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Abstract: We consider Bayesian inferences on a type of multivariate median and

the multivariate quantile functionals of a joint distribution using a Dirichlet pro-

cess prior. Unlike univariate quantiles, the exact posterior distribution of multi-

variate median and multivariate quantiles are not obtainable explicitly; thus we

study these distributions asymptotically. We derive a Bernstein–von Mises the-

orem for the multivariate `1-median with respect to a general `p-norm, showing

that its posterior concentrates around its true value at the n−1/2-rate, and that its

credible sets have asymptotically correct frequentist coverages. In particular, the

asymptotic normality results for the empirical multivariate median with a general

`p-norm is also derived in the course of the proof, which extends the results from the

case p = 2 in the literature to a general p. The technique involves approximating

the posterior Dirichlet process using a Bayesian bootstrap process and deriving a

conditional Donsker theorem. We also obtain analogous results for an affine equiv-

ariant version of the multivariate `1-median based on an adaptive transformation

and re-transformation technique. The results are extended to a joint distribution of

multivariate quantiles. The accuracy of the asymptotic result is confirmed using a

simulation study. We also use the results to obtain Bayesian credible regions for the

multivariate medians for Fisher’s iris data, which consist of four features measured

for each of three plant species.

Key words and phrases: Affine equivariance, Bayesian bootstrap, Donsker class,

Dirichlet process, empirical process, multivariate median.

1. Introduction

It is well known that the median is a more robust measure of location than

the mean. Similarly, in multivariate analysis, there are situations where the mul-

tivariate mean vector is not a good measure of location— for example, when

the data have a wide spread, outliers and so on. In such cases, the multivariate

median is a much more robust measure. There is no universally accepted defini-

tion of a multivariate median, because there is no objective basis of ordering the
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data points in higher dimensions. Over the years, various definitions of multi-

variate medians and, more generally, multivariate quantiles have been proposed;

see Small (1990) for a comprehensive review on multivariate medians.

One of the most popular versions of the multivariate median is called the

multivariate `1-median. For a set of sample points X1, X2, . . . , Xn ∈ Rk, for

k ≥ 2, the sample `1-median is obtained by minimizing n−1
∑n

i=1 ‖Xi − θ‖ with

respect to θ, where ‖ · ‖ denotes some norm. The most commonly used norm is

the `p-norm ‖x‖p = (
∑k

j=1 |xj |p)1/p, for 1 ≤ p ≤ ∞. The most popular version of

the `1-median that uses the usual Euclidean norm ‖x‖2 = (
∑k

j=1 x
2
j )

1/2 is known

as the spatial median. This corresponds to p = 2. Clearly, the case p = 1 gives

rise to the vector of coordinatewise medians. The sample `1-median with the

`p-norm is given by

θ̂n;p = argmin
θ

1

n

n∑
i=1

‖Xi − θ‖p. (1.1)

The spatial median has been widely studied in the literature. It is a highly

robust estimator of the location and its breakdown point is 1/2, which is as high

as that of the coordinatewise median (see Lopuhaa and Rousseeuw (1991) for

more details). The asymptotic properties of the spatial median have also been

investigated (see Möttönen, Nordhausen and Oja (2010) for more details). The

`1-median functional of a probability distribution P based on the `p-norm is given

by

θp(P ) = argmin
θ

P (‖X − θ‖p − ‖X‖p) , (1.2)

for Pf =
∫
f dP and 1 ≤ p ≤ ∞. Note that this definition does not require a

moment assumption on X, because |‖X − θ‖p − ‖X‖p| ≤ ‖θ‖p. Henceforth, we

fix 1 < p < ∞, and drop p from the notation θ̂n;p and θp(P ), simply writing θ̂n
and θ(P ), respectively.

In statistical applications, the distribution P is unknown. An obvious strat-

egy to estimate θ(P ) is to replace P with the empirical measure Pn=n−1
∑n

i=1 δXi ,

where δx denotes the point-mass distribution at x, which gives rise to the sample

`1-median in (1.1). The usual method for performing an inference on multivariate

medians is to use the M-estimation framework, that is, the median is estimated

by minimizing a data-driven objective function, as in (1.1). The asymptotic dis-

tributional results for the M-estimators can be used to construct the confidence

regions.

A Bayesian approach gives a nice visual summary of uncertainty, and the

posterior credible regions can be used directly, without any asymptotic approxi-
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mations being required. Here, we take a nonparametric Bayesian approach. We

model the random distribution P , and treat θ(P ) as a functional of P . The

most commonly used prior on a random distribution P is the Dirichlet process

prior, which we discuss in Section 2. In the univariate case, the exact posterior

distribution of the median functional can be derived explicitly (see Chapter 4 of

Ghosal and Van der Vaart (2017) for more details). Unfortunately, in the mul-

tivariate case, the exact posterior distribution can only be computed by means

of simulations. The posterior distribution can be used to compute the point es-

timates and credible sets. It is of interest to study the frequentist accuracy of

the Bayesian estimator and the frequentist coverage of the posterior credible re-

gions. In the parametric context, the Bernstein–von Mises theorem ensures that

the Bayes estimator converges at the parametric rate n−1/2, and the Bayesian

(1−α) credible set has the asymptotic frequentist coverage (1−α). Interestingly,

a functional version of the Bernstein–von Mises theorem holds for the distribu-

tion under the Dirichlet process prior, as shown by Lo (1983) and Lo (1986). A

functional Bernstein–von Mises theorem can potentially establish a Bernstein–

von Mises theorem for certain functionals. We study the posterior concentration

properties of the multivariate `1-median θ(P ), and show that the posterior distri-

bution of θ(P ) centered at the sample `1-median θ̂n is asymptotically normal. We

also note that this asymptotic distribution matches the asymptotic distribution

of θ̂n centered at the true value θ0 ≡ θ(P0), where P0 is the true value of P , thus

proving a Bernstein–von Mises theorem for the multivariate `1-median.

One possible shortcoming of the multivariate `1-median is that it lacks equiv-

ariance under an affine transformation of the data. Chakraborty, Chaudhuri

and Oja (1998) proposed an affine-equivariant modification of the sample spatial

median using a data-driven transformation and a re-transformation technique.

However there is no population analog of this modified median. We define a

Bayesian analog of this modified median in the following way. We place a Dirich-

let process prior on the distribution of the transformed data, depending on the

observed data, and induce the posterior distribution on θ(P ) to make its distribu-

tion translation equivariant. We show that the asymptotic posterior distribution

of θ(P ) centered at the affine-equivariant multivariate median estimate matches

that centered at θ0, where both limiting distributions are normal.

