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Abstract: Estimations of high-dimensional banded covariance matrices are widely

used in multivariate statistical analysis. To ensure the validity of such estimations,

we test the hypothesis that the covariance matrix is banded with a certain band-

width under a high-dimensional framework. Though several testing methods have

been proposed in the literature, these tests are only powerful for some alternatives

with certain sparsity levels, but not others. Here, we propose two adaptive tests for

the bandedness of a high-dimensional covariance matrix that is powerful for alterna-

tives with various sparsity levels. The proposed methods can also be used to test the

banded structure of the covariance matrices of the error vectors in high-dimensional

factor models. Based on these statistics, we introduce a consistent bandwidth esti-

mator for a banded high-dimensional covariance matrix. We use simulation studies

and an application to a prostate cancer data set to evaluate the effectiveness of the

proposed adaptive tests and bandwidth estimator.

Key words and phrases: Asymptotic normality, banded covariance matrix, high-

dimensional hypothesis testing, sparsity level, U-statistics.

1. Introduction

Statistical tests for covariance matrices play an important role in multivari-

ate and high-dimensional statistical analysis, for example, in principle compo-

nent analysis, multivariate regression analysis, and factor analysis (see Anderson

(2003); Bai and Yin (1993); Johnstone (2001); Cai and Liu (2011); Fan, Liao and

Yao (2015)).

Tests of high-dimensional covariance matrices have been studied from various

aspects, for example, testing H01 : Σ = Σ0, where Σ is a population covariance

matrix, and Σ0 is a given positive-definite matrix. For instance, Ledoit and

Wolf (2002) proposed a robust statistic for testing H01 based on the Frobenius

norm under a Gaussian assumption. Without the Gaussian assumption, Bai

et al. (2009) developed a corrected likelihood ratio test (LRT) when the dimen-
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sion p of the data is smaller than the sample size n. Jiang, Jiang and Yang

(2012) studied the asymptotic distribution of the corrected LRT for normal ran-

dom vectors when p/n → y ∈ (0, 1]. Later, Wang et al. (2013) redefined the

above statistics, and introduced two tests that accommodate data with an un-

known mean and a nonGaussian distribution. Moreover, Chen, Zhang and Zhong

(2010) and Cai and Ma (2013) constructed sum-of-squared-type tests using U-

statistics as n, p → ∞. Another aspect is to test H02 : Σ = cΣ0, where c is an

unknown positive number. For sphericity testing, Ledoit and Wolf (2002) and

Chen, Zhang and Zhong (2010) proposed sum-of-squared-type statistics, where

the former substituted the sample covariance matrix Sn for Σ; and the latter used

unbiased U-statistics. Furthermore, Wang and Yao (2013) developed a corrected

LRT (p < n) and John’s test. Jiang and Yang (2013) extended the corrected LRT

to the case of p/n → y ∈ (0, 1], and Li and Yao (2016) proposed a quasi-LRT

allowing p/n → ∞. In addition, researchers have tested general linear struc-

tures of covariance matrices. Zheng et al. (2019) studied the problem of testing

H03 : Σ = θ1A1 + · · · + θKAK , where θ1, . . . , θK are unknown parameters and

A1, . . . ,AK are known basis matrices. Furthermore, Zhong et al. (2017) intro-

duced an adjusted goodness-of-fit test that examines a broad range of covariance

structures to assess the adequacy of specified covariance structures.

Here, we test the banded structure of covariance matrices, which has nu-

merous applications in areas such as biological science, climate, econometrics,

and finance (see Andrews (1991); Ligeralde and Brown (1995)). For instance, in

high-dimensional data analyses, a popular covariance matrix estimation method

is to band or taper the sample covariance matrix (e.g., Bickel and Levina (2008)).

Although the large-sample consistency of the corresponding estimators has been

established for covariance matrices in the “bandable” class, it remains question-

able whether or not the underlying covariance matrix belongs to the “bandable”

class. The proposed hypothesis test for the banded structure of a covariance

matrix may provide a practical statistical guideline for this issue.

Several methods have been proposed for testing the bandedness of a high-

dimensional covariance matrix. In particular, Qiu and Chen (2012) developed a

test using a linear combination of U-statistics by collecting the sum-of-squares of

all covariance differences between the null and alternative hypotheses. This test

is powerful against dense alternatives, because there are many nonzero compo-

nents in the aforementioned covariance differences. However, it is not powerful

when the alternative is sparse. To address this problem, Cai and Jiang (2011)

proposed a maximum-type statistic by capturing the maximum componentwise

covariance difference for multivariate normal random vectors. Shao and Zhou
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(2014) restudied the above statistic, and suggested using a chi-squared distribu-

tion instead of the type-I extreme distribution to improve the convergence rate

of the maximum-type statistic. Furthermore, Xiao and Wu (2013) relaxed the

normality assumption for the normalized maximum componentwise sample co-

variance difference. The maximum-type test is powerful when the alternative is

sparse, but is less powerful for dense alternatives. In practice, however, it is often

unclear how dense or sparse the alternative hypothesis is. In addition, neither

test is powerful when the alternative hypothesis is denser or less sparse, as shown

in Section 3.1.

Motivated by this, we propose two adaptive tests based on a series of unbiased

U-statistics for the banded structure of high-dimensional covariance matrices,

following the idea of the adaptive test in Xu et al. (2016) and He et al. (2021).

Our contributions are as follows:

(i) We derive the joint asymptotic distribution of the series of U-statistics un-

der the null hypothesis. Furthermore, we show that the U-statistics are

asymptotically independent and jointly normally distributed under certain

regularity conditions.

(ii) We establish the asymptotic distribution of the series of finite-order U-

statistics under a local alternative hypothesis. Furthermore, we compare

the power performance of these single U-statistic-based tests and show their

consistency.

(iii) We propose two adaptive tests that combine the p-values of the U-statistics.

The consistency of the adaptive tests is also guaranteed. These adaptive

tests select the test with the most significant result, and yield high power

under a range of alternative hypothesis scenarios.

(iv) We provide an adaptive estimator for the bandwidth of a high-dimensional

banded covariance matrix and establish its consistency.

The rest of the paper is organized as follows. In Section 2, we first introduce

a series of U-statistics, and then derive their joint asymptotic distributions under

the null and local alternative hypotheses. Furthermore, we propose two adaptive

tests for testing the banded structure of high-dimensional covariance matrices.

