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Abstract: We define a new class of log-concave distributions on the discrete lattice

Zd, and study its properties. We show how to compute the maximum likelihood

estimator of this class of probability mass functions from an independent and iden-

tically distributed sample, and establish consistency of the estimator, even if the

class has been incorrectly specified. For finite sample sizes, in our simulations, the

proposed estimator outperforms a purely nonparametric approach (the empirical

distribution), but is able to remain comparable to the correct parametric approach.

Notably, the new class of distributions has a natural relationship with log-concave

densities.
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1. Introduction

1.1. For Peter

This work is part of the field of shape-constrained methods. Although not

Peter’s primary area of research, he did consider certain variations and related

problems, including Braun and Hall (2001); Hall and Heckman (2000); Hall and

Presnell (1999); see also his comments in Cule, Samworth and Stewart (2010,

p.586).

The first author of this paper (HJ) got to know Peter during her sabbatical

at the University of Melbourne in 2013–2014. Some of the fondest and most

heart-warming memories from the visit took place over our many group lunches,

where discussions varied from how best to teach mathematical statistics to a

story about a cat from the UK who regularly takes the bus on his own. Peter

was always kind and generous, and is well-known to have been exceptionally

supportive of young researchers. When HJ was invited to contribute to a special

issue dedicated in Peter’s name, she felt this work was appropriate, as it is joint

work with HJ’s first doctoral student.
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1.2. Estimation of log-concave distributions

In recent years, there has been much interest in log-concave probability den-

sity function estimation, see, for example, the review article of Walther (2009).

As noted by Walther (2002), log-concave densities provide a natural alternative

to the class of unimodal densities, while not being too restrictive by specifying a

parametric family. One can also view the class of log-concave densities as striking

a balance between too large a class (and hence inefficient) and too small a class

(and hence not robust). Maximum likelihood estimation for the d = 1 setting

was studied in Dümbgen and Rufibach (2011); Balabdaoui, Rufibach and Wellner

(2009); Doss and Wellner (2016), while the d > 1 setting was first considered by

Cule, Samworth and Stewart (2010); Cule and Samworth (2010). Furthermore,

shape-constrained methods, such as log-concave maximum likelihood density es-

timation, are known to be naturally adaptive, achieving nearly parametric rates

in certain settings (Kim and Samworth (2016)).

For the discrete setting, when d = 1, Weyermann (2008) shows the existence

and uniqueness of the maximum likelihood estimator (MLE) for the log-concave

probability mass function (PMF), and provides an active set algorithm to cal-

culate the MLE that is much in the spirit of Rufibach (2007). Balabdaoui et

al. (2013) introduced the log-concave MLE of a discrete distribution in one-

dimensional space, and studied consistency and asymptotic properties of the

estimator, while Balabdaoui and Jankowski (2016) compare this estimator with

the MLE over the class of unimodal probability mass functions on Z.
To our best knowledge, consideration of log-concave probability mass func-

tions in the multidimensional discrete setting is limited to the work of Ba-

pat (1988), see also Dharmadhikari and Joag-Dev (1988). Estimation meth-

ods/algorithms are not considered there. We review this class of discrete distri-

butions, called generalized log-concave distributions, in Section 2.1.

In this work, we give a new definition of log-concave probability mass func-

tions defined on the Zd lattice, see Definition 1. We call this class extendible-

log-concave, as it is closely related to extendible-convex functions (Murota and

Shioura (2001)). We also derive some properties of the new class of distributions.

Notably, we show that random variables from a continuous log-concave density

which are binned (e.g. rounded to some accuracy level) will fall into our new

class of mass functions, under certain conditions. In certain instances it might

be desirable that the accuracy of the binning depend on the sample size. Tang,

Banerjee and Kosorok (2012) consider the problem of analysis of binning in the
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context of current status data, and propose an adaptive inference procedure. It

would be of interest to perform a similar analysis in our setting, although the

issue is beyond the context of the current work.

In Section 3, we show that the maximum likelihood estimator exists and

is unique, and we discuss its computation. Our algorithm is a modification of

the algorithm of Cule, Samworth and Stewart (2010) to compute the MLE of a

log-concave density in higher dimensions. We also show that the MLE is con-

sistent, even under misspecification (this is done in Section 4). Furthermore, we

study the finite sample size of our estimator via simulations. The proposed MLE

exhibits considerable improvement in efficiency over the empirical distribution

in the examples we consider. Moreover, in one of the examples we compare our

nonparametric MLE to the correct parametric MLE, and the proposed method

does not show a great loss of efficiency over the parametric method. Similar be-

haviour was observed by Balabdaoui et al. (2013). In our opinion, this is one of

the key benefits of the balance that the log-concave class is able to strike between

robustness and efficiency.