As pointed out earlier, the lack of an objective basis for ordering observations

in higher dimensions also makes it more difficult to define a multivariate quan-

tile. The most common version of a multivariate quantile is the coordinatewise

quantile (see Abdous and Theodorescu (1992), Babu and Rao (1989)). As noted

by Chaudhuri (1996), the coordinatewise quantiles lack some useful geometric
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properties (e.g., rotational invariance).

Chaudhuri (1996) introduced the notion of a geometric quantile based on a

geometric configuration of multivariate data clouds. These quantiles are natural

generalizations of the spatial median. For the univariate case, it is easy to see

that for X1, . . . , Xn ∈ R and u = 2α−1, the sample α-quantile Q̂n(u) is obtained

by minimizing
∑n

i=1{|Xi − ξ|+ u(Xi − ξ)} with respect to ξ. Chaudhuri (1996)

extended this idea indexing the k-variate quantiles using points in the open unit

ball B(k) := {u : u ∈ Rk, ‖u‖2 < 1}. For any u ∈ B(k), Chaudhuri (1996) obtained

the sample geometric u-quantile by minimizing
∑n

i=1{‖Xi − ξ‖2 + 〈u,Xi − ξ〉}
with respect to ξ. Generalizing the definition (Chaudhuri (1996)) of a multivariate

quantile based on the `2-norm to the `p-norm with 1 < p < ∞, we define the

multivariate sample quantile process as

Q̂n(u) = argmin
ξ∈Rk

1

n

n∑
i=1

Φp(u,Xi − ξ), (1.3)

where Φp(u, t) = ‖t‖p + 〈u, t〉, with u ∈ B(k)
q := {u : u ∈ Rk, ‖u‖q < 1} and q

is the conjugate index of p; that is, p−1 + q−1 = 1. It is easy to see that Q̂n(0)

coincides with the sample multivariate `1-median θ̂n. Similarly, for u ∈ B(k)
q , the

multivariate quantile process of a probability measure P is given by

QP (u) = argmin
ξ∈Rk

P{Φp(u,X − ξ)− Φp(u,X)}, (1.4)

with Q0(u) ≡ QP0
(u) being the multivariate quantile function for the true distri-

bution P0.

The geometric features and the asymptotic properties of geometric quan-

tiles have been investigated in the literature (see Chaudhuri (1996)). Here, we

study geometric quantiles in the nonparametric Bayes framework, and study

the posterior distributions asymptotically. We prove that, with P having a

Dirichlet process prior and for finitely many u1, . . . , um, the joint distribution of

{
√
n(QP (u1) − Q̂n(u1)), . . . ,

√
n(QP (um) − Q̂n(um))}, given the data, converges

to a multivariate normal distribution. Moreover, note that the joint distribution

of {
√
n(Q̂n(u1)−Q0(u1)), . . . ,

√
n(Q̂n(um)−Q0(um))} converges to the same mul-

tivariate normal distribution. Thus, we prove a Bernstein–von Mises theorem for

any finite set of geometric quantiles.

The rest of this paper is organized as follows. In Section 2, we give the

background needed to introduce the main results. In Section 3, we state the

Bernstein–von Mises theorem for the multivariate `1-median and the theorems
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we need to prove the same. In Sections 4 and 5, we present Bernstein–von

Mises theorems for the affine-equivariant `1-median and multivariate quantiles,

respectively. In Section 6, we investigate the finite-sample performance of our

approach by means of a simulation study and an analysis of Fisher’s iris data.

Section 7 concludes the paper. All proofs are given in Section 8.

2. Background and Preliminaries

Before giving the background, we introduce some notations. Throughout this

paper, Nk(µ,Σ) denotes a k-variate multivariate normal distribution with mean

vector µ and covariance matrix Σ, and Gammak(s, r, V ) denotes a k-dimensional

gamma distribution with shape parameter s, rate parameter r, and correlation

matrix V , constructed using a Gaussian copula (Xue-Kun Song (2000)). In ad-

dition, DP(α) denotes a Dirichlet process with centering measure α (see Chapter

4 of Ghosal and Van der Vaart (2017) for more details).

Let  and
P→ denote weak convergence, that is, convergence in distribution

and convergence in probability, respectively. For a sequence Xn, the notation

Xn = OP (an) means that Xn/an is stochastically bounded. In addition, ‖P −
Q‖TV denotes the total variation distance supA |P (A)−Q(A)| between measures

P and Q, diag(a1, . . . , an) denotes a diagonal matrix with diagonal elements

a1, . . . , an, and sign(·) denotes the signum function

sign(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0.

Finally, 0k denotes a vector of all zeros with length k, 1k denotes a vector of all

ones with length k, and Ik denotes an identity matrix of order k × k.

Let Xi ∈ Rk, for i = 1, . . . , n, be independently and identically distributed

(i.i.d.) observations from a k-variate distribution P , and let P have the DP(α)

prior. The parameter space is taken to be Rk. The Bayesian model is then

formulated as

X1, X2, . . . , Xn|P
i.i.d.∼ P, P ∼ DP(α). (2.1)

The posterior distribution of P , given X1, X2, . . . , Xn, is DP(α+nPn) (see Chap-

ter 4 of Ghosal and Van der Vaart (2017) for more details).

As stated in Ghosal and Van der Vaart (2017),
√
n(P − Pn) with P ∼

DP(α+nPn) converges conditionally in distribution to a Brownian bridge process.

However, this result cannot be used to find the posterior asymptotic distribution
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of θ(P ), because θ(P ) is not a smooth functional of P . To deal with this, we use

the following fact stated in Chapter 12 of Ghosal and Van der Vaart (2017). The

posterior distribution DP(α+nPn) can be expressed as VnQ+ (1−Vn)Bn, where

the processes Q ∼ DP(α), Bn ∼ DP(nPn), and Vn ∼ Be(|α|, n) are independent,

and Be(a, b) denotes a beta distribution with parameters a and b. The process

Bn is also known as the Bayesian bootstrap distribution, and can be defined

using the linear operator Bnf =
∑n

i=1Bnif(Xi), where (Bn1, Bn2, . . . , Bnn) is a

random vector following the Dirichlet distribution Dir(n; 1, 1, . . . , 1). We approxi-

mate the posterior Dirichlet process using a Bayesian bootstrap process and show

that, given X1, . . . , Xn, the posterior distribution of
√
n(θ(P )− θ̂n) is asymptot-

ically the same as the conditional distribution of
√
n(θ(Bn) − θ̂n) (Lemma 1),

where θ(Bn) = argminθ∈Rk‖X − θ‖p.
With the approximation in Lemma 1, it is left to show that, given X1, . . . , Xn,√

n(θ(Bn) − θ̂n) is asymptotically normal. To show that, we use the fact that

θ̂n can be viewed as a Z-estimator (Van der Vaart and Wellner (1996)), be-

cause it satisfies the system of equations Ψn(θ) = Pnψ(·, θ) = 0, where ψ(·, θ) =

(ψ1(·, θ), . . . , ψk(·, θ))T is a k × 1 vector of functions from Rk ×Rk to R, with

ψj(x, θ) =
|xj − θj |p−1

‖x− θ‖p−1p

sign(θj − xj), j = 1, . . . , k. (2.2)

In addition, we view θ(Bn) as a bootstrapped analog of the Z-estimator θ̂n (See

Subsection 3.1). Next, we use the asymptotic theory of Z-estimators to find

the asymptotic distributions of θ̂n and θ(Bn). In the next section, we state the

Bernstein–von Mises theorem for the `1-median, and discuss how to derive it with

the help of the asymptotic theory of Z-estimators.