We also present a bandwidth estimator for the banded covariance matrix and

show its consistency. In Section 3, we present our simulation studies, and in

Section 4, we demonstrate the proposed tests by analyzing a prostate cancer data

set. Section 5 concludes this paper. The main technical proofs and additional

simulation results are provided in the Supplementary Material.
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2. The Proposed Test Methods

Let xi = (xi,1, . . . , xi,p)
T, for i = 1, . . . , n, be independent and identically

distributed (i.i.d.) samples from a p-dimensional population x = (x1, . . . , xp)
T

with mean vector µ = (µ1, . . . , µp)
T and covariance matrix Σ = (σj1j2)p×p. The

population covariance matrix Σ = (σj1j2)p×p is said to be banded if there exists an

integer k ∈ {0, . . . , p−2} such that σj1j2 = 0, for |j1−j2| > k. The smallest k such

that Σ is banded is called the bandwidth of Σ. LetBk(Σ) = (σj1j21{|j1−j2|≤k})p×p
be the banded version of Σ with bandwidth k, where 1{·} is an indicator function.

When k = 0, B0(Σ) is the diagonal version of Σ. Here, we test

Hk,0 : Σ = Bk(Σ) vs. Hk,1 : Σ 6= Bk(Σ), (2.1)

for a certain positive integer k. We further rewrite the hypothesis test in (2.1) as

Hk,0 : E = 0 vs. Hk,1 : E 6= 0,

where E = {σj1j2 : k < |j1 − j2| < p}.

2.1. A series of U-statistics

Motivated by He et al. (2021), we consider a series of measurements of E ,

defined by ||E||a = [
∑

k<|j1−j2|<p(σj1j2)
a]1/a, and construct test statistics that are

powerful against ||E||a, for a finite positive integer a. Because E(xi1,j1xi1,j2 −
xi1,j1xi2,j2) = σj1j2 for 1 ≤ i1 6= i2 ≤ n, we propose the U-statistic

U(a)=
∑

k<|j1−j2|<p

(Pn2a)
−1

∑
1≤i1 6=···6=i2a≤n

a∏
l=1

(xi2l−1,j1xi2l−1,j2 − xi2l−1,j1xi2l,j2)

as an unbiased estimator of ||E||aa, where Pn2a = n!/(n− 2a)! denotes the number

of 2a-permutations of n. A straightforward calculation shows that

U(a) =
∑

k<|j1−j2|<p

a∑
c=0

(
a

c

)
(−1)c(Pna+c)

−1
∑

1≤i1 6=···6=ia+c≤n
a−c∏
l=1

(xil,j1xil,j2)

a∏
s=a−c+1

xis,j1

a+c∏
t=a+1

xit,j2 . (2.2)

The form of U(a) in (2.2) plays an essential role in deriving the theoretical prop-

erties of our proposed statistics. Specifically, to obtain the expression in (2.2), we

define ϕj1j2 = E(xi,j1xi,j2) and σj1j2 = E[(xi,j1−µj1)(xi,j2−µj2)] = ϕj1j2−µj1µj2 .
For any finite positive integer a, we have
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k<|j1−j2|<p

σaj1j2 =
∑

k<|j1−j2|<p

(ϕj1j2 − µj1µj2)a

=
∑

k<|j1−j2|<p

a∑
c=0

(
a

c

)
(−1)cϕa−cj1j2

µcj1µ
c
j2 . (2.3)

Because xi,j and xi,j1xi,j2 are unbiased estimators of µj and ϕj1j2 , respectively,

for 1 ≤ i1 6= · · · 6= ia+c ≤ n, it follows that E (
∏a−c
l=1 xil,j1xil,j2

∏a
s=a−c+1 xis,j1∏a+c

t=a+1 xit,j2) = ϕa−cj1j2
µcj1µ

c
j2
. Thus, we obtain the expression (2.2).

Remark 1. If we consider only c = 0 in (2.2), we have

Ũ(a) = (Pna )−1
∑

k<|j1−j2|<p

∑
1≤i1 6=···6=ia≤n

a∏
l=1

(xil,j1xil,j2). (2.4)

In Section 2.2, we show that this is a leading term of (2.2), under certain regularity

conditions, and use it for our theoretical analysis presented in the Supplementary

Material.

2.2. Asymptotic properties of the U-statistics under the null hypothe-

sis

Before deriving the theoretical properties of the U-statistics under the

null hypothesis, we first introduce the following notation: un,p = o(vn,p) if

lim supn,p→∞ |un,p/vn,p| = 0, and un,p = Θ(vn,p) if 0 < lim infn,p→∞ |un,p/vn,p| ≤
lim supn,p→∞ |un,p/vn,p| <∞ and

Πj1,...,jt = E[(x1,j1 − µj1) · · · (x1,jt − µjt)]. (2.5)

We assume the following regularity conditions in our analysis:

Condition 1. limp→∞max1≤j≤p E[(xj −µj)8] <∞ and limp→∞min1≤j≤p E[(xj −
µj)

2] > 0.

Condition 2. A sequence of random variables z = {zj , j ≥ 1} is said to be α-

mixing if lims→∞ αz(s) = 0, where αz(s) = supt≥1{|P (A∩B)−P (A)P (B)| :
A ∈ F t1, B ∈ F∞t+s}, with Fba being the σ-algebra generated by {za, za+1, . . . ,

zb}. Under H0, we assume x is α-mixing with αx(s) ≤Mδs, where δ ∈ (0, 1)

and M is some positive constant.

The regularity conditions are similar to those of Theorem 2.1 in He et al.

(2021), who studied the problem of testing the diagonality of a covariance ma-

trix, a special case of (2.1) with k = 0. Specifically, Condition 1 requires that the



1678 WANG, XU AND ZHENG

eighth marginal moments of x are uniformly bounded from above, and that the

second marginal moments are uniformly bounded from below. Condition 2 pre-

scribes weak dependence between the components of x in α-mixing type, which

is satisfied when x is an m-dependent random vector or a Gaussian distributed

random vector with a banded covariance matrix. In addition, there are several

strong mixing conditions, such as φ-mixing, ψ-mixing, ρ-mixing, and β-mixing.

