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Abstract: Nonresponse is an important practical problem in epidemiological sur-

veys and clinical trials. Common methods for dealing with missing data rely on

untestable assumptions. In particular, non-ignorable modeling, which derives infer-

ence from the likelihood function based on a joint distribution of the variables and

the missingness indicators, can be sensitive to misspecification of this distribution

and may also have problems with identifying the parameters. Nonresponse two-

phase sampling (NTS), which re-contacts and collects data from a subsample of the

initial nonrespondents, has been used to reduce nonresponse bias. The additional

data collected in phase II provide important information for identifying the param-

eters in the non-ignorable models. We propose a Bayesian selection model which

utilizes the additional data from phase II and develop an efficient Markov chain

Monte Carlo algorithm for the posterior computation. We illustrate the proposed

model on simulation studies and a Quality of Life (QOL) dataset.

Key words and phrases: Bayesian selection model, Markov chain Monte Carlo,

missing not at random, quality of life, two-phase sampling.

1. Introduction

Nonresponse at an appreciate rate exists in such applications as epidemio-

logical surveys and clinical trials. Commonly used approaches to handling miss-

ing data include complete-case (CC) analysis, ignorable likelihood (IL) methods

and nonignorable models (NIM). CC, which discards the incomplete cases, can

result in substantial loss of information or biased estimation of the key param-

eters. IL methods are based on the observed likelihood which does not include

a model for the missing data indicator, and these models provide valid inference

if the missingness does not depend on the missing values. Such missing data

mechanism is called missing at random (MAR) (Rubin (1976); Little and Rubin

(2002)). Examples of IL methods include ignorable maximum likelihood (IML)

(e.g., Dempster, Laird and Rubin (1977)), Bayesian inferences (e.g., Sugden and

Smith (1984)), and multiple imputation (e.g., Rubin (2004)). When the data
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Table 1. Four patterns in two-phase sampling.

Pattern Observation, i yi R1,i S2|1,i R2|1,i R2,i

1 i = 1, . . . ,m
√

1 - - 1
2 i = m+ 1, . . . ,m+ r × 0 1 1 1
3 i = m+ r + 1, . . . ,m+ s ? 0 1 0 0
4 i = m+ s+ 1, . . . , n ? 0 0 0 0

Key:
√

denotes observed; ? denotes at least one entry missing; × denotes at least
one entry missing in phase I, but observed in phase II.

are missing not at random (MNAR), the missingness can depend on the missing

values, non-ignorable models (NIM) are developed based on the joint distribution

of the variables and the missing data indicators. The nonignorable models are

less common in practice, because of the difficulty in specifying the models for

the missing data mechanism, sensitivity to model misspecification, and problems

with identifying the parameters (e.g., Little and Rubin (2002); Heckman (1979);

Little (1993, 1994); Nandram and Choi (2002, 2010)).

All three methods (CC, IL, and NIM) rely on untestable assumptions about

the missing data mechanism. Sensitivity analyses have been proposed to system-

atically examine the effect of perturbations to model assumptions (e.g., Little

(1993, 1994); Troxel, Ma and Heitjan (2004); Zhu, Ibrahim and Tang (2014)).

Another alternative is to use a study design to relax to some degree the assump-

tions required under IL and NIM. One such design is two-phase sampling, in

which a subsample of non-respondents to the original survey (phase I) is ran-

domly selected for further interview attempts (phase II). This method is called

nonresponse two-phase sampling (NTS). The general missing data structure for

NTS is listed in Table 1.

Let {yi, i = 1, 2, . . . , n} denote n independent observations on an outcome

variable Y, where Y has missing values; if missing, yi denotes the underlying

missing value of the outcome for the i-th subject. The response indicator for

phase I is denoted as R1,i, which equals 1 if yi is observed and 0 otherwise. S2|1,i is

used to denote whether a subject is sampled among the nonrespondents in phase

I. Let R2|1,i denote the phase II response indicator among the nonrespondents

in phase I, and R2,i be the overall response indicator after completion of phase

II. There are four patterns in Table 1. Pattern 1 consists of subjects for whom

yi is fully observed after first phase data collection. Pattern 2 consists of cases

that were missing in phase I, but subsequently observed in phase II sampling.