3. Bernstein–von Mises theorem for `1-median

Before stating the theorem, we require some additional notation. Define

Ψ̇0 =
∫
ψ̇x,0 dP0, where

ψ̇x,0 =

[
∂ψ(x, θ)

∂θ

]
θ=θ0

.

The matrix ψ̇x,0 is given by

ψ̇x,0 =
p− 1

‖x− θ0‖p

[
diag

(
|x1 − θ01|p−2

‖x− θ0‖p−2p

, . . . ,
|xk − θ0k|p−2

‖x− θ0‖p−2p

)
− ψ(x, θ?)ψ(x, θ?)T

]
.

(3.1)

Furthermore, we denote Uθ? = P ?(ψ(·, θ?)ψ(·, θ?)T ).
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Theorem 1. Let p ≥ 2 be a fixed integer. Suppose that the following conditions

hold for k ≥ 2:

C 1. The true probability distribution of X ∈ Rk, P0, has a probability density

that is bounded on compact subsets of Rk.

C 2. The `1-median of P0, given by θ0 = θ(P0), is unique.

Then,

(i)
√
n(θ̂n − θ0) Nk(0, Ψ̇

−1
0 Σ0Ψ̇

−1
0 ),

(ii) given X1, . . . , Xn,
√
n(θ(P )− θ̂n) Nk(0, Ψ̇

−1
0 Σ0Ψ̇

−1
0 ) in P0-probability.

Furthermore, if k = 2, (i) and (ii) hold for any 1 < p <∞.

The uniqueness holds unless P0 is completely supported on a straight line

in Rk, for k ≥ 2 (Section 3, Chaudhuri (1996)). As noted earlier, finding the

asymptotic distribution of
√
n(θ̂n − θ0) can be viewed as finding the asymptotic

distribution of a Z-estimator centered at its true value. The asymptotic theory of

Z-estimators has been studied extensively. Huber (1967) proved the asymptotic

normality of these estimators when the parameter space is finite-dimensional.

Van der Vaart (1995) extended this finite-dimensional theorem to the infinite-

dimensional case.

We mentioned that θ(Bn) is a bootstrapped version of the estimator θ̂n,

where the bootstrap weights are drawn from a Dir(n; 1, 1, . . . , 1) distribution.

In other words, θ(Bn) satisfies the system of equations Ψ̂n(θ) = Bnψ(·, θ) = 0.

Wellner and Zhan (1996) extended the infinite-dimensional Z-estimator theorem

(Van der Vaart (1995)) by showing that for any exchangeable vector of nonneg-

ative bootstrap weights, the bootstrap analog of a Z-estimator conditional on

the observations is also asymptotically normal. We use Wellner and Zhan (1996)

theorem to prove the asymptotic normality of θ(Bn). This theorem ensures that

both
√
n(θ̂n − θ0) and

√
n(θ(Bn) − θ̂n), given the data, converge in distribution

to the same normal limit, which, together with Lemma 1, proves Theorem 1. In

Section 8, we provide a detailed verification of the conditions of Wellner and Zhan

(1996) theorem in our situation.

3.1. Bootstrapping a Z-estimator

In this subsection, we state Wellner and Zhan (1996) bootstrap theorem for

Z-estimators. Let Wn = (Wn1,Wn2, . . . ,Wnn) be a set of bootstrap weights. The

bootstrap empirical measure is defined as P̂n = n−1
∑n

i=1WniδXi . Wellner and

Zhan (1996) assumed that the bootstrap weights W = {Wni, i = 1, 2, . . . , n, n =
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1, 2, . . . } form a triangular array defined on a probability space (Z,E , P̂ ). Thus,

P̂ refers to the distribution of the bootstrap weights. According to Wellner and

Zhan (1996), the following conditions are imposed on the bootstrap weights:

(i) The vectors Wn = (Wn1,Wn2, . . . ,Wnn)T are exchangeable for every n; that

is, for any permutation π = (π1, . . . , πn) of {1, 2, . . . , n}, the joint distribu-

tion of π(Wn) = (Wnπ1
,Wnπ2

, . . . ,Wnπn)T is the same as that of Wn.

(ii) The weights Wni ≥ 0 for every n, i, and
∑n

i=1Wni = n for all n.

(iii) The L2,1-norm of Wn1 is uniformly bounded: for some 0 < K <∞,

‖Wn1‖2,1 =

∫ ∞
0

√
P̂ (Wn1 ≥ u) du ≤ K. (3.2)

(iv) limλ→∞ lim supn→∞ supt≥λ(t2P̂{Wn1 ≥ t)} = 0.

(v) n−1
∑n

i=1(Wni − 1)2 → c2 > 0 in P̂ -probability, for some constant c > 0.

Van der Vaart and Wellner (1996) noted that if Y1, . . . , Yn are exponential

random variables with mean one, then the weights Wni = Yi/Ȳn, for i = 1, . . . , n,

satisfy conditions (i)–(v). These results in the Bayesian bootstrap scheme with

c = 1, because the left-hand side in (v) is given by n−1
∑n

i=1(Yi − Ȳn)2/Ȳ 2
n

P→
Var(Y )/{E(Y )}2 = 1. To apply the bootstrap theorem, we also need to assume

that the function class

FR = {ψj(·, θ) : ‖θ − θ0‖2 ≤ R, j = 1, 2, . . . , k} (3.3)

has “enough measurability” for randomization with i.i.d. multipliers to be possi-

ble, and that Fubini’s theorem can be used freely. A function class F ∈ m(P ) if F
is countable, the empirical process Gn =

√
n(Pn − P ) is stochastically separable

(the definition of a separable stochastic process is provided in the Supplemen-

tary Material), or F is image admissible Suslin (see Chapter 5 of Dudley (2014)

for a definition). Now, we formally state Wellner and Zhan (1996) theorem for

a sequence of consistent asymptotic bootstrap Z-estimators ˆ̂θn of θ ∈ Rk that

satisfies the system of equations Ψ̂n(θ) = P̂nψ(·, θ) =
∑n

i=1Wniψ(Xi, θ) = 0.