Although some results have recently been established for convergence rates

for log-concave densities in Rd for d > 1 (Kim and Samworth (2016)), a more

complete analysis of the limiting distribution in this case is still unavailable. On

the other hand, the discrete setting is typically easier to handle. Our hope is

that this work, aside from the practical utility of our method, will also provide

an avenue for such theoretical exploration.

2. Discrete Log-Concavity in Higher Dimensions

A density function f is said to be log-concave if h(x) = (− log f)(x) is a

convex function on Rd. In particular, if h is sufficiently smooth, it is convex if

and only if the Hessian matrix of h is positive semi-definite, Rockafellar (1970,

Theorem 4.5). Similarly, one can define convex functions in the one-dimensional

discrete setting via (4h)(z) = h(z − 1) − 2h(z) + h(z + 1) ≥ 0. This naturally

leads to a definition of log-concave probability mass functions (Balabdaoui et

al. (2013)). Perhaps surprisingly at first, in higher dimensions, the definition of

discrete convexity is not so straightforward. For a discrete function defined on Zd

for d > 1 there are multiple definitions of convexity. Murota and Shioura (2001)

provide a detailed survey of the various definitions available, and a summary of

the relationships between them.

Our goal here is to define and study discrete log-concave distributions in
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higher dimensions, and we therefore need to select a class of discretely convex

(equivalently, concave) functions to work with. Among the various discrete con-

vex definitions introduced by Murota and Shioura (2001), we choose to focus on

the class of convex-extendible functions. There are two main reasons for this:

They show that the class of convex-extendible functions is closed under addition.

Furthermore, using this definition, our class of log-concave probability mass func-

tions is closed under taking limits. We will show this property in Theorem 1.

Define the convex closure of h(z) as

h̄(x) = sup
α∈R,β∈Rd

{α+ βTx : α+ βT z ≤ h(z) for all z ∈ Zd}, x ∈ Rd.

The function h is convex-extendible if h̄(z) = h(z) for all z ∈ Zd. Similarly, a

set S ⊆ Zd is said to be convex-extendible if S̄ ∩ Zd = S, where S̄ ⊆ Rd is the

convex closure of S, the smallest closed convex set (in Rd) containing S. A related

notion is that of a convex extension: A convex function hR : Rd → R ∪ {+∞} is

called a convex extension of h if hR(z) = h(z) for all z ∈ Zd. Clearly, a convex

closure is a convex extension, but not vice versa. A function h : Zd → R∪{−∞}
is concave-extendible if −h is convex-extendible.

Definition 1. A PMF p(z) : Zd → [0, 1] is e-log-concave (eLC) if p(z) = eϕ(z)

and ϕ(z) is concave-extendible.

In what follows, we let P0 denote the class of all eLC probability mass func-

tions on Zd.
Remark 1 (Separable-log-concavity). When d = 1, the class P0 agrees with

the class of discrete log-concave distributions defined in Balabdaoui et al. (2013).

This follows, for example, since (∆ϕ)(z) ≤ 0 by appealing to the properties of

a convex extension of ϕ. The maximum likelihood estimation considered here,

when d = 1, has been studied in Balabdaoui et al. (2013). Furthermore, if a

Zd-valued random variable X = {X1, . . . , Xd} has a distribution which is e-log-

concave and the elements X1, . . . , Xd are known to be mutually independent,

then the PMF can be written as eϕ(z), where −ϕ(z) is separable-convex. In such

a situation, the multivariate MLE problem can be solved, again using the work

of Balabdaoui et al. (2013); we fit a PMF eϕ(z), where −ϕ(z) is separable-convex

by fitting a univariate log-concave probability mass function to each marginal of

the data set and appealing to the independence assumption to obtain the joint

distribution.

There is a simple way to verify if a discrete function is convex-extendible.
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Lemma 1. Murota and Shioura (2001, Lemma 2.3) If h : Zd → R ∪ {+∞} is

some function, then, h(z) = h(z) for any z ∈ Zd if and only if there exists a

closed convex extension of h.

For example, consider h(z) = zTAz, where z ∈ Zd, and A is a symmetric d×d
positive-definite matrix. The natural convex extension of h(z) is hR(x) = xTAx

for x ∈ Rd. The function is closed because it is continuous. By Lemma 1, h(z) is

convex-extendible. For another example, consider the proof of Proposition 2.

