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Abstract: The sufficient cause model is extended from binary to categorical and

ordinal outcomes to formalize the concept of sufficient cause interaction and syner-

gism in this setting. This extension allows us to derive counterfactual and empirical

conditions for detecting the presence of sufficient cause interactions for ordinal and

categorical outcomes. Some of these conditions are entirely novel in that they

cannot be derived from the sufficient cause model for binary outcomes. These em-

pirical conditions enable researchers to determine whether two exposures display

synergism for an ordinal or a categorical outcome. Likelihood ratio tests that use

these derived empirical conditions are developed to infer sufficient cause interaction

for ordinal and categorical outcomes. Lastly, we apply these likelihood ratio tests

to detect sufficient cause interaction between two major resistance mutations in the

development of HIV drug resistance to Etravirine.
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1. Introduction

In this study, we extend the sufficient cause model, defined originally for

binary outcomes, to categorical and ordinal outcomes, and derive the associated

empirical and counterfactual conditions associated with sufficient cause interac-

tion. The sufficient cause framework represents causation as a collection of causal

mechanisms, called sufficient causes. A single sufficient cause is constituted of one

or more component causes, such that when all components of the sufficient cause

are present, they together inevitably bring about the outcome. The first crude

sufficient cause model appeared in (Cayley (1853)). Rothman popularized the

sufficient cause model in epidemiology, presenting a graphical schematic that of-

ten appears in introductory epidemiology texts (Rothman (1976)). The sufficient

cause model has evolved over the past decade to enable the detection of differ-

ent forms of interaction (VanderWeele and Robins (2008); Berzuini and Dawid

(2016); VanderWeele (2015); VanderWeele and Richardson (2012); Vanderweele

(2010); Ramsahai (2013)).
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Rothman (1976) presented a model for causation as a series of different causal

mechanisms, each of which is sufficient to bring about the outcome. In this model,

the causal mechanisms are called “sufficient causes,” defined as the minimal set of

actions, events, or states of being that jointly initiate a process that will eventually

result in the outcome. Many different “sufficient causes” can produce a particular

outcome. For instance, in the course of treating HIV-1, viral mutations can arise.

Some mutations might on their own make a particular treatment ineffective, while

others might require one or more additional mutations to operate.

Within a deterministic framework, for a binary outcome, suppose we con-

sider three known potential causes, X1, X2, and X3. Suppose hypothetically that

mutation X1 and unknown factors A1 make an individual drug resistant, denoted

by binary outcome R. In contrast, mutations X2 and X3 are jointly sufficient

if present with additional unknown factors A2. A last mechanism might be mu-

tations X1 and X2, with additional unknown factors A3. This provides us with

three sufficient causes, denoted by A1X1, A2X2X3, and A3X1X2, each of which

can make a person drug resistant.

In a deterministic sufficient cause model, whenever all component causes of

a particular sufficient cause are present, the outcome will definitely occur. Here,

each component cause is necessary for the sufficient cause to bring about the

outcome. Sufficient cause A2X2X3 has two component causes, X2 and X3. This

sufficient cause will not operate if either X2 or X3 is not present. When two

component causes are both needed to cause the outcome to occur, we call this

synergism. In general, it may be logically possible to represent the counter-

factual outcomes across causes by different representations of sufficient causes.

When every such possible sufficient cause representation has a particular con-

junction, say X2X3, then a “sufficient cause interaction” between X2 and X3 is

said to be present. In such cases, we then know that synergism must be present

between X2 and X3. Scientists seek to discover synergism from data. As a result,

statisticians have derived empirical conditions to enable the discovery of sufficient

cause interactions (VanderWeele and Robins (2008); Berzuini and Dawid (2016);

VanderWeele (2015); VanderWeele and Richardson (2012); Vanderweele (2010);

Ramsahai (2013)).

In this study, we extend the sufficient cause model to categorical and ordinal

outcomes, and develop the associated likelihood ratio tests. In a data applica-

tion of this theory, we examine which mutations mechanistically interact in the

development of HIV-1 drug resistance to Etravirine. For this applied problem,

the ordinal outcome has three levels: no drug resistance, partial drug resistance,

and full drug resistance.
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2. Sufficient Cause Interactions for A Specified Outcome

Suppose we have an outcome Y with associated levels Y ∈ {0, 1, 2}. We

denote binary variables X1, . . . , Xk that each take values in Xi ∈ {0, 1}. Jointly,

Xk = (X1, . . . , Xk) take values within Xk ∈ {0, 1}k. The individuals, denoted

by ω, compose a population, denoted as Ω. We write the potential outcome

Yx1,...,xk
(ω) of Y for individual ω, if for j = 1, . . . , k, each putative cause Xj ∈

{X1, . . . , Xk} were set xj ∈ {0, 1}. The data application considers k = 2. The

potential outcome or counterfactual value for individual ω, had X1 been set

to x1 and X2 been set to x2, is denoted as Yx1,x2
(ω). There are 34 potential

response types, Y x1x2
(ω) = (Y11(ω), Y10(ω), Y01(ω), Y00(ω)), that form all types

of individuals. We denote these as Yx1x2
(Ω), which is simply all permutations of

a vector of length four, sampling with replacement from the set {0, 1, 2}.
An indicator function, denoted as I(Y ∈ S), is used to denote a new random

variable constructed from Y, which takes the value one if Y ∈ S, and zero other-

wise. To construct these new binary outcomes, let A = {1}, B = {1, 2}, C = {2},
D = {0}, E = {0, 2}, and F = {0, 1}. Specifically, denote Y L = I(Y ∈ L),

where L ∈ {A,B,C,D,E, F}. Potential outcome versions of Y L are defined as

Y L
x1,...,xk

(ω) = I(Yx1,...,xk
(ω) ∈ L), where L ∈ {A,B,C,D,E, F}. The super-

script L in the symbol Y L does not indicate exponentiation, but rather specifies

the condition used to construct this new random variable from Y . Appendix 1

provides a full list of Y L and Y L
x1,...,xk

(ω) without set notation. We require the

consistency assumption, namely that YX1(ω),...,Xk(ω)(ω) = Y (ω). This asummp-

tion states that the value of Y that would have been observed if X1, . . . , Xk had

been set to what they in fact were is equal to the value of Y that was observed.

