = Var | X )| =0 .
(57) = X var (X (@) -

Observe that

lim (s,SZi‘l))z ~ lim ! (s,(f")>2 — o1,

n—oon n—oon
If the Lindeberg condition is satisfied, the 2i-th, respectively 2i — 1-th coordinate

of Zfori=1,...,d,1ie.

Z;gzi*l)(a)i) = 2V ) /027m cos(ajt)dL(t)

0+\/ATnw; + sin(47wnw;

. ] 27n
7 (@) = 2V / sin(@it)dL(?)
G\/47rna),~ —sin(4wna;) Jo

converges to .4'(0, 1). Taking

(2i—1) (a),-) _ G\/47L'n(0i + sin(47tna),-)

Y, :
" 2\/27no;
Y(zi)(a)-) _ 0+\/4mnw; — sin(4wnow;)

" ' 2\/27Tno;

14
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and noting that

. (2i—1) 9 . (2i)
lim Y, w)=— IlimY,"(w) =
lim (@) ===, Jim %™ (@)

n—o0

Sl

is constant at all frequencies, by Slutsky arguments fori =1,...,d we get

27n . 2
\/2_/ cos(wit)dL(t) = Z (o)1 (@) — N <O,G—>, (S1.11)
n

27n . . 2
\/2_ / sin(wir)dL(r) = 22 (), *) () — N (o ° ) (S1.12)
n

2
Now we are going to prove the Lindeberg condition for odd coordinates of

Z (for the even ones an analogous reasoning holds), i.e. for all € > 0 it holds

n

n_m< o 1) i {( (2i-1) z))z]l{|x,§2i1)(a>,-)|>ss(2i1>}} =0.

Observe that if the random variables {Xézj*l)(a)i)} are uniformly square inte-

grable, then they satisfy the Lindeberg condition. Indeed

R
= (5) " B (o)

Xé2i71)(wi)

(o)

< ( (2i= l)> 2n sup E (X(Zifl)

2
(a))) 1 i 2
k=1,...n k l {‘Xk(2 D (ay) >(es£l 1>>}
(624n7w),+s1n 4T ooin )
2
x sup E <k21 1 >
k=1,....n

e

15
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24nww;+sin(drwin) \

1
Since lim;,—se <G 1o, ) n — —=3, uniform square integrability im-

plies in this case the Lindeberg condition. It remains to show the uniform square
integrability of {X(Zifl) ; } .
integrability of {x* (@)}

Assume first, that our driving process (L(t));>0 is of bounded variation.

Then

2km
/ cos(wjt)dL,
2(k—1)m

My =

2km 2km
g/ |cos(@it)|d|Li] g/ d|Ly],
2k—1)m 2k-1)7

. . d
where |- | denotes the total variation of the process. It is clear that zz(lﬁ ned|Le] =

02”d|L,\. We have

(| 2kn 2
2
E [IMi*Lp>x)] <E /z(k_l),,d|Lf| L\, an >K}]

2

=K

2n
‘ dIL|

“{lfé”diu|>f<}] |
By the square integrability of fozﬂd]L,\, which is implied by the square integra-
bility of (L(t)),>0 we obtain the uniform integrability of (Mj)ien-

Now we assume that (L(¢)) is a square integrable martingale with finite mo-
ments of all orders. Observe that X is square integrable for all k € N. By the
Burkholder-Davis-Gundy Inequality (see e.g. [Protter| (2004)) for each p > 1

there exists a positive constant C, such that

E K/z(z:ﬂl)”cos(wit)dL(t)> p}

V;]m COS(wit)dL(t)’/ v Cos(w,-t)dL(t)]m].

<C,E
(k—1)m 2(k—1)7

16
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Since

[ /;kn cos(@it)dL(t), /M cos(a)it)dL(t)]: /;kn cos?(w)d|L, L],

(k—1)m 2(k—1)m (k—1)m

using the above inequality for p = 4 we obtain

E ( /2 Zfl)ncos(wiz)dL(t))4

2km
< GE { / cos” (wit)d [LvL]z}
2(k—1)m

2km
< 62/ cos?(wit)dt < C
2(k—1)m

2i—1)(

for some constant C. Since {X,g w;)} are square integrable and bounded in

L*(Q,.7 ,P), they are uniformly square integrable.

As any Lévy process is by the Lévy-Itd decomposition the sum of a finite
variation Lévy process and an independent square integrable martingale with
moments of all orders, we obtain the claimed uniform squre integrability for all
driving Lévy processes.

Likewise one shows that 87 Z converges in distribution to .4 <0, %ZGTG)

for all & € R4, So the Cramer-Wold device concludes.