Alternatively, for certain distributions, the relationship with generalized log-

concave distributions is useful; see Section 2.1.

Remark 2 (Alternative lattice structures). In this work we limit ourself to

the grid Zd, although potentially other lattice structures could also be explored.

Simple linear transformations and rotations are naturally covered by our work.

We conjecture that the convex extendible approach could also be applied to more

irregular structures, although we do not explore this here. This is particularly

attractive in light of the relationship that our definition has with log-concave

densities, see Section 2.2.

Remark 3 (Unimodality). Several notions of unimodality exist for densities in

Rd and mass functions on Zd when d > 1. The class P0 is unimodal, in the sense

that for all z ∈ Zd, the probability mass function is equal to p(z) = exp (−hR(z)) ,

where hR is a convex function defined not only on Zd, but also on Rd.
An interesting example of a PMF which is not in the class eLC, is the fol-

lowing. Let

p(z) =



a

(1 + a)
z = (0, 0),

a(1− a)k

(1 + a)
z = (1, k), k ≥ 0

0 otherwise,

for some a ∈ (0, 1). Next, let α = − log(a/(1 + a)) and β = − log(1 − a) ≥ 0.

Also, let S denote the support of the PMF p. The plane α + βx2 is convex and

a minorant of h(z) = − log p(z) on Z2. Let conv S denote the convex hull of S.

The function

h̃(x) =

{
α+ βx2 x ∈ convS,
+∞ x 6∈ convS,

satisfies h̃(z) = h(z) on z ∈ Z2, but h̃ is not a closed function. In fact, h is the

function
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h(x) =

{
α+ βx2 x ∈ S̄,
+∞ x 6∈ convS,

but it does not match h for z ∈ {(0, k) : k ≥ 1}. Hence, p 6∈ P0. We call this the

“shifted geometric” example, when we refer to it below.

2.1. Generalized log-concavity

Bapat (1988) (see also Johnson, Kotz and Balakrishnan (1997)) gave an

alternative definition of “generalized log-concavity” on Nd, where N denotes the

natural numbers. A probability mass function p on Nd with support S = {z ∈
Nd : p(z) > 0}, is said to be generalized log-concave if

p(z) =

d∏
i=1

pi(zi), z ∈ S, (2.1)

where each pi satisfies (4 log pi)(zi) ≤ 0. Thus, each pi is a univariate discrete

log-concave function (though not necessarily a PMF). The definition need not be

restricted to Nd and can easily be extended to Zd. Even with this extension, the

definition is still more restrictive than our eLC definition for certain supports.

Proposition 1. Suppose that p is generalized log-concave with support S. If S
is convex-extendible, then p ∈ P0.

The discrete Gaussian distribution described later is not generalized log-

concave. Thanks to Proposition 1 and Bapat (1988); Johnson, Kotz and Bal-

akrishnan (1997), we find that distributions such as the multinomial, negative

multinomial, multivariate hypergeometric, multivariate negative hypergeometric,

as well as multi-parameter versions of the multinomial and negative multinomial

are also extendible log-concave. We do this by checking that their supports are

convex-extendible. Hence, Proposition 1 provides another approach to checking

if a given probability mass function falls in the class P0.

2.2. Relationship with continuous log-concave distributions

Proposition 2. Suppose that f is a log-concave density on Rd, and let A =

[−1/2, 1/2)d. A probability mass function p(z) =
∫
z+A f(y)dy with a convex-

extendible support satisfies p ∈ P0.

This result is not tied to the lattice Zd nor our particular choice of A. If Y

is a random variable with this density f , then the PMF p with A = [−1/2, 1/2)d

corresponds to the probability mass function of the random variable bY + 0.5c
(componentwise). Other choices of lattice and A lead to other discretizations
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of Y, such as δbY/δc for some δ > 0. This means that the class P0 can be

used to analyze log-concave random variables which have been discretized or

“grouped/binned”.

2.3. Properties

The class P0 has several attractive properties.

Proposition 3. Suppose p ∈ P0.
1. The support of p, S = {z | p(z) > 0}, is a convex-extendible set.

2. For A ⊂ S, let

p̃(z) ∝

{
p(z) z ∈ A,
0 otherwise.

If A is a convex-extendible set, p̃ ∈ P0.