The consistency assumption for Y L is implied by the consistency assumption

on Y . The disjunctive operator on binary variables X1, . . . , Xk is denoted by

∨i∈{1,...k}Xi = X1 ∨ · · · ∨ Xk = max{X1, . . . , Xk}. For ease of notation, we

drop the commas between the intervened variables {X1, . . . , Xk} in a potential

outcome; for example, Yx1,x2
(ω) = Yx1x2

(ω).

The definitions and theorems in this section closely mimic those of Vander-

Weele and Robins (2008). While this paper is self-contained, Definitions 1–7

and Theorems 1–5 are logical extensions to the corresponding definitions and

theorems presented in VanderWeele and Robins (2008); thus, we keep the expo-

sition concise. Theorem 6 and Corollary 1 cannot be derived using the previous

framework on sufficient causes (VanderWeele and Robins (2008, 2012); Ramsahai

(2013)) based on binary outcomes.



2198 ZAIDI AND VANDERWEELE

Definition 1. (Sufficient cause for a specified outcome). We say that puta-

tive binary causes X1, . . . , Xn are called sufficient causes for Y L, where L ∈
{A,B,C,D,E, F}, if for all values of x1, . . . , xn ∈ Xn such that x1×· · ·×xn = 1,

we have that Y L
x1···xn

(ω) = 1, for all ω ∈ Ω′ ⊆ Ω, where Ω′ 6= ∅.

Definition 2. (Minimal sufficient cause for a specified outcome). We say that

putative binary causes X1, . . . , Xn form a minimal sufficient cause for Y L, where

L ∈ {A,B,C,D,E, F}, if X1, . . . , Xn are sufficient causes for Y L, and no proper

subset of {X1, . . . , Xn} is also a sufficient cause for Y L.

Definition 3. (Determinative sufficient causes for a specified outcome). A set of

sufficient causes ML
1 , . . . ,M

L
n , each composed of a product of binary causes for a

specified outcome Y L, where L ∈ {A,B,C,D,E, F}, is defined to be determina-

tive for Y L if for all ω ∈ Ω, Y L
x1···xs

(ω) = 1 if and only if ML
1 ∨ML

2 ∨· · ·∨ML
n = 1.

Definition 4. (Nonredundant sufficient causes for a specified outcome). A set of

determinative sufficient causesML
1 , . . . ,M

L
n for Y L, where L ∈ {A,B,C,D,E, F},

is called a nonredundant determinative set of minimal sufficient causes if there

is no proper subset of ML
1 , . . . ,M

L
n that is also a determinative set of minimal

sufficient causes for Y L.

VanderWeele and Robins (2008) note that minimality and nonredundancy

should be distinguished. Minimality concerns components of a given conjunction,

in that each component is necessary for the conjunction to be sufficient for the

outcome to occur. Nonredundancy concerns the disjunction of conjunctions, in

that each individual conjunction should be present in order for the disjunction

to be determinative.

Example 1. Viral mutations can occur while an individual takes treatment for

HIV. Suppose mutation X1 enables the virus to replicate in particular cells, and

mutation X2 enables the virus to penetrate the bodies of these cells. Assume for

now that these are the only two mutations that occur. A scientist may question

whether mutations X1 and X2 are both required for this individual in order for

the current treatment to become ineffective in treating HIV, which is known as

drug resistance. Alternatively, would mutation X1 on its own suffice for the

individual to develop drug resistance. Scientists also grade drug resistance on an

ordinal scale, partial and full. A scientist might believe that mutation X2 alone

is sufficient for partial drug resistance for a particular individual, but both X1

and X2 are necessary for full resistance to the same drug.

These definitions for sufficient cause for an ordinal or nominal outcome with

three levels generalize the analogous definitions for a binary outcome. The defi-
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nitions provided here are easily adaptable to the case where a researcher is inter-

ested in an ordinal outcome Y, where Y ∈ {0, 1, . . . , j}; see the Supplementary

Material. A brief exposition of this generalization is provided in Section 4. More

general notions of interdependence (Ramsahai (2013)) extended to categorical

and ordinal outcomes are also provided in the Supplementary Material. Denote

X̄i as the complement of Xi.

Theorem 1. For putative binary causes X1 and X2 of specified outcome Y L,

where L ∈ {A,B,C,D,E, F}, there exist binary variables

AL
0 (ω), AL

1 (ω), AL
2 (ω), AL

3 (ω), AL
4 (ω), AL

5 (ω), AL
6 (ω), AL

7 (ω), AL
8 (ω),

which are functions of the counterfactuals {Y L
11(ω), Y L

10(ω), Y L
01(ω), Y L

00(ω)}, such

that

Y L = AL
0 ∨AL

1X1 ∨AL
2 X̄1 ∨AL

3X2 ∨AL
4 X̄2 ∨AL

5X1X2 (2.1)

∨AL
6 X̄1X2 ∨AL

7X1X̄2 ∨AL
8 X̄1X̄2,

and such that

Y L
x1x2

= AL
0 ∨AL

1 x1 ∨AL
2 (1− x1) ∨AL

3 x2 ∨AL
4 (1− x2) ∨AL

5 x1x2

∨AL
6 (1− x1)x2 ∨AL

7 x1(1− x2) ∨AL
8 (1− x1)(1− x2).