Theorem 2. (Wellner and Zhan (1996)) Assume that the class of functions F ∈
m(P0), and that the following conditions hold:

1. There exists θ0 ≡ θ(P0), such that

Ψ(θ0) = P0ψ(X, θ0) = 0. (3.4)
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The function Ψ(θ) = P0ψ(X, θ) is differentiable at θ0 with nonsingular

derivative matrix Ψ̇0:

Ψ̇0 =

[
∂Ψ

∂θ

]
θ=θ0

. (3.5)

2. For any δn → 0,

sup

{
‖Gn(ψ(·, θ)− ψ(·, θ0))‖2

1 +
√
n‖θ − θ0‖2

: ‖θ − θ0‖2 ≤ δn
}

= oP0
(1). (3.6)

3. The k-vector of functions ψ is square-integrable at θ0, with covariance matrix

Σ0 = P0ψ(X, θ0)ψ
T (X, θ0) <∞. (3.7)

For any δn → 0, the envelope functions

Dn(x) = sup

{
|ψj(x, θ)− ψj(x, θ0)|

1 +
√
n‖θ − θ0‖2

: ‖θ − θ0‖2 ≤ δn, j = 1, 2, . . . , k

}
(3.8)

satisfy

lim
λ→∞

lim sup
n→∞

sup
t≥λ

t2P0(Dn(X1) > t) = 0. (3.9)

4. The estimators ˆ̂θn and θ̂n are consistent for θ0; that is, ‖θ̂n − θ0‖2
P0→ 0 and

‖ ˆ̂θn − θ̂n‖2
P̂→ 0 in P0-probability.

5. The bootstrap weights satisfy conditions (i)–(v).

Then,

(i)
√
n(θ̂n − θ0) Nk(0, Ψ̇

−1
0 Σ0Ψ̇

−1
0 );

(ii)
√
n(ˆ̂θn − θ̂n) Nk(0, c

2Ψ̇−10 Σ0Ψ̇
−1
0 ) in P0-probability.

Note that for the Bayesian bootstrap weights, the value of the constant c is

one. Thus, if ψ(·, θ) defined in (2.2) satisfies the conditions in Theorem 2, then

Theorem 1 holds.

Cheng and Huang (2010) also studied the asymptotic theory for bootstrap

Z-estimators, and developed consistency and asymptotic normality results. We

could also have considered an M-estimator framework and used their results to

prove our theorems.
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4. Affine Equivariant Multivariate `1-Median

We start this section by describing the transformation and retransformation

technique used in the literature to obtain an affine equivariant version of a mul-

tivariate median. Here, we consider a nonparametric Bayesian framework for

an affine equivariant version of the `1-median. Although the sample multivari-

ate `1-median is equivariant under a location transformation and an orthogonal

transformation of the data, it is not equivariant under an arbitrary affine trans-

formation of the data. Chakraborty and Chaudhuri (1996) and Chakraborty and

Chaudhuri (1998) used a data-driven transformation-and-retransformation tech-

nique to convert the non-equivariant coordinatewise median to an affine equiv-

ariant one. Chakraborty, Chaudhuri and Oja (1998) applied the same idea to the

sample spatial median.

We use the transformation-and-retransformation technique to construct an

affine equivariant version of the multivariate `1-median. Suppose we have n

sample points X1, X2, . . . , Xn ∈ Rk, with n > k + 1. We consider the points

Xi0 , Xi1 , . . . , Xik , where α = {i0, i1, . . . , ik} is a subset of {1, 2, . . . , n}. The

matrix X(α), consisting of the columns Xi1 − Xi0 , Xi2 − Xi0 , . . . , Xik − Xi0 ,

is the data-driven transformation matrix. The transformed data points are

Z
(α)
j = {X(α)}−1Xj , for j /∈ α. The matrix X(α) is invertible with proba-

bility one if Xi, for i = 1, . . . , n, are i.i.d. samples from a distribution that is

absolutely continuous with respect to the Lebesgue measure on Rk. The sample

`1-median based on the transformed observations is then given by

φ̂(α)n = argmin
φ

∑
j /∈α

‖Z(α)
j − φ‖2. (4.1)

We transform this back in terms of the original coordinate system as

θ̂(α)n = X(α)φ̂(α)n . (4.2)

It can be shown that θ̂
(α)
n is affine equivariant. Chakraborty, Chaudhuri and

Oja (1998) suggested that X(α) should be chosen in such a way that the matrix

{X(α)}TΣ−1X(α) is as close as possible to a matrix of the form λIk, where Σ

is the covariance matrix of X. Chakraborty, Chaudhuri and Oja (1998) proved

that, conditional on X(α), the asymptotic distribution of the transformed and

retransformed spatial median is normal.
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4.1. Bernstein-von Mises theorem for the affine equivariant multivari-

ate median

Here, we develop a nonparametric Bayesian framework to study the affine

equivariant `1-median. Let X1, X2, . . . , Xn ∈ Rk be a random sample from a dis-

tribution P that is absolutely continuous with respect to the Lebesgue measure on

Rk. Let X(α) be the transformation matrix, and let Z
(α)
j = {X(α)}−1Xj , for j /∈

α, be the transformed observations. The sample median of X1, . . . , Xn is denoted

by θ̂n.

Let the distribution of Z
(α)
j , for j /∈ α, be denoted by PZ . We equip PZ with

a DP(β) prior. The truth of PZ is denoted by PZ0, that is, the distribution of Z

when X ∼ P0. Hence, the Bayesian model can be described as

Z
(α)
j |PZ

i.i.d.∼ PZ , PZ ∼ DP(β), j /∈ α, (4.3)

which implies that

PZ |{Z(α)
j : j /∈ α} ∼ DP

(
β +

∑
j /∈α

δZj

)
. (4.4)

Following the same arguments used in Section 2, we approximate the posterior

Dirichlet process PZ using the Bayesian bootstrap process Bn−k−1, because we

exclude the (k + 1) observations that have been used to construct the transfor-

mation matrix X(α). Note that this exclusion has no effect on the asymptotic

study. Define

φ(α)(Bn) = argmin
φ

Bn−k−1‖Z(α) − φ‖p, (4.5)

φ(α)(PZ) = argmin
φ

{
PZ(‖Z(α) − φ‖p − ‖Z(α)‖p)

}
. (4.6)

Thus, the transformed and retransformed medians are given by

θ̂(α)n = X(α)φ̂(α)n , θ(α)(Bn) = X(α)φ(α)(Bn). (4.7)

In addition, define θ(α)(P ) = X(α)φ(α)(PZ). We view φ̂
(α)
n as a Z-estimator

satisfying ΨZn(φ) = PnψZ(·, φ) = 0. The “population version” of ΨZn(φ) is

denoted by ΨZ(φ) = PψZ(·, φ). The real-valued elements of the vector ψZ(z, φ)

are then given by

ψZ;j(z, φ) =
|zj − φj |p−1

‖z − φ‖p−1p

sign(φj − zj), j = 1, . . . , k. (4.8)
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Let φ
(α)
0 ≡ φ(α)(PZ0) satisfy ΨZ0(φ

(α)) = PZ0ψZ(·, φ(α)) = 0. In the following,

we denote Ψ̇
(α)
Z0 = [∂ΨZ0/∂φ]φ=φ(α)

0
and Σ

(α)
Z0 = PZ0ψZ(·, φ(α)0 )ψTZ(·, φ(α)0 ).