In the classical theory, these five strong mixing conditions have emerged as the

most prominent, with the α-mixing condition being the weakest of them (e.g.,

Bradley (2005)). The α-mixing condition is also used by, among others, Xu et al.

(2016) and Chen, Li and Zhong (2019). In our work, the α-mixing condition to

these mixture moments E(
∏s
t=1 xjt), for 2 ≤ s ≤ 8, ensures the asymptotic inde-

pendence of different finite-order U-statistics. In addition, Bai and Saranadasa

(1996) assumed the independent component structure x = µ + Γz to describe

the weak dependence between the components of x. The random vector x is

α-mixing when Γ = (γj1j2)p×p is an upper-triangular matrix with γj1j2 = 0, for

j2 − j1 > k.

Theorem 1. Under Conditions 1, 2, and Hk,0, for any finite positive integers

a1, . . . , am, we have(
U(a1)

σ(a1)
, . . . ,

U(am)

σ(am)

)T
D−→ N (0, Im), n, p→∞, (2.6)

where

σ2(a) = Var[U(a)] = (Pna )−1a!
∑

k<|j1−j2|<p,
k<|j3−j4|<p

(Πj1,j2,j3,j4)
a + o(n−ap2), (2.7)

with
∏
j1,j2,j3,j4

defined in (2.5).

Because σ2(a) is unknown, we obtain the following theorem, where σ2(a) is

replaced with the estimator σ̂2(a) provided in (2.9). To ensure the consistency

of σ̂2(a), we require Condition 3.

Condition 3. For a finite positive integer a, limp→∞max1≤j≤p E[(xj−µj)8a] <∞.

Theorem 2. Under Conditions 1, 2, and Hk,0, for any positive integers a1, . . . , am
satisfying Condition 3, we have(

U(a1)

σ̂(a1)
, . . . ,

U(am)

σ̂(am)

)T
D−→ N (0, Im), n, p→∞, (2.8)

where σ̂2(a)/σ2(a)
P−→ 1 and
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σ̂2(a) = 2(Pna )−2a!
∑

k<|j1−j2|<p,
k<|j3−j4|<p,

|j1−j3|≤k,|j2−j4|≤k

∑
1≤i1 6=···6=ia≤n

∏a

l=1
[(xil,j1 − x̄j1) · · · (xil,j4 − x̄j4)].

(2.9)

Theorem 2 shows that U(a1)/σ̂(a1), . . . , U(am)/σ̂(am) are asymptotically

independent and normally distributed. The theoretical results in Theorems 1 and

2 extend those in He et al. (2021) from testing the diagonality of a covariance

matrix to testing a general banded structure, which is often of practical interest

in high-dimensional covariance matrix estimation. The general banded structure

makes the analysis more technically involved; the details are presented in the

Supplementary Material.

Remark 2. For an extreme case, as an even number a→∞, we have

||E||a =

 ∑
k<|j1−j2|<p

σaj1j2

1/a

−→ ||E||∞ = max
k<|j1−j2|<p

|σj1j2 |.

Thus, the statistic U(a) and the maximum-type statistic perform similarly when

the even order a is large enough, as shown in Xu et al. (2016) and He et al. (2021).

He et al. (2021) provide the asymptotic independence between the finite-order U-

statistics and the infinite-order U-statistic (maximum-type statistic) when the

components of the random vector x are uncorrelated. We expect a similar result

under certain regular conditions in our setting. However, it is challenging to

establish the asymptotic joint distribution of the maximum-type statistic and the

finite-order U-statistics, because the banded covariance structure is much more

complicated than it is in the i.i.d. case, owing to the dependence, as pointed out

in Cai and Jiang (2011). We leave this for future work.

2.3. Power analysis

In this section, we investigate the asymptotic distributions of the series of

U-statistics under the local alternative hypothesis Hk,A : Σ = ΣA, which is de-

scribed in Condition 4. For a given bandwidth k, we denote the set of locations

of the signals by JA = {(j1, j2) : σj1j2 6= 0, k < |j1 − j2| < p, j1, j2 = 1, . . . , p},
and the cardinality of JA by |JA|, which represents the sparsity level of ΣA. The

sparsity level of the alternative hypothesis decreases as |JA| increases. We intro-

duce two conditions for the asymptotic distribution under the local alternative

hypothesis.
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Condition 4. Assume |JA| = o(p2) and, for any (j1, j2) ∈ JA, |σj1j2 | = Θ(ρ),

where ρ =
∑

(j1,j2)∈JA |σj1j2 |/|JA|.

Condition 5. For t ≤ 8, we assume there exists a constant κ such that Πj1,...,jt =

κE(
∏t
k=1 zjk), where 1 ≤ j1, . . . , jt ≤ p and (z1, . . . , zp)

T ∼ N (0,ΣA).

Theorem 3. Under Conditions 1, 4, and 5, for any positive integers a1, . . . , am,

if ρ = O(|JA|−1/atp1/atn−1/2), for t = 1, . . . ,m, we have(
U(a1)− EA[U(a1)]

σA(a1)
, . . . ,

U(am)− EA[U(am)]

σA(am)

)T
D−→ N (0, Im), n, p→∞,

where EA[U(a)] =
∑

(j1,j2)∈JA σ
a
j1j2

and σ2
A(a) ' 2(Pna )−1a!κa∑

k<|j1−j2|<p,k<|j3−j4|<p,|j1−j3|≤k,|j2−j4|≤k σ
a
j1j3

σaj2j4 , with order Θ(n−ap2).

Following Theorem 3, the power function of a single U-statistic U(a) is

β(a) = P

(
U(a)

σ(a)
> z1−α

∣∣∣∣Hk,A

)
→ Φ

(
− z1−α +

EA[U(a)]

σA(a)

)
, (2.10)

where z1−α and Φ(·) are the (1 − α)th quantile and the cumulative distribution

function of the standard normal distribution, respectively. The signal-to-noise

ratio SNRa = EA[U(a)]/σA(a) plays an important role in the power performance

of the U-statistic U(a). For any finite order a, we define the corresponding average

standardized signal as ρ̄a =
∑

(j1,j2)∈JA n
a/2σaj1j2/|JA|. The asymptotic power

function β(a) → 1 if p−1|JA|ρ̄a → ∞, because EA[U(a)] =
∑

(j1,j2)∈JA σ
a
j1j2

and

σA(a) is of order n−a/2p. In other words, if ρ̄a is of order higher than p|JA|−1,

β(a)→ 1 as n→∞.