The proof of Theorem 1 mimics that of the sufficient cause representation for

binary outcomes provided in (VanderWeele and Robins (2008)). For complete-

ness, we provide the proof in Supplementary Material. We call equation (2.1) a

sufficient cause representation of Y L.

We generalize our definitions and Theorem 1 to the situation where the an-

alyst is concerned about defining and analyzing the minimum sufficient cause

interaction on an ordinal variable with multiple levels, that is, more than three.

This generalization is provided in the Supplementary Material. This theorem

extends the results provided in VanderWeele and Robins (2008). Theorem 1 also

provides a method for constructing variables AL
i as a function of the potential

outcomes that, together with disjunctions built on the set {X1, X2, X̄1, X̄2}, make

a determinative set of sufficient causes for Y L, where L ∈ {A,B,C,D,E}. Each

of the conjunctions AL
0 , A

L
1X1, . . . , A

L
8 X̄1X̄2 are sufficient to cause Y L, where

L ∈ {A,B,C,D,E, F}. The disjunction of all of these conjunctions makes a

determinative set of sufficient causes for Y L, where L ∈ {A,B,C,D,E, F}. Sim-

ilarly to the binary outcome context, AL
i variables could be considered as un-

known factors that, together with the associated conjunction of ∅, X1, X2, X̄1,
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X̄2, X1X̄2, X̄1X2, and X̄1X̄2, complete the sufficient cause for specified outcome

Y L, where L ∈ {A,B,C,D,E, F}.
Now that we have defined sufficient cause for a specified outcome, we define

sufficient cause interactions for a specified outcome. Based upon these definitions,

counterfactual and empirical conditions are derived to detect the presence of

sufficient cause interactions for a specified outcome.

Example 2. Consider the drug resistance example presented earlier. Suppose we

have two types of individuals in our population. Individual 1 develops full drug

resistance if she has either of the two mutations, while individual two develops full

drug resistance only if she has both mutations. The construction of the variables

Ai from Theorem 1 yields

Y C(ω) = AC
1 (ω)X1(ω) ∨AC

2 (ω)X2(ω) ∨AC
8 (ω)X1(ω)X2(ω),

where Y C denotes full drug resistance. Suppose these same two individuals would

develop partial drug resistance if they have either of the two mutations. Then,

applying of Theorem 1 yields

Y A(ω) = X1(ω) ∨X2(ω),

where Y A(ω) denotes partial drug resistance.

Definition 5. (Minimal sufficient cause interaction for a specified outcome).

Suppose F1 ∈ {X1, X̄1} and F2 ∈ {X2, X̄2}. If in every nonredundant minimal

sufficient cause representation for a specified outcome Y L, where L ∈ {A,B,C,D,
E, F}, we are able to find a sufficient cause that contains F1F2, then we say that

the conjunction F1F2 exhibits or displays minimal sufficient cause interaction for

outcome Y L.

Definition 6. (Irreducible sufficient cause interactions for a specified outcome).

Suppose F1 ∈ {X1, X̄1} and F2 ∈ {X2, X̄2}. If in every sufficient cause represen-

tation for Y L, where L ∈ {A,B,C,D,E, F}, we are able to find a sufficient cause

that contains F1F2, then F1F2 is said to be irreducible for Y L.

These two definitions are shown to be equivalent in our case: that is, an

irreducible sufficient cause interaction for a specified outcome Y L is a minimal

sufficient cause interaction for the same outcome, and vice versa. The theorem

and proof demonstrating that the definitions are equivalent replicates the argu-

ments of VanderWeele and Robins (2008), and as such are omitted. Here, we say

that the effects of F1 ∈ {X1, X̄1} and F2 ∈ {X2, X̄2} on a specified outcome Y L,
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where L ∈ {A,B,C,D,E, F}, are synergistic, or represent synergism, if there is

a sufficient cause for Y L, such that F1F2 is contained within its conjunction. The

rest of the proofs of the theorems and corollaries are collected in the Supplement

Material.

Theorem 2. Suppose L ∈ {A,B,C,D,E, F}. There exists an individual ω ∈ Ω

for whom Y L
11(ω) = 1 and Y L

10(ω) = Y L
01(ω) = 0, if and only if the conjunction

X1X2 exhibits a sufficient cause interaction for a specified outcome Y L.

We now consider empirical conditions for detecting sufficient cause interac-

tions. The symbol q is used to denote independence. For example, Y q X1

denotes that Y is marginally independent of X1, and Y qX1 | X2 denotes that

Y is conditionally independent of X1, given X2.

Theorem 3. Suppose V is a set of variables that are sufficient to control for

the confounding of X1 and X2 on Y L, where L ∈ {A,B,C,D,E, F}, that is,

Y L
x1x2
q {X1, X2} | V. We conclude that X1X2 exhibit sufficient cause interaction

for a specified outcome Y L if for some value v of V, the following inequality holds:

0 < E(Y L | X1 = 1, X2 = 1, V = v) (2.2)

−E(Y L | X1 = 1, X2 = 0, V = v)

−E(Y L | X1 = 0, X2 = 1, V = v).