3. Let p1 ∈ P0 and p2 ∈ P0 with supports S1 = {z1 ∈ Zd1 | p1(z1) > 0}
and S2 = {z2 ∈ Zd2 | p2(z2) > 0}. Then p(z) = p1(z1)p2(z2) with support

S = S1 × S2 ⊂ Zd1+d2 satisfies p ∈ P0.

4. Suppose that p ∈ P0 with support in Zd, and let z = (z1, z2) where z1 ∈ Zd1
and z2 ∈ Zd2 with d1 + d2 = d. Then the conditional distribution p(z1|z2) =

p((z1, z2))/p(z2) ∈ P0.

5. Let Z be a discrete random variable, with probability mass function p ∈ P0
with support S. Let Z̃ = AZ+ b, where A is a d×d matrix and b is a vector

of length d, and let p̃ denote the PMF of Z̃ with support S̃. If S̃ is a subset

of Zd, and the matrix A is invertible, then p̃ ∈ P0.

The shifted geometric example does not have convex-extendible support (the

convex hull of its support is not closed). The first property of Proposition 3 thus

shows that it cannot be eLC. The class P0 is closed under limits with some

restrictions.

Theorem 1. Let pn, p be discrete PMFs on Zd, and suppose that for each n ≥ 1,

pn ∈ P0. If pn → p pointwise and the support of p is convex-extendible, then

p ∈ P0.

The Kullback-Leibler (KL) divergence between two PMFs p and p0 is defined

as

ρKL(p ‖ p0) =
∑
z∈Zd

p0(z) log

(
p0(z)

p(z)

)
.
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Although it is not a distance, but a divergence, is the natural notion of “distance”

associated with maximum likelihood estimation. Let ‖z‖∞ denote the maximum

norm, ‖z‖∞ = max{|z1|, . . . , |zd|}.

Theorem 2. Let p0 be a probability mass function on Zd such that
∑

z∈Zd ‖z‖∞
p0(z) <∞ and

∣∣∑
z∈Zd p0(z) log p0(z)

∣∣ <∞. If the convex hull of the support of

p0 is closed, there exists a unique p̂0, such that

p̂0 = argmin
p∈P0

ρKL(p ‖ p0).

Furthermore, if p0 ∈ P0, then p̂0 = p0.

We will refer to p̂0 as the KL projection of p0 in what follows. Heuristically,

the KL projection is the closest element of the class P0 to the fixed PMF p0.

Lemma 2. The support of the KL projection p̂0 is the intersection of Zd with

the (closed) convex hull of S0.

3. Maximum Likelihood Estimation

The convex hull of a finite number of points is a closed polygon, from which

it follows that the support of the empirical distribution is convex-extendible. The

following is thus a simple consequence of Theorem 2.

Proposition 4. If X1, . . . , Xn are independent and identically distributed ran-

dom variables on Zd with true PMF p0, then, with probability one, there exists a

unique p̂n which maximizes the likelihood
∏n
i=1 p(Xi) over the class of probability

mass functions p ∈ P0.

In what follows, we denote the MLE by

p̂n = argmaxp∈P0

n∑
i=1

log p(Xi).

Computation of this estimator is not an easy problem, see Walther (2009). For

d = 1, the main options are the iterative convex minorant (ICMA) and active

set algorithms, although other methods have also been used (Jongbloed (1998);

Rufibach (2007)). These algorithms tend to rely on a special structure of convex

functions which holds only for d = 1. For d > 1, this computational problem was

first solved in Cule, Samworth and Stewart (2010), and it is their approach which

we adapt to the discrete setting in this work. It is described in the next section.

A useful property of the eLC MLE, that holds in the continuous and discrete

d = 1 cases, is the following.
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Figure 1. Grayscale heatmaps of the empirical PMF (left) and its eLC projection (right).
The true distribution is a discrete Gaussian.

− − − − − − − − − −

Figure 2. Marginal distributions corresponding to the heatmaps in Figure 1.
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Lemma 3. If pn is the empirical PMF of the data and h : Zd 7→ R is any

convex-extendible function, then∑
z∈Zd

h(z) p̂n(z) ≤
∑
z∈Zd

h(z) pn(z).

In particular, this implies that the mean of the MLE is equal to the observed

mean of the data. Furthermore, if Σ̂n denotes the variance matrix under the

MLE, and Σn the empirical variance matrix, then Σ̂n ≤ Σn, in the sense that

Σn − Σ̂n is positive semi-definite.

An example of the MLE is given in Figures 1 and 2. The data is an IID

sample of size n = 1,000 from the discrete Gaussian distribution, see Section 3.2.