Pattern 3 consists of cases that were sampled in phase II, but did not respond,

and Pattern 4 were those phase I nonrespondents not sampled in phase II.
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NTS was first proposed by Hansen and Hurwitz (1946) to reduce the non-

response bias in mail questionnaires by doing personal interviews on a fraction

of the nonrespondents. This sampling scheme was referred to as ”call-back”

and Cochran (1977) studied the effects of call-backs and the optimal sampling

fractions among the nonrespondents. Some other examples include the National

Comorbidity Survey (Elliott and Little (2000)) and the 2003 Survey of Small

Business Finances (Harter et al. (2007)). Different from those approaches relying

on using case weights (e.g., Hansen and Hurwitz (1946); Srinath (1971); Harter

et al. (2007)), a method called nonrespondent subsample multiple imputation

(NSMI) was proposed by Zhang, Chen and Elliott (2016) to reduce bias using

data from the NTS. NSMI performs multiple imputation within the subsample

of nonrespondents in phase I by using additional data collected in phase II. It

works well if MAR assumption holds in phase II within the sample of nonrespon-

dents in phase I regardless of the missingness mechanism in phase I. However,

this assumption is usually untestable and the phase II response mechanism from

phase I nonrespondents may be related to outcome values, in which case the

NSMI methods yield biased estimates. We propose a nonrespondents subsample

Bayesian selection model (NSBSM), which makes use of the additional data from

phase II when jointly modeling the outcome and the phase I missing data indica-

tor. The rationale of using the additional data in modeling the phase I indicator

is that these data provide important identifying information for modeling the

phase I missingness indicator. For model comparison purpose, we also apply the

Bayesian selection model without considering the phase II data (BSM).

The rest of the paper is organized as follows. Section 2 reviews NSMI method

that has been proposed for NTS (Zhang, Chen and Elliott (2016)). The method

works well when phase I missingness is MNAR but the missingness in the phase

II among the nonrespondents is MAR. Section 3 introduces the NSBSM method,

including the model setup and posterior inference. We illustrate the properties

of the NSBSM and compare the performance of different methods in Section 4

using simulation studies, while Section 5 applies the method to a quality of life

(QOL) dataset. Section 6 concludes the paper with discussion.

2. Nonrespondent Subsample Multiple Imputation (NSMI)

Data with the structure in Table 1 are considered. NSMI applies the multiple

imputation method to the cases in Patterns 2, 3, and 4 of Table 1. Subjects in

Pattern 1 are excluded when the missing values in Patterns 3 and 4 are imputed,
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and then the imputed datasets from Patterns 2, 3, 4 are combined with data

from Pattern 1 for statistical analyses (Zhang, Chen and Elliott (2016)). The

key assumption of NSMI is that within the nonrespondent in phase I (Patterns

2, 3, and 4), the missingness after phase II is MAR. Let Yobs = (Yobs,1,Yobs,2)

represent observed data in phase I and phase II, and Ymis to represent the data

missing after phase II sampling. The assumption for NSMI to be valid can be

expressed as follows based on fully observed covariate vector Z.

Pr(R2|1 = 1|R1 = 0,Yobs,2,Ymis,γ; Z) = Pr(R2|1 = 1|R1 = 0,Yobs,2,γ; Z),

where γ is the parameter associated with the distribution of the response indica-

tor R. The missingness mechanism is called nonrespondent subsample missing

at random (NS-MAR). This assumption does not confine the missing data mech-

anisms in the whole sample (R2) or the missing data mechanism in phase I (R1)

to a certain missing data mechanism, and therefore NSMI can be applied even

under the MNAR missingness mechanism in phase I as long as phase II is MCAR

or MAR.

When the phase II missing data mechanism is MNAR, the NSMI method

fails to yield unbiased estimates because the NS-MAR assumption is violated, it

usually leads to estimates with large variance, due to the increased variability in

the imputed values by using subjects from Patterns 2, 3, and 4, but not subjects

from Pattern 1. These motivate the proposed method in the next section.