Henceforth, we use the shorthand notation pLx1x2
to denote P (Y ∈ L | X1 =

x1, X2 = x2) and pLx1x2v to denote P (Y ∈ L | X1 = x1, X2 = x2, V = v). Replac-

ing X1 or X2 by either or both of their complements yields similar results for

antagonism. The results in Theorem 3 generalize those for identifying synergism

for a binary outcome, as established in VanderWeele and Richardson (2012), to

categorical or ordinal outcomes under a specified condition. Theorems 2 and 3

have generalizations for categorical or ordinal outcomes with an arbitrary number

of levels; see Section 5. Our approach allows the researcher to detect a sufficient

cause interaction between two variables for an ordinal outcome under specified

conditions at different levels, or for an amalgam of different levels of the categor-

ical or ordinal outcome. We provide an example to illustrate Theorem 3.

Example 3. Consider Y C = I(Y = 2). Now, consider the left-hand side of the

inequality (2.2),

E(Y C | X1 = 1, X2 = 1, V = v)− E(Y C | X1 = 1, X2 = 0, V = v)

− E(Y C | X1 = 0, X2 = 1, V = v)
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= E(I(Y = 2) | X1 = 1, X2 = 1, V = v)− E(I(Y = 2) | X1 = 1, X2 = 0, V = v)

− E(I(Y = 2) | X1 = 0, X2 = 1, V = v)

= P (Y = 2 | X1 = 1, X2 = 1, V = v)− P (Y = 2 | X1 = 1, X2 = 0, V = v)

− P (Y = 2 | X1 = 0, X2 = 1, V = v)

= pC11v − pC10v − pC01v.

Therefore, if pC11v − pC10v − pC01v > 0, we can say that X1X2 exhibits sufficient

cause interaction for the outcome I(Y = 2), or equivalently, that X1X2 exhibits

sufficient cause interaction for the ordinal outcome Y at level 2.

Following the same steps as in Example 1, we can show that if pC11v + pA11 −
pC10v − pA10v − pC01v − pA01v > 0, X1X2 exhibits sufficient cause interaction for the

outcome I(Y ≥ 1), or equivalently, that X1X2 exhibits sufficient cause interaction

for the ordinal outcome Y at the level 1 or 2. Similarly, if pD11v + pC11 − pD10v −
pC10v − pD01v − pC01v > 0, X1X2 exhibits sufficient cause interaction for the outcome

I(Y ∈ {0, 2}).
VanderWeele and Robins (2008) demonstrate that if it can be assumed that

variables have positive monotonic effects on a binary outcome (that is, the vari-

ables never prevent the outcome), then one can use less stringent tests to detect

sufficient cause interaction than if one were unable to make this assumption. We

now examine the analogous results in the case of an ordinal outcome with three

levels. If Y were categorical, the same definitions and results, namely Definitions

1–6 and Theorems 1–3, hold. Results that require monotonicity work only with

ordinal outcomes, because the next definition requires the outcome to be ordinal.

Therefore, Theorems 4–6 and Corollary 1 are only valid for ordinal outcomes,

and cannot be applied to categorical outcomes.

Definition 7. (Monotonic effect for an ordinal outcome with three levels). For

any two binary variables X1 and X2, if for all ω ∈ Ω, Yx1x2
(ω) is nondecreasing

in x1 for any given x2 ∈ X, then we say that X1 has a positive monotonic effect

on Y. Similarly, if for all ω ∈ Ω, Yx1x2
(ω) is nondecreasing in x2 for any given

x1 ∈ X, then we say that X2 has a positive monotonic effect on Y.

Theorem 4. Suppose X1 and X2 both have positive monotonic effects on ordinal

variable Y, and that Y B
x1x2
q {X1, X2} | V. If, for some value v ∈ V, we have

pB11v − pB10v − pB01v + pB00v > 0,

then X1 and X2 display synergism for outcome Y B = I(Y ≥ 1).
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Theorem 5. Suppose X1 and X2 both have positive monotonic effects on ordinal

variable Y, and that Y C
x1x2
q {X1, X2} | V. If, for some value v ∈ V, we have

pC11v − pC10v − pC01v + pC00v > 0,

then X1 and X2 display synergism for outcome Y C = I(Y = 2).

These results are the same as those that would have been established had

we dichotomized the outcome at the outset and applied the empirical conditions

established from VanderWeele and Robins (2008). The next theorem provides a

result that cannot be derived from existing literature on sufficient cause interac-

tion or mechanistic interaction (VanderWeele and Robins (2008); Berzuini and

Dawid (2016); Ramsahai (2013); VanderWeele and Richardson (2012)). This is a

novel result that enables researchers to discover a sufficient cause interaction for

a specified outcome Y A = I(Y = 1). The proofs of these results are collected in

the Supplementary Material.

Theorem 6. Suppose X1 and X2 both have positive monotonic effects on ordinal

variable Y, and that Y A
x1x2
q {X1, X2} | V. If, for some value v ∈ V, we have at

least one of the following inequalities:

pA11v − pA10v − pA01v + pA00v + pC00v − pC01v > 0, (2.3)

pA11v − pA10v − pA01v + pA00v + pC00v − pC10v > 0, (2.4)

pA11v − pA10v − pA01v > 0, (2.5)

then X1 and X2 display synergism for outcome Y A = I(Y = 1).

Corollary 1. Suppose X1 and X2 both have positive monotonic effects on ordinal

variable Y, and that Y A
x1x2
q {X1, X2} | V. If, for some value v ∈ V, we have at

least one of the following inequalities:

2 · pA11v − pA10v − pA01v + pA00v > 1, (2.6)

pA11v − pD11v − pC11v − pA10v − pA01v + pA00v > 0 (2.7)

2pA11v − pA10v − pA01v − pD00v − pC00v > 0 (2.8)

pA11v − pA10v − pA01v > 0, (2.9)

then X1 and X2 display synergism for outcome Y A = I(Y = 1).