Theorem 3. Let p ≥ 2 be a fixed integer. For k ≥ 2 and a given subset α =

{i0, i1, . . . , ik} of {1, 2, . . . , n} with size k+1, suppose that the following conditions

hold:

C 1. The true distribution of Z(α), PZ0, has a density that is bounded on compact

subsets of Rk.

C 2. The `1-median of PZ0, denoted by φ
(α)
0 = φ(α)(PZ0), is unique.

Then,

(i)
√
n(θ̂

(α)
n − θ(α)(P0))|{Xi : i ∈ α}  Nk(0, X(α){Ψ̇(α)

Z0 }−1Σ
(α)
Z0 {Ψ̇

(α)
Z0 }−1{X(

α)}T );

(ii) given X1, . . . , Xn,
√
n(θ(α)(P ) − θ̂(α)n )  Nk(0, X(α){Ψ̇(α)

Z0 }−1Σ
(α)
Z0 {Ψ̇

(α)
Z0 }−1

{X(α)}T ) in P0-probability. Here, Ψ̇
(α)
Z0 =

∫
ψ̇Z,0 dPZ0, where

ψ̇Z,0 =

[
∂ψZ(z, φ)

∂φ

]
φ=φ

(α)
0

. (4.9)

The matrix ψ̇Z,0 is given by

ψ̇Z,0 =
p− 1

‖z − φ(α)0 ‖p

[
diag

(
|z1 − φ(α)01 |p−2

‖z − φ(α)0 ‖
p−2
p

, . . . ,
|zk − φ

(α)
0k |

p−2

‖z − φ(α)0 ‖
p−2
p

)

−ψZ(z, φ
(α)
0 )ψZ(z, φ

(α)
0 )T

]
.

Furthermore, if k = 2, (i) and (ii) hold for any 1 < p <∞.

The uniqueness holds unless PZ0 is completely supported on a straight line

in Rk, for k ≥ 2, (Section 3, Chaudhuri (1996)). Note that the DP(β) prior on

PZ induces the DP(β ◦ψ−1) prior on P ≡ PZ ◦ψ−1, where ψ(Y ) = X(α)Y , with

Y ∈ Rk. Then, the proof of the preceding theorem follows directly from Theorem

1. Apart from Theorem 1, this theorem uses the affine equivariance of the normal

family: if a random vector X ∼ N(µ,Σ), then Y = AX + b ∼ N(Aµ+ b, AΣAT ).

5. Bernstein–Von Mises Theorem for Multivariate Quantiles

The asymptotic results for the multivariate `1-medians almost directly trans-

late to multivariate quantiles. Let Xi, for i = 1, . . . , n, be i.i.d. observations from
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a k-variate distribution P on Rk where P is given the DP(α) prior. We study the

posterior distributions asymptotically, and for every fixed u1, . . . , um ∈ B(k)
q , The-

orem 4 gives the joint posterior asymptotic distribution of the centered quantiles

{
√
n(QP (u1)− Q̂n(u1)), . . . ,

√
n(QP (um)− Q̂n(um))}.

First we introduce some notation. For each u, the sample u-quantile is viewed

as a Z-estimator that satisfies the system of equations Ψ
(u)
n (ξ) = Pnψ

(u)(·, ξ) = 0.

We denote the population version of Ψ
(u)
n (ξ) by Ψ(u)(ξ) = Pψ(u)(·, ξ). The truth

of QP (u) is denoted by Q0(u) ≡ QP0
(u), and it satisfies the system of equations

Ψ
(u)
0 (·, ξ) = P0ψ

(u)(·, ξ) = 0. The real-valued components of ψ(u)(·, ξ) are then

given by

ψ
(u)
j (x, ξ) =

|xj − ξj |p−1

‖x− ξ‖p−1p

sign(ξj − xj) + uj , j = 1, . . . , k. (5.1)

Define Ψ̇
(u)
0 =

∫
ψ̇
(u)
x,0 dP0, where

ψ̇
(u)
x,0 =

[
∂ψ(u)(x, ξ)

∂ξ

]
ξ=Q0(u)

. (5.2)

The matrix ψ̇
(u)
x,0 is given by

ψ̇
(u)
x,0 =

p− 1

‖x−Q0(u)‖p

[
diag

(
|x1 −Q01(u)|p−2

‖x−Q0(u)‖p−2p

, . . . ,
|xk −Q0k(u)|p−2

‖x−Q0(u)‖p−2p

)

−ψ(u)(x,Q0(u))ψ(u)(x,Q0(u))T

]
. (5.3)

In the above, Q0j(u), for j = 1, . . . , k, denotes the jth component of the vector

Q0(u). We also define Σ0;u,v = P0ψ
(u)(x,Q0(u)){ψ(v)(x,Q0(v))}T .

Theorem 4. Let p ≥ 2 be a fixed integer. Suppose the following conditions hold

for k ≥ 2:

C 1. The true distribution of X, P0, has a density that is bounded on compact

subsets of Rk.

C 2. For every u1, . . . , um ∈ B
(k)
q , the u1, . . . , um-quantiles of P0, denoted by

Q0(u1), . . . , Q0(um), respectively are unique.

Then,

(i) the joint distribution of
(√
n(Q̂n(u1)−Q0(u1)), . . . ,

√
n(Q̂n(um)−Q0(um))

converges to a km-dimensional normal distribution with mean zero, and the
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(j, l)th block of the covariance matrix is given by {Ψ̇(uj)
0 }−1Σ0;uj ,ul{Ψ̇

(ul)
0 }−1,

for 1 ≤ j, l ≤ m;

(ii) given X1, . . . , Xn, the posterior joint distribution of {
√
n(QP (u1)−Q̂n(u1)),

. . . ,
√
n(QP (um)− Q̂n(um))} converges to a km-dimensional normal distri-

bution with mean zero, and the (j, l)th block of the covariance matrix is given

by {Ψ̇(uj)
0 }−1Σ0;uj ,ul{Ψ̇

(ul)
0 }−1, for 1 ≤ j, l ≤ m.