Figure 1 shows the empirical distribution (left) and the fitted eLC (right) as a

grey-scale heatmap. The marginal distributions are given in Figure 2, where the

true marginals are also added.

3.1. Computation of the MLE

It is well-known that maximizing
∑n

i=1 log p(Xi) over p ∈ P0 is equivalent to

minimizing

− 1

n

n∑
i=1

ϕ(Xi) +
∑
z∈Zd

exp (ϕ(z)) ,

over all concave-extendible functions ϕ, see Lemma B.2. However, the values

X1, . . . , Xn are expected to have duplicates in our setting. Let z1, . . . , zm be

the unique observed values of X1, . . . , Xn, and recall the empirical PMF pn. Let

Ŝn = S̄n ∩ Zd, where Sn = {z1, . . . , zm}. Using also the characterization of the

MLE, we can re-write this optimization problem as that of minimizing

−
m∑
j=1

pn(zj)ϕ(zj) +
∑
z∈Ŝn

exp (ϕ(z)) ,

over all concave-extendible functions ϕ. Following Cule, Samworth and Stewart

(2010), for a fixed vector of values y ∈ Rm, define the “tent” function

ty(x) = inf{g(x) : Rd → R | g is concave, and g(zj) ≥ yj for j = 1, . . . ,m}.

In our minimization problem, we can exchange the functions ϕ(z) with the tent

functions ty(z), and optimize over y ∈ Rm instead. A further simplification of

the problem follows.

Theorem 3. If

σ(y1, . . . , ym) = −
m∑
j=1

pn(zj) yj +
∑
z∈Ŝn

exp (ty(z)) ,
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then σ is convex and has a unique minimum ŷ such that p̂n(z) = exp
(
tŷ(z)

)
.

Unfortunately, the function σ is not differentiable, and hence subgradient-

based methods are used to perform the optimization. Details, including the algo-

rithm, are given in the Appendix, and we refer to Cule (2009); Cule, Samworth

and Stewart (2010) for the original development of these methods.

Remark 4. The function tŷ is a concave extension of log p̂n (see Lemma B.3 in

the Appendix). Thus, the algorithm finds not only p̂n, but the associated concave

extension.

A faster algorithm for log-concave density/PMF estimation in dimension

greater than one remains an open problem in the field (see Cule, Samworth and

Stewart (2010, Sec. 3) and Walther (2009, Sec. 5)). Although our algorithm in

no way improves on the one proposed in Cule, Samworth and Stewart (2010),

our general approach does reduce the number of data points from n to m, if one

considers grouping/binning the data.

3.2. Finite sample preformance

We investigated the finite sample performance of the proposed method via

simulations for d = 2. We considered two scenarios for the true p0. For scenario

(A), we assumed that p0(z) = p1(z1)p2(z2) where p1 is Poisson (λ = 4) and p2
is negative binomial (p = 0.3, r = 6). For scenario (B), we assumed that p0 is

discrete Gaussian, in that p0(z) ∝ exp(−0.5(z−µ)TΣ−1(z−µ)), where µ = (1, 2),

and

Σ =

[
4 6

6 25

]
.

Consider the closed, continuous function hR(x) = 0.5(x−µ)TΣ−1(x−µ) + c, x ∈
Rd. It is easy to see that this is a convex extension of h(z) = − log p0(z) =

0.5(z−µ)TΣ−1(z−µ) + c, for the appropriate constant c. By Rockafellar (1970,

Theorem 4.5) and Lemma 1 we conclude that p0 ∈ P0.
For both scenarios, we simulated IID samples with sample sizes n = 200, 500,

and 1,000. The results of our simulations are shown in Figure 3 with scenario (A)

in the top row, and scenario (B) in the bottom row. Each boxplot is the result

of B = 1,000 repetitions and compares the performance of our eLC estimator

as well as three others, via the l2 distance of the estimator to the true PMF

p0. The other estimators are the empirical PMF pn, the MLE assuming that

− log p(z) = h1(z1)+h2(z2), for two convex functions h1, h2 on Z (see Remark 1)

and the correct parametric MLE, where the latter is calculated for scenario (A)
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Figure 3. Boxplots of l2 distance between estimator and true distribution when the
true distribution is Poisson and negative binomial product (top) and discrete Gaussian
(bottom). The estimators are (a) empirical MLE, (b) eLC MLE, (c) separable log-
concave MLE, and (d) parametric MLE (top plot only).

only. Clearly, the more (correct) assumptions we make, the more we increase

efficiency without increasing bias – this is seen in the top plot. In the bottom

plot, the misspecified MLE (c) has poor performance. In our opinion, the success

story of the eLC estimator is seen in the top plot: there is not that much loss

of efficiency for the MLE between the nonparametric eLC assumption versus the

strong correct parametric assumption.
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Figure 4. Boston Housing Data: original empirical distribution (left) along with eLC
maximum likelihood estimate (right).