We demonstrate in the Supplementary Material that if 2 ·pA11v−pA10v−pA01v +

pA00v > 1, then pA11v − pA10v − pA01v + pA00v + pC00v − pC01v > 0 and pA11v − pA10v −
pA01v + pA00v + pC00v − pC01v > 0. The converse is not true. This implies that the
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empirical conditions (2.3) and (2.4) are weaker than the empirical condition (2.6).

Conditions (2.6)–(2.8) are shown to be equivalent to one another in the Supple-

mentary Material. The only circumstance in which we would use condition (2.6)

instead of conditions (2.3) and (2.4) is when we do not have data on the outcome

I(Y = 2). Note that Theorems 4–6 are derived in the Supplementary Material

using arguments made from the sufficient cause framework and monotonicity. We

derived the same inequality constraints using a different approach that modifies

the theory provided in Ramsahai (2013) using convex polytopes from binary out-

comes to categorical and ordinal outcomes. The results show that the empirical

conditions presented here are the only inequalities observed. A more detailed

explanation of how the Ramsahai approach is adapted to the ordinal outcome

setting is provided in the Supplementary Material.

2.1. Inference for sufficient cause interaction for ordinal outcomes

Previous authors have used likelihood ratio tests to conduct hypothesis tests

on moment conditions that stem from problems in causal inference (Ramsahai

(2013); Ramsahai and Lauritzen (2011)), including the sufficient cause interac-

tion for binary outcomes (Ramsahai (2013)). The saturated Bernoulli model

has been proposed to detect sufficient cause interactions for binary outcomes in

the presence of covariates (VanderWeele and Richardson (2012); VanderWeele

and Robins (2008); Vansteelandt, VanderWeele and Robins (2012)). Researchers

have also used Bonferonni corrections to test multiple moment conditions in the

causal inference literature (Wang, Robins and Richardson (2017)). The approach

taken here uses likelihood ratio tests (Ramsahai and Lauritzen (2011); Ramsa-

hai (2013)). In the setting of a composite null, the likelihood ratio test statistics’

asymptotic distribution is obtained assuming the true parameter is on the bound-

ary of the null hypothesis (Van der Vaart (2000); Ramsahai (2013); Ramsahai and

Lauritzen (2011); Drton (2009)). For the tests considered in the data analysis,

the likelihood ratio test follows a weighted mixture of χ2-distributions (Ramsahai

(2013)). A description of the asymptotics of likelihood ratio tests under multi-

ple inequality constraints is available in Silvapulle and Sen (2011). Likelihood

ratio tests that use Theorems 3–5 are closely related to those under inequal-

ity constraints for sufficient cause interaction (Ramsahai (2013)). Theorems 3–6

provide the alternative space to each of the specified forms of sufficient cause

interaction. As usual, the complement of the alternative space is the null space.

Theorems 3–5 only involve a statistical test with a single inequality con-

straint. For example, the hypothesis test H0 : pA11 − pA10 − pA01 ≤ 0 versus

H1 : pA11 − pA10 − pA01 > 0 is a test to establish whether X1 and X2 display syn-
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ergism for outcome Y A = I(Y = 1). For such hypothesis tests that involve a

single inequality constraint, the null space is a half-space (Ramsahai and Lau-

ritzen (2011); Ramsahai (2013); Self and Liang (1987)). Throughout, we let t

denote the observed value of the likelihood ratio statistic. For these tests with a

single inequality constraint, following Self and Liang, the p-value of the likelihood

ratio test is P (χ2
1 > t)/2 for positive t, and one otherwise (Self and Liang (1987);

Ramsahai (2013)). On the other hand, for Theorem 6, the null space is defined by

the intersection of three half-spaces, each of which is defined using an inequality

constraint. To use Theorem 6, the associated null space is the intersection of the

following three inequalities:

pA11v − pA10v − pA01v + pA00v + pC00v − pC01v ≤ 0,

pA11v − pA10v − pA01v + pA00v + pC00v − pC10v ≤ 0,

pA11v − pA10v − pA01v ≤ 0.

A similar situation arises in the falsification of the binary instrumental variable

model (Ramsahai and Lauritzen (2011)). The correct p-value depends on where

the true parameter lies on the boundary of the null space (Ramsahai and Lau-

ritzen (2011)). If the true parameter lies on the boundary of only one of the

inequality constraints, then the correct p-value is P (χ2
1 > t)/2 (Ramsahai and

Lauritzen (2011)). The correct asymptotic sampling distribution is clear if the

true parameter lies on the boundary of multiple inequality constraints in the

context of the falsification of binary instrumental variable model (Ramsahai and

Lauritzen (2011)). However, the statistician will not always be able to easily

derive the associated asymptotic sampling distribution when there is more than

one inequality constraint that defines the null space. This is particularly true

when there is a large number of inequality constraints.