Another attractive work is to investigate the relationship between the order

of the U-statistic with the highest asymptotic power and the sparsity level |JA|.
We give a criterion for comparing the power performance of two finite-order U-

statistics, U(a1) and U(a2). We say U(a1) is better than U(a2) when they attain

the same asymptotic power and satisfy ρa1
< ρa2

. In particular, we consider a

special case in which the signal strength is fixed at the same level, σj1j2 = ρ > 0

for (j1, j2) ∈ JA, and σj1j3 = σj2j4 = ν > 0 for |j1 − j3| ≤ k and |j2 − j4| ≤ k. In

this case,

SNRa '
∑

(j1,j2)∈JA σ
a
j1j2{

2(Pna )−1a!κa
∑

k<|j1−j2|<p,k<|j3−j4|<p,|j1−j3|≤k,|j2−j4|≤k(σj1j3σj2j4)
a
}1/2

.

Hence, the power function β(a)→ Φ(−z1−α + |JA|ρa/(
√

2a!κaνan−a/2p′)), where
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p′ = (2k + 1)
√

(p− k − 1)(p− k). Thus,

ρa =

(
Mp′

|JA|

)1/a

(a!)1/2aκ1/2νn−1/2 (2.11)

achieves the asymptotic power Φ(−z1−α + M/
√

2) of U(a), where M is some

constant. Proposition 1 establishes the relationship between the sparsity level

and the order of the U-statistic.

Proposition 1. For a given bandwidth k, under the special case described above,

given n, p, |JA|, and M , by considering (2.11) as a function of integer order a,

we have

(i) when |JA| ≥Mp′, the minimum of ρa is achieved at a = 1;

(ii) when |JA| < Mp′, the minimum of ρa is achieved at some a, which increases

as Mp′/|JA| increases.

When |JA| ≥ Mp′, the alternative is very dense, and U(1) is the most pow-

erful test. When |JA| < Mp′, as Mp′/|JA| increases, the sparsity level of the

alternative hypothesis increases, and the U-statistic with the larger order per-

forms better. This result is consistent with the analysis in He et al. (2021), and

we extend their result to the banded covariance matrix setting.

2.4. Two adaptive testing procedures

For the proposed family of U-statistics, U(a) is powerful against the alter-

native with large ||E||aa =
∑

k<|j1−j2|<p σ
a
j1j2

. The power performance of U(a) is

determined by the sparsity and the strength of the signals. For a denser alter-

native, we prefer a test with a smaller order a. For example, U(1) is the most

powerful test when the alternative is very dense, as shown in Section 3.1. In prac-

tice, it is often unclear which test to choose because the true alternative is usually

unknown. Therefore, motivated by the work of Xu et al. (2016) and He et al.

(2021), we develop adaptive tests by combining the information from U-statistics

with different orders, which yield higher power against various alternatives.

We propose two adaptive tests: one based on the minimum combination

method, and the other based on Fisher’s method. Suppose we have a candidate

set I = {a1, . . . , am}, |I| = m, where |I| denotes the cardinality of I. Let pa be

the p-value of test U(a) as pa = 2(1− Φ(|U(a)/σ̂(a)|)).

Minimum combination method: Reject H0 if padpUmin < α, where

padpUmin = 1− (1− TadpUmin)|I|, TadpUmin = min
a∈I

pa, (2.12)
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with nominal significance level α. The type-I error of the minimum combination

method can be controlled using P (padpUmin < α) = P (TadpUmin < p∗α)→ α, where

p∗α = 1 − (1 − α)1/|I| and we use the asymptotic independence of U(a1)/σ̂(a1),

. . . , U(am)/σ̂(am).

Fisher’s method: We have TadpUf = −2
∑

a∈I log pa
D−→ χ2

2|I|, where χ2
2|I|

follows a chi-squared distribution with degrees of freedom 2|I|. We reject H0 if

padpUf < α, with

padpUf = 1−Ψ(TadpUf), (2.13)

where Ψ(·) is the cumulative distribution function of χ2
2|I| with degrees of freedom

2|I|.

Remark 3. For the two adaptive statistics, we have

(i) P (TadpUmin =mina∈I pa < p∗α)≥P (pa < p∗α)→Φ
(
−z1−p∗α+EA[U(a)]/σA(a)

)
,

(ii) P (TadpUf = −2
∑

a∈I logpa > c1−α) ≥ P (−2logpa > c1−α) → Φ
(
− z1−c∗α +

EA[U(a)]/σA(a)
)
, where c∗α = e−(1/2)c1−α and c1−α is the (1− α)th quantile

of χ2
2|I|.

The asymptotic power of the proposed adaptive tests converges to one as n→∞
if there is a U-statistic U(a) that satisfies the average standardized signal ρ̄a of

order higher than p|JA|−1, with ρ̄a =
∑

(j1,j2)∈JA n
a/2σaj1j2/|JA|.

Remark 4. Our proposed adaptive tests are versatile in the sense that they

can adapt to the unknown sign and sparsity level of the signal set E under the

alternative hypotheses. Their performance depends on the selection of the order

set I. U-statistics with an odd order may lose power quickly, because the different

signs of the elements in E lead to a cancellation of positive and negative σaj1j2 .

In this case, we suggest using U-statistics with an even order to construct the

adaptive tests. However, U-statistics with an odd order are still more suitable

when the elements in E are all in the same direction. For example, U(1) is a

representative of the burden tests based on genotype pooling or collapsing, as

discussed in Morgenthaler and Thilly (2007), Li and Leal (2008), and Pan et al.

(2014). In the absence of information about the directions of the signals, we

suggest using both odd- and even-order U-statistics. Furthermore, the theoretical

arguments on the power analysis and the results of our simulation studies indicate

that the order of the best U-statistic increases as the sparsity level decreases. To

address sparse alternative hypotheses, we select the biggest order to be six because

the performance of U(6) is good enough compared with that of the maximum-
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type statistic, as shown in the first figure in Figure 1. The discussions in Xu et al.

(2016) and He et al. (2021) support our suggestion.