, . . . T
Hence, [Z,(lm_l)(a)i)Yn(Zl_l)(a),-),Z,SZ’)(a),-)Yn(Zl)(a),-)} . converges in dis-

i=l1,...,

tribution to .4 <0, %ZIdezd> and thus using Lemma 3.2 and equations (SI.T1),

(ST.12) [ﬁ’T(a)j)LT:] , converges to .4 (O, %2B>, where B is defined above.

EARE)

Repeating the reasoning from the proof of Theorem 3.5 we obtain that the vec-

T : : :
tor [|Zr(w))|?] j=1....a converges to a vector of independent, exponentially dis-
2 | bliw;)
a(io;)

tributed random variables with Exp (G

2
)forjzl,...,d. O

17
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S1.8 Proof of Theorem 3.7

We begin by establishing an error bound of the trapezoidal method for non-
equidistant data. For a very accessible presentation of quadrature rules we refer
to [Talvila and Wiersma (2012). Recall the basic properties of the trapezoidal

rule:

Lemma S1.3. Let f: [a,b] — R be a twice continuously differentiable function.

Write
b b—a
[ e =" @)+ ) +E (). SL13)
Then
3
\ET(f)IS(b_a> sup |/ (x)]. (S1.14)
12 x€la,b]

1
n

For the composite trapezoidal rule for an equidistant grid a < a+ (b —a)+ <

oosa+(b—a)t <. < bwe have
b b—a ol i T
/f(x)dx: . f(a)—}—ZZf(cH-(b—a);) +f(b)| +E, (f). (S1.15)
a i=1
Then
3
1)< B s 109l (S1.16)

A proof can be found e.g. inTalvila and Wiersma (2012).
Now we are going to formulate a version of the trapezoidal rule for non-
equidistant points. We assume that we have some control on the maximal dis-

tance between observations.

18
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Lemma S1.4. Let a = xg < x1 < -+ < xy_1 < xy = b be an arbitrary parti-
tion of the interval [a,b] and assume that f: [a,b] — R is a twice continuously

differentiable function. Put hyax = maxj—o_. N—2(Xj+1 —X;). Then

b N X =X T
| e = F T )+ f )] +ET ().
i=0
where |ET(f)] < NI f" |l "pgs.
PROOF
Let us write
N—-1
[a,b] = | [xj,xjm1], 1= [xj,x)41]
j=0

and apply Lemma[ST.3|for each interval /;. Therefore

/:N S (x)dx = xj%_x] [f (o) + f ()] +Ef (f),

with

o +.13
7)) < P G ).

12 XE[Xj,Xj_H]
Foreachi=0,1,...,N—1 we have
sup  |f"(x)[ < sup |f" ()] =2 {7 |-
xXE[xjxj41] x€la,b]

Therefore

[ s =2 )+ sy < £ )

19
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where
N—1 N—1 (x 1 —x~)3
ET D= L Ef (D] <"l X =
i=0 i=0
N—113 3
h h
< /! - max :N /! - maX.
<l X S5 =N

This completes the proof. O

We use some results and ideas from [Brockwell and Schlemm)| (2013)). The
aim is to find an approximation similar to Proposition 5.4 of Brockwell and
Schlemm| (2013) of the integral appearing in the truncated Fourier transform in
the case that the observations of the process Y are given on a non-equidistant

grid. Let

N N X X
Ty f = Y 5 [f () + f(xjs1)]
=0

be the trapezoidal rule discussed in Lemma [ST.4, Recall first the Fubini type

theorem for stochastic integrals from |Brockwell and Schlemm (2013).

Lemma S1.5. (Brockwell and Schlemm, 2013, Theorem 2.4) Let |a,b] C R be a
bounded interval and (L(t));>0 be a Lévy process with finite second moments.
Assume that F: [a,b] x R — R? is a bounded function %(|a,b]) @ B([—s,t])-
measurable for all s,t € (0,00) and the family {u— F(s,u)},c|qp) is uniformly

absolutely integrable and uniformly converges to zero as |u| — 0. Then

/ab/RF(s,u)dL(u)ds:/R/abF(s,u)dde(u) a.s. (S1.17)
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In the paper |Brockwell and Schlemm|(2013) the assumption about measur-
ability in the statement of the theorem is not explicitely stated. However, an
inspection of their proof combined with results from |Veraar| (2012)) shows that
the precise statement has to be in the above form.