For our data analysis, the only instance in which we examine a null space

defined through multiple inequality constraints stems from Theorem 6. For these

types of hypothesis test, the asymptotic sampling distribution changes, depending

on where we assume the true parameter lies on the null space. To construct a

p-value based on Theorem 6, we use Theorem 3 of Self and Liang (1987), finding

that the asymptotic sampling distribution is w0,3χ
2
0+w1,3χ

2
1+w2,3χ

2
2+w3,3χ

2
3 if the

true parameter lies on the boundary of all three half-spaces. The weights can be

calculated using equations (4.8) and (4.9) in Shapiro (1985). If the true parameter

lies the boundary of on two of the three half-spaces, then the asymptotic sampling

distribution is given by w0,2χ
2
0+w1,2χ

2
1+w2,2χ

2
2. Finally, if the true parameter lies

on the boundary of only one of the three half-spaces, then we can use the earlier
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Table 1. Drug Resistance to Etravirine by mutation category

X1 = 0, X2 = 0 X1 = 0, X2 = 1 X1 = 1, X2 = 0 X1 = 1, X2 = 1

n0,0 P F n0,1 P F n1,0 P F n1,1 P F

445 74 57 17 2 1 10 2 1 12 7 4

Here, nx1,x2
=

∑n
i=1 I(X1i = x1, X2i = x2). P denotes individuals with partial drug

resistance, and F denotes full drug resistance.

p-value of P (χ2
1 > t)/2. To get one p-value, one can use the least favorable

configuration p-value = supp∈p0
P (T > t), where T is the likelihood-ratio test

statistic defined in the Supplementary Material, t is the observed test statistic,

p is the parameter space defined in the Supplementary Material, and p0 is the

null parameter space defined by the relevant inequality constraints. The statistics

and econometrics literature for calculating the asymptotic sampling distribution

of test statistics in the analysis of moment structures under inequality constraints

is vast (Drton (2009); Geyer (1994); Shapiro (1985); Wolak (1991); Dardanoni and

Forcina (1998); Silvapulle and Sen (2011)). When analytic formulae to calculate

the weights of the χ2 distributions are not available, Monte Carlo methods can

be used to determine the weights to a prespecified degree of precision (Dardanoni

and Forcina (1998); Silvapulle and Sen (2011)). The likelihood and likelihood

ratio test statistic are provided in the Supplementary Material.

3. Application to HIV Drug Resistance

HIV drug resistance arises when viral mutations make particular drugs less

effective in controlling HIV (Tang and Shafer (2012)). For our data analysis,

we consider data from the Stanford HIV drug resistance database on 484 viral

isolates, summarized in Table 1, which presents information on viral resistance to

the NRTI Etravirine (Tang and Shafer (2012)). The two viral mutations under

consideration are X1, denoting the presence of mutation 103 R, and X2, denoting

the presence of mutation 179 D. The scientific question under consideration is

whether mutations 103 R and 179 D interact synergystically to confer drug resis-

tance to Etravirine. Our outcome Y is an ordinal outcome with three levels: no

drug resistance, partial drug resistance, and full drug resistance. Here, no drug

resistance is labeled zero, partial drug resistance is labeled one, and full drug

resistance is labeled two. We assume there is no confounding between Y and

X1, X2. This means that Yx1x2
q (X1, X2). A laboratory experiment provides a

contingency table, summarized in Table 1, on HIV drug resistance by mutation

category (Tang and Shafer (2012)).
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Table 2. Likelihood ratio test of drug resistance

Outcome Null Hypothesis LRT p-value

I(Y = 1) pA11 − pA10 − pA01 ≤ 0 1.477 0.112

I(Y ≥ 1) pB11 − pB10 − pB01 ≤ 0 4.218 0.020

I(Y = 2) pC11 − pC10 − pC01 ≤ 0 0.925 0.168

Table 3. Likelihood ratio test of drug resistance under monotonicity

Outcome Null Hypothesis LRT p-value

I(Y = 1)

pA11 − pA10 − pA01 ≤ 0

pA11 − pA10 − pA01 + pA00 + pC00 − pC01 ≤ 0

pA11 − pA10 − pA01 + pA00 + pC00 − pC10 ≤ 0

4.704 0.057?

I(Y ≥ 1) pB11 − pB10 − pB01 + pB00 ≤ 0 10.624 < 0.005

I(Y = 2) pC11 − pC10 − pC01 + pC00 ≤ 0 2.585 0.054

The p-value annotated with a ? is obtained under the least favorable configuration.

Table 2 provides the likelihood ratio test statistics and associated p-values for

assessing the sufficient cause interaction for each of the specified outcome levels

I(Y = 1), I(Y ≥ 1), and I(Y = 2). Table 3 provides the same information, but

assumes that the effects of X1 and X2 are positive monotonic for Y . If one is

unwilling to make any monotonicity assumptions, there is no statistical evidence

that X1 and X2 have a synergistic effect on Y C = I(Y = 2) or Y A = I(Y = 1),

but there is some evidence for a synergistic effect on Y B = I(Y ≥ 1). If one is

willing to assume that X1 and X2 have positive monotonic effects on the outcome,

the evidence for a synergistic effect of X1 and X2 on specified outcomes I(Y = 1)

and I(Y = 2) is stronger, although the p-values are slightly above the nominal

0.05 rejection threshold. In this situation, we have evidence that X1 and X2 have

a synergistic effect on I(Y ≥ 1), and thus that X1 and X2 have a synergistic

effect on either or both of the outcomes I(Y = 1) and I(Y = 2), because for

pB11 − pB10 − pB01 > 0, either or both of these inequalities pC11 − pC10 − pC01 > 0 or

pA11 − pA10 − pA01 > 0 needs to hold. However, given the current sample size, we

are unable to detect whether that synergistic effect occurs either for I(Y = 1) or

I(Y = 2).

Discussions on whether the proposed exposures have monotonic effects on

the outcome should occur with the scientific investigators. Such assumptions

could have scientific justification, and would enable researchers to use less strin-

gent conditions to draw the same inferences. Primary mutations, such as the

two investigated here, “directly decrease the susceptibility of the virus to an an-
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tiretroviral treatment”(Tang and Shafer (2012)). To the best of our knowledge, it

is not known whether mutations 103 R and 179 D are never preventative for par-

tial or full drug resistance for every individual taking Etravirine as part of their

treatment for HIV. Monotonicity assumptions can be falsified from the data, but

they are never completely verifiable.