Remark 5. It is of interest to study whether the proposed U-statistics can

achieve the optimal detection/testing boundary at different sparsity levels. How-

ever, this problem for U-statistics, differs from those in previous (e.g., Donoho and

Jin (2004)), because of differences between the studied testing problems. Thus,

we require a new theoretical development to handle the dependence structure of

a banded covariance matrix. When testing Σ = I, Cai and Ma (2013) show that

U(2) is rate optimal in terms of the Frobenius norm for both the testable and the

non-testable regions. It would be interesting to extend this result to U-statistics

with different orders when testing banded covariance matrices. This is left to

future work.

2.5. Simplifying computation

The costs of directly calculating U(a) in (2.2) and σ̂2(a) in (2.9) are as expen-

sive as O(n2ap2) and O(nap2), respectively. To reduce the computational cost,

we use Algorithm 1 in He et al. (2021) to change the input si,l, thus reducing the

computation cost across i from O(na) to O(n).

When E(x) is known, we assume E(x) = 0, without loss of generality. In

this case, U(a) degenerates into Ũ(a) in (2.4). (1). To compute Ũ(a), we specify

si,l = xi,j1xi,j2 in Algorithm 1, where i = 1, . . . , n and l ∈ L = {(j1, j2) : k <

|j1 − j2| < p}. (2). Similarly, we compute σ̂2(a) with si,l =
∏4
s=1(xi,js − x̄js),

where i = 1, . . . , n and l ∈ L = {(j1, j2, j3, j4) : k < |j1 − j2| < p, k < |j3 − j4| <
p, |j1 − j3| ≤ k, |j2 − j4| ≤ k}. When E(x) is unknown, Proposition 2 explains

how to compute U(a).

Proposition 2. The forms of U(a) with different order a are as follows:

(i) When a = 1, U(1) =
∑

k<|j1−j2|<p{n
−1
∑n

i=1 xi,j1xi,j2− (Pn2 )−1[(
∑n

i=1 xi,j1)

(
∑n

i=1 xi,j2)−
∑n

i=1 xi,j1xi,j2 ]}.

(ii) When a = 2, U(2) =
∑

k<|j1−j2|<p
{

(Pn2 )−1U0(2) − 2(Pn3 )−1U1(2) + (Pn4 )−1

U2(2)
}
, with U0(2) = (

∑n
i=1 xi,j1xi,j2)

2 −
∑n

i=1(xi,j1xi,j2)
2, U1(2) =

(
∑n

i=1 xi,j1xi,j2)U11(2)−U12(2)−U13(2), and U2(2) =
∏2
s=1{(

∑n
i=1 xi,js)

2−
(
∑n

i=1 x
2
i,js

)} − 2U0(2) − 4U1(2), with U11(2) = (
∑n

i=1 xi,j1)(
∑n

i=1 xi,j2) −∑n
i=1 xi,j1xi,j2, U12(2) = (

∑n
i=1 x

2
i,j1
xi,j2)(

∑n
i=1 xi,j2) −

∑n
i=1 x

2
i,j1
x2
i,j2

, and

U13(2) = (
∑n

i=1 xi,j1x
2
i,j2

)(
∑n

i=1 xi,j2)−
∑n

i=1 x
2
i,j1
x2
i,j2

.

(iii) When a ≥ 3, let Uc(a) = (Pna )−1
∑

k<|j1−j2|<p
∑

1≤i1 6=···6=ia≤n
∏a
l=1(xil,j1 −

x̄j1)(xil,j2 − x̄j2). Under Conditions 1, 2, 3, and H0, if a is odd, p =
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o(n1+a/2); if a is even, p = o(na/2). Then, {U(a)− Uc(a)}/σ(a)
P−→ 0.

When a = 1, 2, we compute U(a) directly using Proposition 2.(i)–(ii). When

a ≥ 3, U(a) can be replaced by Uc(a) from Proposition 2.(iii). We compute Uc(a)

using Algorithm 1 by setting si,l = (xi,j1 − x̄j1)(xi,j2 − x̄j2), for i = 1, . . . , n and

l ∈ L = {(j1, j2) : k < |j1 − j2| < p}.

2.6. Adaptive bandwidth estimation

Based on previously studied U-statistics, we propose a method for estimating

the bandwidth parameter of a high-dimensional banded covariance matrix Σ.

Our method is motivated by Qiu and Chen (2012). To facilitate the illustration,

we first define some notation. For a given bandwidth parameter k, we denote

the corresponding statistic U(a) in (2.2) as Ua,k, and its asymptotic standard

deviation σ(a) and asymptotic standard deviation estimator σ̂(a) as σa,k and σ̂a,k,

respectively. Following Qiu and Chen (2012), we consider a banded covariance

matrix with true bandwidth k0. We define Ta,k = n−1Ua,k/σ̂a,k, and rewrite it as

Ta,k = Ta,k,1 + Ta,k,2, where

Ta,k,1 = n−1Ua,k − µa,k
σa,k

σa,k
σ̂a,k

and Ta,k,2 = n−1 µa,k
σa,k0

σa,k0
σa,k

σa,k
σ̂a,k

.

Because {Ua,k − µa,k}/σa,k is stochastically bounded and σa,k/σ̂a,k
P−→ 1, Ta,k,1 =

Op(n
−1). In addition, because σa,k0 and σa,k are both Θ(n−a/2p), Ta,k,2 is deter-

mined using

n−1 µa,k
σa,k0

=
n−1

∑
k<|j1−j2|<p σ

a
j1j2[

(Pna )−1a!
∑

k0<|j1−j2|<p,k0<|j3−j4|<p(Πj1,j2,j3,j4)
a
]1/2 .

In particular, if the signs of the covariances σj1,j2 are all positive, with |j1−j2| ≤ k,

it can be checked that n−1µa,k/σa,k0 > 0 for k < k0, and n−1µa,k/σa,k0 = 0 for

k ≥ k0. Therefore, we consider an estimator based on the difference between

successive statistics da,k = Ta,k − Ta,k+1, for a given finite order a ∈ I. We

multiply nδ by Ta,k, with a small positive δ ∈ (0, 1), to increase the magnitude

of Ta,k,2, and to ensure that Ta,k,1 converges to zero in probability at a quick

rate. For any a ∈ I, we define dδa,k = nδ(Ta,k − Ta,k+1) yielding the bandwidth

estimator

k̂a,δ,θ = min{k : |dδa,k| < θ}. (2.14)

By combining the effects of different orders, we propose an adaptive bandwidth

estimator k̂δ,θ = maxa∈I k̂a,δ,θ. In the Supplementary Material, we present a sim-
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ulation study in Section S10 to illustrate the motivation of k̂δ,θ, as well as the

consistency of the bandwidth estimator k̂δ,θ.