Secondly, note that for non-equidistant data the corresponding error estima-

tion (Brockwell and Schlemm, [2013], Proposition A.6) has the following form:

Proposition S1.6. Let [a,b] C R be a compact interval and use the notation of

Lemma

1. If f: [a,b] — R is twice continuously differentiable, then

b N 1/ hr3nax
[ 7t5has 1) < Wl

2. IfF: [a,b] — RY is twice continuously differentiable, then

b h3
/ F(s)ds— T[{jh]FH < \/ZN||F”||OO%,
a

where || - || denotes the Euclidean norm in RY.
Here ||[F"||o == max;=1___aSup,c(qp [I1F" (4]

Put

ELY = T 080) -~ [ o)s(s)ds.

0

PROOF OF THEOREM 4.7. Assume that we have observed the process Y on
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the grid 0 :x(()T) < ng) << x](vT()T)_] — 7 We have
NI-1 .
TonFY =), 0‘]( ( ))Y(x; ), (S1.18)
j=0

where Ot](.N(T)) (j=0,...,N(T) — 1) are the coefficients given by (3.12) and
(3.13).

Observe that f(a) = [ f(s)084(s)ds. Moreover, forall j=0,...,N(T)—1 we
know that xE.T) € [0,T], therefore for all u € [0,T] and forall j=0,...,N(T)—1
we have

L7 (xE.T)> =1 [O’x.(/_r)] (u).

Thus by (S1.18) we have
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o ,rNT)-1 (T
_ / / Y a5 ) ()b Ao WedsdL (u)
—o0JO j=0 Xj
T ,TN(T)-1
4 / / Y aMs 4 (5)bT A WedsdL (u)
0 Ju j=0 Xj

T N(T)-1
:/ / Z Oc](.N(T))5 i (5)bT A WedsdL* (u).
—oo Jmax{0,u} =0 Yj

Thus using the representation (2.6) and the Fubini-type Theorem [ST.5|we have

/0 " ()Y (s)ds = /O " F(s) /_ b7 ACedL (u)ds

T T
:/ / { }F(s)bTeA(S”)edde*(u)
—oo Jmax{0,u

0 /T
:/ / F(s)bT A WedsdL* (u)
+/ / (s)bT A WedsdL* (u).

Thus

—/ / ( ))SX(T) (s) — F(s)) b’ A WedsdL* (u)
i
-l—/ / ( Z OCJ(-N(T))5 ) (s) — F(s)) b’ AU WedsdL* (u).
0 Ju =0 Xj

23



ZYWILLA FECHNER AND ROBERT STELZER

Let us denote

TN v
™) : = /0 Z o; 8 1) (s) = F(s) | b7 A eds, u<o0,

J=0 !
(S1.19)
(T)—1
G(N) :/ < (x ) (s) —F(s)) bl A Meds, ue [0,T].
Jj=0 ’
(51.20)

By Assumption 2.3 we know that there exist positive constants ¢, 8 such that
|exp(At)[| < Bexp(—az). (S1.21)

Note that by Lemma [ST.4]and Proposition we have

T /N(T)-1
( Z a x ) () —F(s)) bT Al Weds
J

R4

Z OC x )bT A(xj—u / F bT A(s— u)eds
J

R4
~ B (T
< ﬂN(T)HF”(u)Hw%”
with F(s) = F(s)bT A6 %e and ug € [0,T]. If ug = 0, then there exist & > 0
and D > 0 such that ||F”(u)|| < Dexp(cu) for u < 0. Therefore there exists a

constant D; > 0 such that

_ 3
T @) < VAN F Y e 22 ) < DN (1) exp@) < 0

If now up = u is any element of [0,7], then there exists D > 0 such that

|F" |w,7]llee < D for u € [0,T]. Therefore there exists a constant D > 0 such
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that for u € [0,7] we have

3
160 0) 5 < VAN D)y "2 < Do ()13 7).

By the Itd isometry

|/ v

=K

(s
<

L(u) ;:E (/ W )T(/TGW)(u)dL(u))_
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= DGN( )2Thg1ax( )
for some constant Dg > 0. Therefore

|/ roma

|Egy I <2

)
L2]

thus
T,N 216 2
IERY 12 < €1 (G4 TIN(T) Ko (T))

2h6

where C,C, are positive constants. If limy_eo TN(T)*hp, .«

(T) =0, then we

have lim7 o ||[E TN|| 72 = 0. This completes the proof. O

S1.9 Proof of Theorem 3.8

PROOF We identify C with R? in the canonical way. Applying Theorem 3.7 for

d=2,F(t) = [cos(mt),—sin(wr)]" we get

2

N(T)—1 cos(t)
(N(T T
E Z o / Y(t dt
j=0 — sin(ot)
< Cl (CZ + T)N(T)zh?nax(T)
Dividing both sides by 7' > 0 we obtain
2
N(T)—1 V(7)) 1 T cos(or)
E Iy (AD) - —/ Y () dt
j=0 vT ( ’ > VT Jo —sin(wt)
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CiC
< ITZ FOIN(T)HS, (T).