4. Generalizations and Extensions

In this section, we allow our ordinal outcome Y to take values Y ∈ {0, 1, . . . , j}.
If we want to investigate whether putative binary causes X1 and X2 have syner-

gistic effects on an outcome Y y = I(Y ≥ y), where 0 < y ≤ j, then assuming no

confounding between putative causes X1 and X2 on Y y, we need to check that

P (Y ≥ y | X1 = 1, X2 = 1) − P (Y ≥ y | X1 = 1, X2 = 0) − P (Y ≥ y | X1 =

0, X2 = 1) > 0. The proof of this result is similar to the proof of Theorem 3, and

is provided in the Supplementary Material.

Theorem 7. If we can assume that X1 and X2 have positive monotonic effects

on Y, then P (Y ≥ y | X1 = 1, X2 = 1) − P (Y ≥ y | X1 = 1, X2 = 0) − P (Y ≥
y | X1 = 0, X2 = 1) + P (Y ≥ y | X1 = 0, X2 = 0) > 0 implies X1 and X2 display

synergism for I(Y ≥ 1).

Let S ⊆ {1, 2, . . . , n − 1}, Y S = I(Y ∈ S), S+ = max(S), and Y S+

=

I(Y > S+). If we wish to check whether X1 and X2 have synergistic effects on

Y S = I(Y ∈ S), where S is an arithmetic progression with common difference

one, and X1 and X2 both have positive monotonic effects on Y, then we need to

check whether at least one of the following three inequalities hold:

P (Y ∈ S | X1 = 1, X2 = 1)

−P (Y ∈ S | X1 = 1, X2 = 0)− P (Y ∈ S | X1 = 0, X2 = 1) > 0,

P (Y ∈ S | X1 = 1, X2 = 1)− P (Y ∈ S | X1 = 1, X2 = 0)

−P (Y ∈ S | X1 = 0, X2 = 1) + P (Y ∈ S | X1 = 0, X2 = 0)

+P (Y > S+ | X1 = 0, X2 = 0)− P (Y > S+ | X1 = 1, X2 = 0) > 0,

P (Y ∈ S | X1 = 1, X2 = 1)− P (Y ∈ S | X1 = 1, X2 = 0)

−P (Y ∈ S | X1 = 0, X2 = 1) + P (Y ∈ S | X1 = 0, X2 = 0)

+P (Y > S+ | X1 = 0, X2 = 0)− P (Y > S+ | X1 = 0, X2 = 1) > 0.

Here, the second and third inequalities are implied by P (Y ∈ S | X1 =

1, X2 = 1) − P (Y /∈ S | X1 = 1, X2 = 1) − P (Y ∈ S | X1 = 1, X2 = 0) − P (Y ∈
S | X1 = 0, X2 = 1) + P (Y ∈ S | X1 = 0, X2 = 0) > 0. This last inequality
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can be shown to be equivalent to 2 · P (Y ∈ S | X1 = 1, X2 = 1) − P (Y ∈
S | X1 = 1, X2 = 0) − P (Y ∈ S | X1 = 0, X2 = 1) + P (Y ∈ S | X1 =

0, X2 = 0) > 1. If X1 or X2 do not have positive monotonic effects on Y, or

S is not an arithmetic progression with common difference one, then only the

first of the three inequalities remains valid for determining whether X1 and X2

have synergistic effects on Y S = I(Y ∈ S). The full set of definitions, theorems,

and proofs associated with this generalization are provided in the Supplementary

Material.

For this section, we allow (Y11, Y10, Y01, Y00) to have a distribution function

P (Y11 ∈ y11, Y10 ∈ y10, Y01 ∈ y01, Y00 ∈ y00), where y11, y10, y01, y00 are all subsets

of R. The proofs of next two results are provided in the Supplementary Material.

Definition 8. (Generalized Positive Monotonicity). We say that X1 has a pos-

itive monotonic effect on Y ∈ yc, for any fixed yc ⊂ R, if there is no individual

ω ∈ Ω such that Yx1x2
(ω) /∈ yc and Yx3x2

(ω) ∈ yc, for all x1 > x3 and any fixed

x2. Similarly, we say that X2 has a positive monotonic effect on Y ∈ yc, for some

yc ⊂ R, if there is no individual ω ∈ Ω such that Yx1x2
(ω) /∈ yc and Yx1x3

(ω) ∈ yc,
for all x2 > x3 and any fixed x1. If X1 and X2 each individually have a positive

monotonic effect on Y ∈ yc, for any fixed yc ⊂ R, then we say that X1 and X2

have positive monotonic effects on Y ∈ yc.

Theorem 8. Suppose Yx1x2
qX1X2. Here, ya is any subset of R. The contrast

P (Y ∈ ya | X1 = 1, X2 = 1)− P (Y ∈ ya | X1 = 1, X2 = 0)

−P (Y ∈ ya | X1 = 0, X2 = 1)

is equal to

P (Y11 ∈ ya, Y10 /∈ ya, Y01 /∈ ya)− P (Y11 /∈ ya, Y10 ∈ ya, Y01 /∈ ya)

−P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya)− P (Y11 /∈ ya, Y10 /∈ ya, Y01 ∈ ya) .