Proposition 3. Under Conditions 1, 2, 3, and lim infn{infk<k0(µa,k−µa,k+1)} >
0, for any banded covariance matrix with bandwidth k0, k̂δ,θ − k0

P−→ 0, for any

θ > 0 and δ ∈ (0, 1).

In Proposition 3, lim infn{infk<k0(µa,k − µa,k+1)} > 0 excludes the case of a

zero sub-diagonal followed by nonzero sub-diagonals as one moves away from the

main diagonal. The performance of the adaptive estimator k̂δ,θ may be affected

by the tuning parameters θ and δ. As pointed out in Qiu and Chen (2012),

the multiplier nδ leads to θ being “free ranged” as long as θ > 0. We suggest

δ = 0.5 as a balance between the convergence rate of Ta,k,1 and the performance

of Ta,k,2. The performance of our adaptive bandwidth estimator k̂δ,θ in Monte

Carlo simulation studies is presented in Section 3.2 .

3. Simulation Study

In this section, we use simulation studies to evaluate the performance of our

adaptive tests and estimator. We generate n random vectors xi = (xi,1, . . . , xi,p)
T

from two populations: (i). a multivariate normal distribution: N (0,Σ); and

(ii). a multivariate t-distribution with seven degrees of freedom: t7(0,Σ), where

Σ = ΓΓT. We choose the index set I = {1, . . . , 6}.

3.1. Adaptive testing methods

For a ∈ I, let “U(a)” denote the testing procedure with the rejection re-

gion {x1, . . . ,xn : |U(a)|/σ̂(a) > q1−α/2} and q1−α/2 the (1 − α/2)100% quan-

tile of N (0, 1). Denote “adpUmin” and “adpUf” as our proposed testing pro-

cedures in (2.12) and (2.13), respectively. We also compare “adpUmin” and

“adpUf” with “U(1),” “U(2),” “U(3),” “U(4),” “U(5),” “U(6),” and “QC” in

Qiu and Chen (2012) and “XW” in Xiao and Wu (2013). We take n = 100,

p = 50, 100, 200, 400, 600, 800, 1000 to represent the empirical size, and n = 100,

p = 600, 1000 to investigate the empirical power. The population covariance ma-

trix Σ = ΓΓT varies under three settings. Before introducing the settings, we use

J|JA|,k to present a set of |JA| random positions (j1, j2) that satisfy j2 − j1 > k.

Setting 1. Let Γ = (γj1j2)p×p; when j2 − j1 = 1, γj1j2 = 1; when (j1, j2) ∈ J|JA|,1,

γj1j2 = ρ; otherwise, γj1j2 = 0. We investigate the empirical size with |JA| =
0, and the empirical power by varying the signal magnitude ρ ∈ (0, 1) and

the sparsity level |JA| = 2, 400, 1200, 2400. In this setting, the bandwidth
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Table 1. Empirical sizes under Setting 1 for N (0,Σ) and n = 100 (in percentage).

p 50 100 200 400 600 800 1,000
adpUmin 4.70 6.40 6.70 7.20 5.60 5.10 4.30

adpUf 5.60 6.80 6.30 6.90 5.80 5.70 4.80
U(1) 4.60 5.70 4.90 5.60 6.10 5.00 5.00
U(2) 5.40 4.40 4.60 5.20 4.80 5.50 5.50
U(3) 5.10 5.10 4.40 5.50 5.60 4.80 5.40
U(4) 5.10 6.20 7.40 6.40 6.10 7.00 4.10
U(5) 4.80 6.10 5.10 5.70 4.70 5.80 4.60
U(6) 3.20 3.90 4.80 6.20 6.10 6.70 5.40
QC 4.50 3.90 4.90 5.00 4.90 5.90 6.20
XW 4.40 4.00 5.50 6.00 3.70 4.90 5.50

Table 2. Empirical sizes under Setting 1 for t7(0,Σ) and n = 100 (in percentage).

p 50 100 200 400 600 800 1,000
adpUmin 6.50 6.10 6.10 6.00 8.30 5.80 7.20

adpUf 8.00 7.00 5.70 5.60 7.70 5.80 6.50
U(1) 3.80 4.60 4.30 5.40 5.70 5.00 4.40
U(2) 6.00 6.30 5.50 4.40 5.90 5.90 6.60
U(3) 6.00 5.00 4.70 6.10 5.30 4.30 5.00
U(4) 5.20 6.00 5.10 5.30 5.90 5.50 5.40
U(5) 5.40 5.90 5.70 6.00 5.80 5.10 6.40
U(6) 4.30 5.20 4.90 4.50 5.30 5.90 5.60
QC 17.4 18.5 20.3 19.6 19.2 21.5 19.6

XW 1.20 1.60 0.80 0.80 0.90 0.80 0.70

k = 1 when |JA| = 0.

Setting 2. Let Γ = (γj1j2)p×p; when j2 − j1 = 1, γj1j2 = 0.8; when j2 − j1 = 2,

γj1j2 = 0.6; when (j1, j2) ∈ J|JA|,2, γj1j2 = ρA; otherwise, γj1j2 = 0. We

investigate the empirical size with |JA| = 0, and the empirical power by

varying the signal magnitudes ρA, which are generated from Unif(0, 2ρ) with

ρ ∈ (0, 1), and the sparsity level |JA| = 2, 400, 1200, 2400. In this setting,

the bandwidth k = 2 when |JA| = 0.

Setting 3. Let Γ = (γj1j2)p×p; when j2− j1 = 1, . . . , 5, γj1j2 = 0.6; when j2− j1 =

5 + a, γj1j2 = ρ; otherwise, γj1j2 = 0. We investigate the empirical size with

a = 0, and the empirical power by varying the signal magnitude ρ and the

sparsity level a = 1, 3, 6, 10, 15, 25. In this setting, the bandwidth k = 5

when a = 0.

The simulation are replicated 1,000 times and the nominal test level α = 5%.