Passing to the limit with 7 — oo and recalling lim7_,o. N(T )13 (T) =0 we

get the assertion. [

S1.10 Proof of Theorem 3.9

PROOF. Put
1 b(io)
VT a(io)

and consider the following two-dimensional random vectors:

Z(T) := /OT e AL (1)

R(Z(T)) R(FrY (o)) R(TrY (o))
Zn = ’ Ui’l = 5 Vn =
3(2(T)) 3(FrY(w)) 3(IrY(w))
Observe that it is enough to consider the above limits for 7 = n. By Lemma 3.2
we know that
P— lim |U, —Z,|| = 0.
n—yoo

From Theorem 3.4 we get

d—Tim Z, = .4 (0,%).

n—soo
Therefore
d—lim U, = .4(0,%).
n—soo

By Theorem 3.8 we have

P— lim (V,—U,) = 0.

n—oo
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Therefore,

d—1im V, = .#(0,%).

n—oo

In the same way we obtain

d— lim |Z|* = Exp <62
n—soo
In order to obtain the assertion for @ = 0 we repeat the above reasonings apply-

ing Theorem 3.3 instead of Theorem 3.4 O

S2 Supplementary Material for Section 4

S2.1 Plots for the CARMA(2,1) simulation study

This section presents the plots for the simulation study for CARMA(2,1) pro-
cesses, i.e. Example 4.2. QQ-plots showing the results for 2000 simulated paths
for the four different frequencies and three different combinations of time hori-
zon and maximum grid width can be found in Figures [S.T] [S.3] and [S.5] for the
driving Lévy process being a standard Brownian motion, a Variance Gamma
and a two-sided Poisson process, respectively. Likewise, Figures [S.2] [S.4] and
show corresponding histograms.

So on top of the QQ plots we now also provide histograms in Figures [S.2]
[S.4)and [S.6] respectively, together with plots of the limiting normal density. To

us it seems very hard to see the convergence to normality with increasing 7 in
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the histograms, which reflects the fact that it is essentially the tails which need to
converge and they are much clearer visible in the QQ plots than in histograms.
It is also not easy to see in them that for @ = 0.1, T = 10 the variance of the
simulated values is different from the asymptotic theoretical one. The only thing
one notices is that for @ = 0.1, T = 10 the histogram routine of R tends to use
very different bins than in all the other cases. Note that all histograms were
obtained using the default parameters of the hist function in R, so the binning

was done by the standard automatic selection to give “nice” histograms.
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Figure S.1: Normal QQ plots for the real part of the truncated Fourier transform of the simulated
CARMA(2,1) processes driven by standard Brownian Motion for the frequencies 0,0.1,1,10
(rows) and time horizons/maximum non-equidistant grid sizes 10/0.1,50/0.05,100/0.01
(columns). The theoretical quantiles are coming from the (limiting) law described in Theorem
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Figure S.2: Histograms and limiting density for the real part of the truncated Fourier trans-
form of the simulated CARMA(2,1) processes driven by standard Brownian Motion for
the frequencies 0,0.1,1,10 (rows) and time horizons/maximum non-equidistant grid sizes
10/0.1,50/0.05,100/0.01 (columns)
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Figure S.3: Normal QQ plots for the real part of the truncated Fourier transform of the simulated
CARMA(2,1) processes driven by a Variance Gamma process for the frequencies 0,0.1,1,10
(rows) and time horizons/maximum non-equidistant grid sizes 10/0.1,50/0.05,100/0.01
(columns). The theoretical quantiles are coming from the (limiting) law described in Theorem

3.9.
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Figure S.4: Histograms and limiting density for the real part of the truncated Fourier trans-
form of the simulated CARMA(2,1) processes driven by a Variance Gamma process for
the frequencies 0,0.1,1,10 (rows) and time horizons/maximum non-equidistant grid sizes
10/0.1,50/0.05,100/0.01 (columns)
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Figure S.5: Normal QQ plots for the real part of the truncated Fourier transform of the simulated
CARMA(2,1) processes driven by a two sided Poisson process for the frequencies 0,0.1,1,10
(rows) and time horizons/maximum non-equidistant grid sizes 10/0.1,50/0.05,100/0.01
(columns). The theoretical quantiles are coming from the (limiting) law described in Theorem
3.9.
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Figure S.6: Histograms and limiting density for the real part of the truncated Fourier trans-
form of the simulated CARMA(2,1) processes driven by a two-sided Poisson process for
the frequencies 0,0.1,1,10 (rows) and time horizons/maximum non-equidistant grid sizes
10/0.1,50/0.05,100/0.01 (columns)
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