Furthermore, if k = 2, (i) and (ii) hold for any 1 < p <∞.

Just like the `1-median, the uniqueness of the quantiles holds unless P0 is

completely supported on a straight line on Rk (Section 3, Chaudhuri (1996)). We

give the proof of the previous theorem in Section 8.

6. Simulation Study and a Real-Data Application

Here, we demonstrate the finite-sample performance of the nonparametric

Bayesian credible sets for the multivariate `1-median. The data is generated from

the mixture distribution P = 0.5Nk(1k, Ik)+0.5Gammak(1, 1, V ) with cases k = 2

and k = 3, and the sample size is 100. All diagonal elements of V are chosen

to be one, and the off-diagonal elements are 0.7. The prior considered here is

a Dirichlet process with centering measure 2×Nk(0k, 10Ik), and a 95% credible

ellipsoid is constructed as

{ϑ : (ϑ− θ̄)>S−1(ϑ− θ̄) ≤ r0.95},

where θ̄ and S are the Monte Carlo sample mean and covariance matrix, respec-

tively, and r1−α is the 100(1 − α)% percentile of {(ϑb − θ̄)>S−1(ϑb − θ̄), b =

1, . . . , B}, where ϑ1, . . . , ϑB are the posterior samples, with B = 5,000. The cov-

erage probability is defined as usual, and, we use r0.95 as a measure of the size

of the credible set. For comparison, we use the following parametric Bayesian

model:

(X1, . . . , Xn) | θ i.i.d.∼ Nk(θ, σ
2Ik), θ ∼ Nk(0k, 10Ik), σ−2 ∼ Gamma(1, 1).

A simple Gibbs sampler can be used for a posterior inference from the above

model, and a 95% credible set is constructed in the same way. However, the

model suffers from a misspecification bias, which our nonparametric Bayes model

is free from.

For an inference about the affine equivariant median, we choose X(α), as

suggested in Chakraborty, Chaudhuri and Oja (1998). The parametric Bayesian
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Table 1. Estimated coverage probability and mean size of the 95% credible ellipsoids
and confidence ellipsoids (in parentheses) of the non-affine equivariant (Non AE) and
affine equivariant (AE) `1-medians for parametric (PBayes) and nonparametric Bayes
(NPBayes) models, for k = 2.

p Coverage (Size)(NPBayes) Coverage (Size)(PBayes)

Non AE
2 0.950 (5.94) 0.925 (6.37)

3 0.942 (5.54) 0.925 (6.37)

AE
2 0.977 (6.09) 0.980 (6.19)

3 0.955 (5.97) 0.980 (6.19)

Table 2. Estimated coverage probability and mean size of the 95% credible ellipsoids
and confidence ellipsoids (in parentheses) of the non-affine equivariant (Non AE) and
affine equivariant (AE) `1-medians for parametric (PBayes) and nonparametric Bayes
(NPBayes) models, for k = 3.

p Coverage (Size)(NPBayes) Coverage (Size)(PBayes)

Non AE
2 0.955 (5.81) 0.945 (5.99)

3 0.948 (5.88) 0.945 (5.99)

AE
2 0.972 (5.91) 0.950 (6.11)

3 0.961 (5.99) 0.950 (6.11)

model takes the form

Z
(α)
j |φ

iid∼ Nk(φ, σ
2Ik), φ ∼ Nk(0k, 10Ik), σ−2 ∼ Gamma(1, 1).

Table 1 and Table 2 summarize the sizes and coverage probabilities over 2,000

replications for both models for k = 2 and 3, respectively. Note that the non-

parametric Bayes method gives a smaller credible set with a nominal coverage

probability, thus protecting it from the model misspecification bias in the para-

metric Bayesian approach.

We also analyze Fisher’s iris data, which contain information on three plant

species, namely, Setosa, Virginica, and Versicolor, and four features, namely, sepal

length, sepal width, petal length, and petal width. The same DP(α) prior with

α = 2×N4(04, 10I4) is used. We construct the 95% Bayesian credible ellipsoid of

the four-dimensional spatial median, and report its four principal axes in Table

1 of the Supplementary Material. In addition, for the purpose of illustration,

we plot six pairs of features for each species and the credible ellipsoids for the

corresponding two-dimensional spatial medians. The figures are given in the

Supplementary Material.
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7. Conclusion

This study is the first to examine the asymptotic behavior of the posterior

distributions of multivariate medians and quantiles. Multivariate quantiles are

of interest in, for example, network analysis, genetic experiments, and image

analysis, where the data sets do not fit into well-known distributions and exhibit

non-normality, skewness, and outliers. The Bayesian approach gives us automatic

uncertainty quantification through the posterior distributions, without requiring

large-sample approximations. The nonparametric Bayesian approach discussed

here is appealing because it does not need any distributional assumptions.

It would be interesting to explore the high-dimensional setting, that is, when

k → ∞. We can modify the objective function by incorporating a Lasso-like

penalty. Then, a k-dimensional u-quantile for u ∈ B
(k)
q can be obtained by

minimizing P{Φp(u,X − ξ) − Φp(u,X) + λ‖ξ‖p} with respect to ξ, where λ is

a tuning parameter. A nonparametric Bayesian framework can be formulated

by putting a Dirichlet process prior on P , and the asymptotic properties of the

posterior distributions can be explored as before.

The asymptotic results for the multivariate quantiles translate to multivari-

ate L-estimates (Chaudhuri (1996)). An L-estimator is a weighted average of the

order statistics. Chaudhuri (1996) defined an L-estimator of the multivariate lo-

cation of the form
∫
S Q̂n(u)µ(du), where µ is an appropriately chosen probability

measure supported on a subset S of B
(k)
2 . We propose a nonparametric Bayesian

analog of the form
∫
S QP (u)µ(du), and put a DP(α) prior on P . If S is a finite set

{u1, . . . , us}, then the integral is of the form
∑s

i=1QP (ui)µ({ui}), the posterior

asymptotic distribution of which can be obtained directly from Theorem 4.

Our approach is strongly connected to the bootstrap, because we are essen-

tially applying a bootstrap approximation to the posterior Dirichlet process. The

Bayesian bootstrap is a smoother version of Efron’s bootstrap. For Efron’s boot-

strap, the weights (Wn1, . . . ,Wnn) are multinomial with probabilities (1/n, . . . ,

1/n), and they satisfy conditions (i)–(v) in Subsection 3.1, when c = 1. Thus,

the credible sets obtained from Efron’s bootstrap are asymptotically equivalent

to the credible sets obtained here.