Table 1 presents the empirical sizes with multivariate normal populations for
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Figure 1. Empirical power comparison under Setting 1 for multivariate normal distribu-
tion: n = 100, p = 1000.

different combinations of n and p under Setting 1. The simulation results show

that the empirical sizes of the compared tests are all close to 5%. Table 2 shows

the empirical sizes with multivariate t random samples with seven degrees of

freedom. The empirical sizes of these single U-statistic tests and our proposed

adaptive tests are still close to 5%. However, the empirical sizes of “QC” and

“XW” are far from the nominal level. Figure 1 summarizes the empirical power

under Setting 1 for multivariate normal random vectors. The empirical power

profiles in Figure 1 show that
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• for extremely sparse alternatives with |JA| = 2, “U(6)” performs well;

• for moderately sparse alternatives with |JA| = 400, “U(4)” performs well;

• for dense alternatives with |JA| = 1200 and 2400, “U(1)” and “U(2)” per-

form well;

• when |JA| increases, the empirical power of “QC” also increases, but the

empirical power of “XW” decreases. Nonetheless, our proposed two testing

procedures “adpUmin” and “adpUf” always maintain high empirical power

regardless the magnitude of |JA|. It also appears that “adpUf” performs

better than “adpUmin,” in general.

In summary, the adaptive tests either achieved the highest power or were

close to the test with the highest power in all settings, indicating their good per-

formance across a wide range of situations. Other simulation results are presented

in Section S9.1 of the Supplementary Material. The conclusions are similar to

those drawn from Tables 1–2 and Figure 1.

3.2. Adaptive bandwidth estimator

We compare our proposed adaptive bandwidth estimator (Adaptive) with the

estimator (BLa) discussed in Bickel and Levina (2008) and the fixed estimator

(QC) in Qiu and Chen (2012). For the bandwidth estimation, we set the param-

eters δ = 0.5 and θ = 0.06 in our proposed estimator k̂δ,θ and the QC estimator.

The parameters for the BLa estimator are set as in the original study. We set

n = 100, 200 and p = 50, 200, 400, 600, 1000 in Models 1–4, with true bandwidths

k = 2, 5, 10, 15, respectively.

Model 1. Let Γ = (γj1j2)p×p; when j2 − j1 = 1, γj1j2 = 0.8; when j2 − j1 = 2,

γj1j2 = 0.6; otherwise, γj1j2 = 0.

Model 2. Let Γ = (γj1j2)p×p; when j2 − j1 = 1, . . . , 5, γj1j2 = 0.6; otherwise,

γj1j2 = 0.

Model 3. Let Γ = (γj1j2)p×p; when j2 − j1 = 1, . . . , 5, γj1j2 = 0.2; when j2 − j1 =

6, . . . , 10, γj1j2 = 0.4; otherwise γj1j2 = 0.

Model 4. Let Γ = (γj1j2)p×p; when j2− j1 = 1, . . . , 10, γj1j2 = 0.2; when j2− j1 =

11, . . . , 15, γj1j2 = 0.4; otherwise, γj1j2 = 0.

Table 3 reports the average empirical bias and standard deviations with the

innovations from a normal distribution, based on 100 replications. From Table 3,



ADAPTIVE TESTS FOR BANDEDNESS OF HDCM 1689

we observe that our proposed estimator performs well compared with BLa, owing

to the smaller bias and standard deviation. The bias and standard deviation of

the BLa estimator increase with the dimension p, owing to the inappropriate

estimation of the covariance matrix in the high-dimensional setting. Similar

results for these estimators with t7(0,Σ) are presented in Table 5 in Section S9.2

of the Supplementary Material.

4. Data Analysis

In this section, we apply our proposed procedures to a prostate cancer data

set from a protein mass spectroscopy study (Adam et al. (2002)). The study

analyzed the constituents of the proteins in the blood for two groups of people,

namely, the healthy group and the cancer group. The data set has also been

studied in Levina, Rothman and Zhu (2008) and Qiu and Chen (2012). For each

blood serum sample i, the data consist of the intensity Xij for a large number

of time-of-flight values tj , which is related to the mass-over-charge ratio of the

constituent proteins. We analyzed the standardized data set, which consists of

157 healthy and 167 cancer patients, with a 218-dimensional intensity vector for

each individual.

We focus on testing a string of null hypotheses Hk,0 : Σ = Bk(Σ), for

k = 0, . . . , 216 and estimating the bandwidths of the covariance matrices of the

healthy and cancer groups. In particular, we choose δ = 0.5 and θ = 0.005 when

analyzing the real data using our adaptive estimator, which is consistent with the

choice of Qiu and Chen (2012). We show some representative p-values in Table

4 and bandwidth estimates in Table 5.

All p-values of the “adpUmin” and “adpUf” tests are very close to zero, bor-

rowing strength from U(5) and U(6), and the estimated values of our proposed

adaptive estimator are 203 and 216 for the healthy group and the cancer group,

respectively. In practice, a covariance matrix with a large bandwidth may not be

valuable because it will not significantly reduce the number of parameters. There-

fore, these small p-values and bandwidth estimates suggest that the covariances

of the healthy group and the cancer group may not be banded. Furthermore,

the heatmaps in Figure 2 show that most of the sample correlations in the ma-

trices of the two groups are nonnegligible, leading to nonbanded structures, thus

supporting our conclusion.

A similar conclusion is obtained from the XW test, which also provides

very small p-values for all hypotheses. However, the QC test yields different

conclusions, where the smallest k such that Hk,0 is not rejected is 116 for the
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Table 3. Average empirical bias and standard deviation (in parentheses) of three band-
width estimators with normal innovations: our proposed adaptive bandwidth estimator
with δ = 0.5 and θ = 0.06, and the estimators proposed in Bickel and Levina (2008)
(BLa) and Qiu and Chen (2012) (QC).