Theorem 9. Suppose Yx1x2
qX1X2, and that X1 and X2 have positive monotonic

effects on Y ∈ yc. For any yc that is a subset of R, the contrast

P (Y ∈ yc | X1 = 1, X2 = 1)− P (Y ∈ yc | X1 = 1, X2 = 0)

−P (Y ∈ yc | X1 = 0, X2 = 1) + P (Y ∈ yc | X1 = 0, X2 = 0)

is equal to P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 /∈ yc) .
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5. Discussion

Our extension of the sufficient cause model to ordinal and categorical out-

comes enables researchers to investigate more complex scientific questions. In

addition, we derive novel empirical conditions that in some situations are more

powerful in testing the sufficient cause interaction for ordinal outcomes than

applying previously formulated empirical conditions for a binary outcome to a

dichotomized ordinal outcome. The interpretations of sufficient cause interac-

tion are far stronger than those of tests for statistical interaction. We applied

these novel tests to detect whether the viral mutations 103R and 179D interact

synergystically to confer partial, full, or any drug resistance to Etravirine.

Supplementary Material

The online Supplementary Material provides definitions and proofs of the

theorems and corollaries presented here.
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Appendix

A. Notation

We denote Y A = I(Y ∈ {1}), Y B = I(Y ∈ {1, 2}), Y C = I(Y ∈ {2}),
Y D = I(Y ∈ {0}), Y E = I(Y ∈ {0, 2}), Y F = I(Y ∈ {0, 2}). Potential out-

come versions of Y A, Y B, Y C , Y D, Y E , and Y F are defined as Y A
x1,...,xk

(ω) =

I(Yx1,...,xk
(ω) ∈ {1}), Y B

x1,...,xk
= I(Yx1,...,xk

(ω) ∈ {1, 2}), Y C
x1,...,xk

= I(Yx1,...,xs
(ω)

∈ {2}), Y D
x1,...,xs

= I(Yx1,...,xk
(ω) ∈ {0}), Y E

x1,...,xs
= I(Yx1,...,xk

(ω) ∈ {0, 2}), and

Y F
x1,...,xs

= I(Yx1,...,xk
(ω) ∈ {0, 1}).

References

Berzuini, C. and Dawid, A. P. (2016). Stochastic mechanistic interaction. Biometrika 103, 89–

102.

Cayley, A. (1853). XXXVII. Note on a question in the theory of probabilities. The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science 6, 259–259.

Dardanoni, V. and Forcina, A. (1998). A unified approach to likelihood inference on stochas-



SUFFICIENT CAUSE INTERACTIONS 2211

tic orderings in a nonparametric context. Journal of the American Statistical Associa-

tion 93, 1112–1123.

Drton, M. (2009). Likelihood ratio tests and singularities. The Annals of Statistics 37, 979–1012.

Geyer, C. J. (1994). On the asymptotics of constrained m-estimation. The Annals of Statis-

tics 22, 1993–2010.

Ramsahai, R. and Lauritzen, S. (2011). Likelihood analysis of the binary instrumental variable

model. Biometrika 98, 987–994.

Ramsahai, R. R. (2013). Probabilistic causality and detecting collections of interdependence pat-

terns. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 75, 705–

723.

Rothman, K. J. (1976). Causes. American Journal of Epidemiology 104, 587–592.

Self, S. G. and Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estimators

and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical

Association 82, 605–610.

Shapiro, A. (1985). Asymptotic distribution of test statistics in the analysis of moment structures

under inequality constraints. Biometrika 72, 133–144.

Silvapulle, M. J. and Sen, P. K. (2011). Constrained Statistical Inference: Order, Inequality, and

Shape Constraints. John Wiley & Sons.

Tang, M. W. and Shafer, R. W. (2012). HIV-1 antiretroviral resistance. Drugs 72, e1–e25.

Van der Vaart, A. W. (2000). Asymptotic Statistics. Cambridge University Press.

Vanderweele, T. J. (2010). Sufficient cause interactions for categorical and ordinal exposures

with three levels. Biometrika 97, 647–659.

VanderWeele, T. J. (2015). Explanation in Causal Inference: Methods for Mediation and Inter-

action. Oxford University Press.

VanderWeele, T. J. and Richardson, T. S. (2012). General theory for interactions in sufficient

cause models with dichotomous exposures. Annals of statistics 40, 2128–2161.

VanderWeele, T. J. and Robins, J. M. (2008). Empirical and counterfactual conditions for suf-

ficient cause interactions. Biometrika 95, 49–61.

VanderWeele, T. J. and Robins, J. M. (2012). Stochastic counterfactuals and stochastic sufficient

causes. Statistica Sinica 22, 379–392.

Vansteelandt, S., VanderWeele, T. J. and Robins, J. M. (2012). Semiparametric tests for suf-

ficient cause interaction. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 74, 223–244.

Wang, L., Robins, J. M. and Richardson, T. S. (2017). On falsification of the binary instrumental

variable model. Biometrika 104, 229–236.

Wolak, F. A. (1991). The local nature of hypothesis tests involving inequality constraints in

nonlinear models. Econometrica: Journal of the Econometric Society 59, 981–995.

Jaffer M. Zaidi

Department of Biostatistics, Harvard University, 677 Huntington Avenue, Kresge Building,

Boston, MA 02115, USA.

E-mail: jaffer.zaidi@gmail.com

mailto:jaffer.zaidi@gmail.com


2212 ZAIDI AND VANDERWEELE

Tyler J. VanderWeele

Department of Epidemiology, Department of Biostatistics, Harvard University, 677 Huntington

Avenue, Kresge Building, Boston, MA 02115, USA.

E-mail: tvanderw@hsph.harvard.edu

(Received June 2019; accepted June 2020)

mailto:tvanderw@hsph.harvard.edu

	Introduction
	Sufficient Cause Interactions for A Specified Outcome
	Inference for sufficient cause interaction for ordinal outcomes

	Application to HIV Drug Resistance
	Generalizations and Extensions
	Discussion
	Notation