8. Proofs

8.1. Proof of Theorem 1

We first need some concepts from stochastic and empirical processes the-

ory, which are given in the Supplementary Material. These include definitions
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of covering numbers, bracketing numbers, uniform entropy, bracketing entropy,

VC-classes, Glivenko–Cantell and Donsker classes, and a stochastically separable

process.

We give the proof in two steps. In the first step, we state and prove Lemma

1, that is, we show that the asymptotic posterior distribution of√
n(θ(P )−θ̂n) is the same as the asymptotic conditional distribution of

√
n(θ(Bn)−

θ̂n). Next, we verify the conditions of Theorem 2 in our situation, and show that

the asymptotic conditional distribution of
√
n(θ(Bn)− θ̂n) is Nk(0, Ψ̇

−1
0 Σ0Ψ̇

−1
0 ).

Lemma 1. The asymptotic posterior distribution of
√
n(θ(P )− θ̂n) is the same

as the asymptotic conditional distribution of
√
n(θ(Bn)− θ̂n).

Proof of Lemma 1. We know θ(Bn) satisfies Ψ?(θ(Bn)) = Bnψ(·, θ) = 0, and θ(P )

satisfies Ψ(θ(P )) = Pψ(·, θ) = 0.

The posterior distribution of P given X1, . . . , Xn is DP(α+ nPn). From the

fact that ‖P − Bn‖TV = oP ?(n
−1/2) a.s. [P∞0 ], where P ? = P∞ × Bn,∥∥Pψ(X, θ)− Bnψ(X, θ)
∥∥
2
≤
∥∥ψ∥∥∞∥∥P − Bn

∥∥
TV
≤
∥∥P − Bn

∥∥
TV
,

because ‖ψ‖∞ = supx |ψ(x, θ)| = 1. In view of this result, given X1, . . . , Xn,∥∥Ψ?(θ(P ))−Ψ(θ(P ))
∥∥
2

=
∥∥Ψ?(θ(P ))‖2 = oP ?(n

−1/2). (8.1)

Hence, for given X1, . . . , Xn, θ(P ) makes the bootstrap scores Ψ?(θ) approxi-

mately zero in probability. Therefore, given the observations X1, . . . , Xn, θ(P )

qualifies as a sequence of bootstrap asymptotic Z-estimators. Theorem 1 in Well-

ner and Zhan (1996) (Theorem 2 in this paper) holds for any sequence of boot-

strap asymptotic Z-estimators ˆ̂θn that satisfies∥∥∥Ψ?(ˆ̂θn)
∥∥∥ = oP ?(n

−1/2). (8.2)

Thus, the asymptotic posterior distribution of
√
n(θ(P )− θ̂n) is the same as the

asymptotic conditional distribution of
√
n(θ(Bn)− θ̂n).

Next, we show that ψ(·, θ), defined in (2.2), satisfies the conditions in The-

orem 2. First, we need to show that the function class FR ∈ m(P0), where FR
is defined in (3.3). To achieve this, we prove that the empirical process Gn =√
n(Pn−P0) indexed by FR is stochastically separable. Note that ψj(x, θ), for j =

1, . . . , k, are left-continuous at each x for every θ, such that ‖θ−θ0‖2 ≤ R. Hence,

there exists a null set N and a countable G ⊂ FR such that, for every ω /∈ N and

f ∈ FR, we have a sequence gm ∈ G, with gm → f and Gn(gm, ω) → Gn(f, ω).

For more details, see Chapter 2.3 of Van der Vaart and Wellner (1996).
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Verification of Condition 1 in Theorem 2. By Condition C2 in Theorem 1, the

`1-median of P0 exists and is unique. Hence, there exists a θ0 ≡ θ(P0) ∈ Rk such

that (3.4) is satisfied. Furthermore, Ψ0(θ) = P0ψ(X, θ) is differentiable, from

Condition C1. This follows from the fact that for a fixed θ ∈ Rk and a density f

bounded on compact subsets of Rk, P0(‖X−θ‖−12 ) is finite, which in turn implies

that P0(‖X − θ‖−1p ) is finite for every p > 1. This can be verified by using a

k-dimensional polar transformation, for which the determinant of the Jacobian

matrix contains the (k − 1)th power of the radius vector (Chaudhuri (1996)).

Verification of Condition 2 in Theorem 2. From Wellner and Zhan (1996), Con-

dition 2 is satisfied if FR in (3.3) is P0-Donsker for some R > 0 and

max
1≤j≤k

P0(ψj(·, θ)− ψj(·, θ0))2 → 0, (8.3)

as θ → θ0. In order to prove that FR is P0-Donsker, we define the following two

function classes:

F1R =

{
|xj − θj |p−1

‖x− θ‖p−1p

: j = 1, 2, . . . , k, ‖θ − θ0‖2 ≤ R

}
, (8.4)

F2R =
{

sign(θj − xj) : j = 1, 2, . . . , k, ‖θ − θ0‖2 ≤ R
}
. (8.5)

From Example 2.10.23 of Van der Vaart and Wellner (1996), if F1R and F2R

satisfy the uniform entropy condition and are suitably measurable, then FR =

F1RF2R is P0-Donsker, provided that their envelopes F1R and F2R satisfy

P0F
2
1RF

2
2R <∞.

Lemma 2. For k > 2, F1R and F2R are P0-Donsker classes for some fixed integer

p, and hence they satisfy the uniform entropy condition.

The proof is presented in the Supplementary Material. In view of Lemma

2, we next need to prove (8.3); that is, max1≤j≤k P0(ψj(·, θ)− ψj(·, θ0))2 → 0 as

θ → θ0. Note that ψj(x, θ)→ ψj(x, θ0) for every x as θ → θ0, for j ∈ {1, . . . , k}.
In addition, (ψj(x, θ) − ψj(x, θ0))

2 ≤ 4 for every x and every θ. Hence, by

the dominated convergence theorem, P0(ψj(·, θ) − ψj(·, θ0))2 → 0 as θ → θ0 for

j ∈ {1, . . . , k}. Thus, (8.3) is established.

Verification of Condition 3 in Theorem 2. For every j ∈ {1, 2, . . . , k} and θ ∈
Rk, ψj(x, θ) is bounded by one and hence is square integrable. The (i, j)th

element of Σ0 = P0ψ(x, θ0)ψ
T (x, θ0) is given by
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σij =

∫
|xi − θ0i|p−1|xj − θ0j |p−1

‖x− θ0‖2(p−1)p

sign(θ0i − xi) sign(θ0j − xj) dP0 (8.6)

≤
∫

1 dP0 <∞.

The class of functions {ψj(x, θ) : j = 1, 2, . . . , k, ‖θ − θ0‖2 ≤ R} has a constant

envelope one. Hence, Dn(x) defined in (3.8) is equal to two and satisfies (3.9).