Bandwidth

n p Methods 2 5 10 15

100 50 Adaptive 0.04(0.243) 0(0) 0(0) −0.03(0.171)

BLa 0.15(0.411) −0.37(0.691) −0.89(1.144) −0.96(1.809)

QC 0(0) 0(0) 0(0) −0.02(0.141)

200 Adaptive 0(0) 0(0) 0(0) 0(0)

BLa 0.38(0.663) 0.27(1.062) 0.14(1.128) −0.44(1.641)

QC 0(0) 0(0) 0(0) 0(0)

400 Adaptive 0(0) 0(0) 0(0) 0.01(0.100)

BLa 0.56(1.258) 0.84(1.631) 0.50(1.554) 0.12(1.653)

QC 0(0) 0(0) 0(0) 0(0)

600 Adaptive 0(0) 0(0) 0(0) 0(0)

BLa 0.91(1.518) 0.74(1.574) 0.41(1.615) 0.59(2.216)

QC 0(0) 0(0) 0(0) 0(0)

1,000 Adaptive 0(0) 0(0) 0(0) 0(0)

BLa 1.61(2.260) 1.44(2.328) 1.22(2.389) 0.69(2.862)

QC 0(0) 0(0) 0(0) 0(0)

200 50 Adaptive 0(0) 0.01(0.100) 0.04(0.243) 0.04(0.315)

BLa 0.11(0.345) 0.09(0.637) 0.19(0.929) 0.22(1.630)

QC 0.01(0.100) 0.01(0.100) 0(0) 0(0)

200 Adaptive 0(0) 0(0) 0(0) 0(0)

BLa 0.29(0.537) 0.34(0.879) 0.14(0.899) 0.05(1.290)

QC 0(0) 0(0) 0(0) 0(0)

400 Adaptive 0(0) 0(0) 0(0) 0(0)

BLa 0.71(1.028) 0.70(1.087) 0.44(1.122) 0.43(1.513)

QC 0(0) 0(0) 0(0) 0(0)

600 Adaptive 0(0) 0(0) 0(0) 0(0)

BLa 0.88(1.17) 1.02(1.463) 0.75(1.344) 1.14(1.809)

QC 0(0) 0(0) 0(0) 0(0)

1,000 Adaptive 0(0) 0(0) 0(0) 0(0)

BLa 1.23(1.399) 1.50(1.957) 1.15(1.822) 1.41(2.396)

QC 0(0) 0(0) 0(0) 0(0)

healthy group, and 191 for the cancer group. Note that the statistic values of

the U(2) test are the same as those of the QC test. We found that the per-

formance of the QC test differs from that of the U(2) test with large k. One

possible reason for this is that the variance estimation of the statistic in the
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Figure 2. Heatmaps for the sample covariance matrices of the healthy group and the
cancer group. Blue represents a negative correlation, red represents a positive correlation,
and the color deepens as the correlation increases.

Table 5. The estimated bandwidths of various procedures applied to the prostate cancer
data set.

Method U(1) U(2) U(3) U(4) U(5) U(6) Adaptive QC

Healthy Group 132 120 193 123 203 128 203 121

Cancer Group 120 74 171 173 175 216 216 212

QC test is based on the assumption that tr(Σ4)/tr2(Σ2) = O(p−1), which may

not be satisfied by real data, whereas our method does not rely on such an

assumption when estimating the variance of U(2). To explain the difference be-

tween the two tests, consider the special case of testing Hk,0 : Σ = Bk(Σ),

where Σ = ΓΓT, Γ = (γj1j2)p×p with γj1j1 = 1, and γj1j2 ∼ Unif(0,5) for

0 < j2 − j1 ≤ k, with k = 5 and 200. We generated 1,000 data sets with

sample size n = 157 and dimension p = 218 from N (0,Σ) under Hk,0 . Table

6 shows that the ASD and AEASD of the QC test are too far away from the

MCSD. Therefore, the type-I error of the QC test is very small compared with

the nominal level 5% when k = 200. In this scenario, tr(Σ4)/tr2(Σ2) = 0.944

and 1000−1
∑1000

b=1 tr(S4
n,b)/tr

2(S2
n,b) = 0.936, where Sn,b = (n− 1)−1

∑n
i=1(x

(b)
i −

x̄(b))(x
(b)
i − x̄(b))T with x̄(b) = n−1

∑n
i=1 x

(b)
i , and {x(b)

1 , . . . ,x
(b)
n } is the bth sam-

pling from N (0,Σ). This shows that the QC test may overestimate the vari-

ance of the statistic when tr(Σ4)/tr2(Σ2) is large, thus violating their assump-

tion. The QC test still works well when tr(Σ4)/tr2(Σ2) is small, for example,

tr(Σ4)/tr2(Σ2) = 0.024 and 1000−1
∑n

b=1 tr(S4
n,b) /tr

2(S2
n,b) = 0.041, with k = 5.
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Table 6. Results based on 1,000 multivariate normal samples under Hk,0 : Σ = Bk(Σ).

Case 1 : k = 5
ASD AEASD MCSD Type I Error

U(2) 20,498.76 20,242.96 21,317.02 0.069
QC 21,059.26 21,079.46 21,317.02 0.054

Case 2 : k = 200
ASD AEASD MCSD Type I Error

U(2) 96,270.76 92,689.35 94,453.38 0.046
QC 152,093,323 151,994,013 94,453.38 0

ASD, asymptotic standard deviation of statistic; AEASD, average of estimations of the asymptotic
standard deviation of the statistics based on 1,000 replications; MCSD, sample standard deviation of
the statistics based on 1,000 replications.

In the real-data analysis, for the health and cancer groups, tr(S4
n)/tr2(S2

n) = 0.907

and 0.820, respectively, indicating a possible overestimation of the variance of the

QC test statistic.

5. Conclusion

We have proposed adaptive tests based on a series of U-statistics for testing

the bandedness of a high-dimensional covariance matrix. We have investigated

the asymptotic joint distribution of the U-statistics under the null hypothesis

and specific local alternative hypotheses. Furthermore, we take advantage of the

asymptotic independence of multiple U-statistics to construct two proposed adap-

tive tests by combining the p-values of the U-statistics. Our simulation studies

show that the proposed tests are powerful across a wide range of alternatives,

whereas the existing tests are powerful only for dense alternatives or sparse al-

ternatives. We also propose a new consistent bandwidth estimator motivated by

the by-product of the U-statistics.

The bandwidth k is usually unknown in practice. Instead of testing a general

bandedness structure of covariance matrix with a given k, it is of interest to regard

the bandwidth k as a tuning parameter and examine the asymptotic properties

of a series of U-statistics based on
∑

k̂<|j1−j2|<p σ
a
j1j2

, where k̂ is the estimation

of the true bandwidth k. As shown in Zhong et al. (2017), the plug-in estimator

k̂ may incur some leading-order effects. We will examine this topic in the future.

Supplementary Material

The online Supplementary Material contains detailed proofs of the theoretical

results and additional simulation results.
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