3.3. Mixtures and the EM algorithm

As mentioned in Chang and Walther (2007); Walther (2009); Cule, Samworth

and Stewart (2010), one of the advantages of the maximum likelihood approach

over a fixed family of functions is that it naturally extends to fitting of mixture

models via the EM algorithm, for apriori known number of mixtures. Although

we do not explore this in detail, this approach could extend our class into possibly

multimodal distributions as well. Alternatively, the class of, say, zero-inflated

distributions could also be considered.

3.4. Binned data example

We illustrate our estimation technique on the Boston housing data set cre-

ated by Harrison and Rubinfeld (1978) and available online at Lichman (2013).

The data set consists of a sample size of n = 506 and 14 variables. We chose to

work with the last two variables: LSTAT (percentage lower status of the pop-

ulation) and MEDV (median value of owner occupied homes in $1,000s). Prior

to binning, LSTAT has a range of (1.73, 37.97) with a median/mean value of

11.36/12.65, while MEDV has a range of (5.00, 50.00) with a median/mean value
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of 21.20/22.53. We removed observations with missing values (only an issue for

MEDV) for a sample size of n = 452. We binned the data as described in Sec-

tion 2.2, using xi = byi + 0.5c for each observation, and for both variables. This

creates m = 270 unique bins. Figure 4 shows the result of fitting the eLC MLE

to the binned data, along with the original histogram.

4. Asymptotic Properties

For two PMFs p and q, we define the lk and Hellinger distances as

lk(p, q) =


{∑

z∈Zd |p(z)− q(z)|k
}1/k

if 1 ≤ k <∞,

supz∈Zd |p(z)− q(z)| if k =∞,

h2(p, q) =
1

2

∑
z∈Z

{√
p(z)−

√
q(z)

}2
.

Our main consistency result follows.

Theorem 4. Suppose that p0 is a discrete distribution on Zd satisfying∑
z∈Zd

‖z‖∞ p0(z) <∞ and

∣∣∣∣∣∑
z∈Zd

p0(z) log p0(z)

∣∣∣∣∣ <∞.
If the convex hull of the support of p0 is closed, then d(p̂n, p̂0)→ 0 almost surely,

where d is the distance lk for any 1 ≤ k ≤ ∞, or the Hellinger distance h.

We see that even if the true distribution p0 is not in P0, the MLE still

converges, and it converges to p̂0, the best approximation to p0 in P0. Such

robustness properties are known to hold for other shape-constrained estimators

(based on maximum likelihood), and for other maximum likelihood estimators in

general. They are a very appealing aspect of the method and can be interpreted

to say that, even if p0 /∈ P0, then if p0 is “close” to P0, our proposed MLE will

exhibit desirable behaviour.

Supplementary Materials

All appendices appear in the Supplementary Material. R code (R Core

Team, 2017) to recreate the example from Figures 1 and 2 is also provided as

Supplementary Material. It is also available as a zipped folder at http://www.

math.yorku.ca/~hkj/Research/code_eLCD.zip.

References

Balabdaoui, F. and Jankowski, H. (2016). Maximum likelihood estimation of a unimodal prob-

http://www.math.yorku.ca/~hkj/Research/code_eLCD.zip
http://www.math.yorku.ca/~hkj/Research/code_eLCD.zip


ESTIMATING A LOG-CONCAVE DISTRIBUTION 2711

ability mass function. Statist. Sinica 26, 1061–1086.

Balabdaoui, F., Jankowski, H., Rufibach, K. and Pavlides, M. (2013). Asymptotics of the dis-

crete log-concave maximum likelihood estimator and related applications. J. R. Stat. Soc.

Ser. B. Stat. Methodol. 75, 769–790.

Balabdaoui, F., Rufibach, K. and Wellner, J. A. (2009). Limit distribution theory for maximum

likelihood estimation of a log-concave density. Ann. Statist. 37, 1299–1331.

Bapat, R. B. (1988). Discrete multivariate distributions and generalized log-concavity. Sankhyā
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