Verification of Condition 4. First, we prove ‖θ̂n− θ0‖2
P0→ 0. Note that θ̂n can be

written as

θ̂n = argmax
θ

Pnmθ, (8.7)

where mθ(x) = −‖x− θ‖p+‖x‖p. Naturally, the population analog of θ̂n is given

by

θ(P ) = argmax
θ

Pmθ. (8.8)

From Corollary 3.2.3 of Van der Vaart and Wellner (1996), we need to establish

two conditions:

(a) supθ |Pnmθ − P0mθ| → 0 in probability;

(b) there exists a θ0 such that P0mθ0 > supθ/∈G P0mθ, for every open set G

containing θ0.

The first condition can be proved by showing that the class of functions {mθ :

θ ∈ Rk} forms a P0-Glivenko–Cantelli class. From Theorem 19.4 of Van der

Vaart (2000), the class M = {mθ : θ ∈ Θ ⊂ Rk} is P0-Glivenko–Cantelli if its

bracketing number N[ ](ε,M, L1(P0)) <∞, for every ε > 0.

By Example 19.7 of Van der Vaart (2000), for a class of measurable functions

F = {fθ : θ ∈ Θ ⊂ Rk}, if there exists a measurable function m such that

|f1(x)− f2(x)| ≤ m(x)‖θ1 − θ2‖2, (8.9)

for every θ1, θ2 and P0|m|r < ∞, then there exists a constant K, depending on

Θ and k only, such that the bracketing numbers satisfy

N[ ](ε‖m‖P0,r,F , Lr(P0)) ≤ K
(

diam Θ

ε

)k
, (8.10)

for every 0 < ε < diam Θ. To use this example, we need to restrict the parameter

space to a compact subset of Rk. The next lemma shows that this can be avoided

in our case by asserting that the parameter space can be restricted to a sufficiently
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large compact set with high probability.

Lemma 3. For some 0 < ε < 1/4 and K > 0, such that P0(‖X‖p ≤ K) > 1− ε,
‖θ(Bn)‖p ≤ 3K with high joint probability Pn0 × Bn.

The proof of Lemma 3 is given in the Supplementary Material. Because of

Lemma 3, it suffices to establish (8.9). Using Minkowski’s inequality,

|mθ(x)−mθ′(x)| =|‖x− θ′‖p − ‖x− θ‖p| ≤ ‖θ − θ′‖p.

This expression is bounded by ‖θ−θ′‖2, for p ≥ 2, by the fact that ‖z‖p+a ≤ ‖z‖p
for any vector z and real numbers a ≥ 0 and p ≥ 1. For 1 < p < 2, the expression

is bounded by 2(1/p)−(1/2)‖θ − θ′‖2. Hence, we choose m(x) = 1 for every x

and therefore P0|m| = 1. This ensures that N[ ](ε,M, L1(P0)) < ∞, hence,

Condition (a) is satisfied. From Condition (C2) in Theorem 1, Condition (b)

holds. Therefore θ̂n → θ0 in P0-probability.

Now, to prove the consistency of θ(Bn), which is viewed as a “bootstrap esti-

mator”, we use Corollary 3.2.3 in Van der Vaart and Wellner (1996). Two condi-

tions are needed to prove this. The first condition is supθ |Bnmθ−P0mθ|
P0×Bn→ 0,

which we verify using the multiplier Glivenko–Cantelli theorem given in Corol-

lary 3.6.16 of Van der Vaart and Wellner (1996). Using the representation Bn =∑n
i=1BniδXi , where (Bn1, . . . , Bnn) ∼ Dir(n; 1, . . . , 1), it follows that Bni ≥ 0,∑n
i=1Bni = 1, and Bni ∼ Be(1, n− 1). Therefore, for every ε > 0, as n→∞,

P

(
max
1≤i≤n

|Bni| < ε

)
=

(∫ ε

0

(1− y)n−2

Be(1, n− 1)
dy

)n
= (1− (1− ε)n−1)n → 1.

Thus, the first condition is proved. The second condition is the same as the

“well-separatednes” condition (b), which we have already verified. Thus, we

have θ̂n
P0→ θ0 and θ(Bn)

P0×Bn→ θ0. Hence, by an applying the triangle inequality,

θ(Bn)
Bn→ θ̂n in P0-probability.

Verification of Condition 5. It has already been mentioned that the Bayesian

bootstrap weights satisfy the bootstrap weights (i)–(v).

Proof for arbitrary p > 1 when k = 2. When k = 2, we do not need p to be an

integer, because we can show that F1R is a P0-Donsker class for any fixed p > 1,

which we state formally in the following lemma.

Lemma 4. For k = 2, F1R is a P0-Donsker class for any p > 1; hence, it satisfies

the uniform entropy condition.

Proof. See the Supplementary Material.
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8.2. Proof of Theorem 4

As before, the sample geometric quantiles Q̂n(u1), . . . , Q̂n(um) are viewed as

a Z-estimator satisfying the system of equations Pnψ(·, ξ) = 0, where ψ(·, ξ) =

{ψlj(·, ξlj) : l = 1, . . . ,m, j = 1, . . . , k} is a score vector with real-valued elements

ψlj(x, ξlj) =
|xj − ξlj |p−1

‖x− ξl‖p−1p

sign(ξlj − xj) + ulj . (8.11)

We define QBn(u1), . . . , QBn(um) as the corresponding “Bayesian bootstrapped”

versions of the Z-estimators Q̂n(u1), . . . , Q̂n(um), respectively; that is, they satisfy

the system of equations Bnψ(·, ξ) = 0. We use the same technique to approximate

the posterior distribution of P using a Bayesian bootstrap distribution. The

following lemma is an extension of Lemma 1 to the quantile case.

Lemma 5. For every fixed u1, . . . , um ∈ B(k)
q , the joint asymptotic posterior dis-

tribution of
√
n(QP (u1)−Q̂n(u1)), . . . ,

√
n(QP (um)−Q̂n(um)) is the same as the

asymptotic conditional distribution of
√
n(QBn(u1)−Q̂n(u1)), . . . ,

√
n(QBn(um)−

Q̂n(um)).

The proof of Lemma 5 is same as that of Lemma 1, and hence is omitted.

The rest of the proof of Theorem 4 follows that of Theorem 1, and so is omitted

as well.

Supplementary Material

In the online Supplementary Material, we provide background to the empiri-

cal process theory. We give definitions of covering numbers and uniform entropy,

bracketing numbers, the VC class of sets, the Glivenko–Cantelli class of functions,

and the Donsker class of functions. Additionally, we provide proofs of Lemmas

2, 3, and 4, and details of the application to the iris data. Finally, we provide

the R code used for the computation of our method.
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