3. Nonrespondents Subsample Bayesian Selection Model (NSBSM)

3.1. Selection model

In this section, data with structure in Table 1 are also considered. This

paper proposes nonrespondents subsample Bayesian selection model (NSBSM),

a Bayesian approach based on selection model to address the identifiability issue

(Little and Rubin (2002)) by utilizing additional data in phase II. A selection

model contains a regression equation for the outcome, and a regression equation

for the sample selection mechanism. Suppose the regression equation for the

outcome of primary interest is

yi = xTi β + ηi, (3.1)

and the sample selection mechanism is driven by the latent linear regression

equation

ui = zTi γ + εi, (3.2)

where i = 1, 2, . . . , N , xi and zi are the covariates and they may overlap with
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each other. Assume that the outcome yi is observed if and only if ui > 0. The

missing indicator for sample selection of phase I is

R1,i = I(ui > 0),

where I(·) is indicator function.

Heckman (1979) assumed a bivariate normal distribution for ηi and εi in

equations (3.1) and (3.2). (
ηi
εi

)
∼ N2(02,Σ),

where 02 =

(
0

0

)
and Σ =

(
σ11 σ12
σ12 1

)
. The second diagonal element of Σ is

set to 1 for full identification, a typical constraint for a binary choice model. To

facilitate posterior inference, we factor the bivariate normal distribution (εi, ηi)

into the product of marginal distribution of εi and conditional distribution of

ηi|εi, and obtain

yi = xTi β + E(ηi|εi) + ξi,

ui = zTi γ + εi,

where εi ∼ N (0, 1), ξi ∼ N (0, σ2), ηi|εi = σ12 ·εi, and σ2 = σ11−σ212. By utilizing

this re-parameterization, our parameters of interest for the covariance structure

are σ2 and σ12, for which we assign independent priors. This re-parameterization

was first proposed by Koop and Poirier (1997) to address the complication in

estimating the two free parameters (σ11, σ12) in the covariance matrix Σ. An

efficient Gibbs sampling algorithm was developed by Li (1998) following the re-

parameterization. Under the aforementioned bivariate normal assumption, the

model at (3.1) and (3.2) implies that

Pr(R1,i = 1|zi) = Φ(zTi γ),

E(yi|R1,i = 1,xi, zi) = xTi β + σ12λ(zTi γ), (3.3)

where λ(·) = φ(·)/Φ(·) is the inverse Mills ratio (Little and Rubin (2002)).

3.2. Model identification

Choosing the appropriate covariates (xTi , z
T
i ) plays an important role in the

selection model. Little and Rubin (2002) point out that the presence of the

inverse Mills ratio in (3.3) often results in multicollinearity that can lead to

profound identification problem for estimating β and σ12 in (3.3). One possible

solution to this problem includes at least one of the elements of zi that are not
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in xi that is associated with the selection process but not the outcome. With a

valid exclusion restriction assumption, the inverse Mills ratio and the xi vector

in (3.3) will be less correlated, reducing multicollinearity among predictors and

therefore facilitating model identification.

In practice, it can be difficult to identify variables that satisfy the exclusion

restriction assumption. With the additional data from phase II, the model can

be identified without assuming exclusion restriction. The inverse Mills ratio is

estimated by the non-linear probit model, the correction term λ is not perfectly

correlated with xi, even in the absence of exclusion restriction. The proposed

two-phase sampling method provides additional information of nonrespondents

of phase I. The model for the initial nonrespondents takes the form (Little and

Rubin (2002))

E(yi|R1,i = 0,xi, zi) = xTi β + σ12{−λ(−zTi γ)}, (3.4)

where zi = xi. With the additional data from phase II, equations (3.3) and (3.4)

imply that the new correction term λ is a vector with both λ(zTi γ) and −λ(−zTi γ)

making it less linearly correlated with xi, and therefore we can estimate β and σ12
even without exclusion restrictions. We show the benefit of the proposed method

in identifying parameters in the simulation study. In the following sections, we

use notation xi as the common covariate in both (3.1) and (3.2). For simplicity,

we suppress the conditioning on xi from all equations in the following sections.

3.3. Likelihood function

Let θ = (γT ,βT )T denote all the coefficients. It follows from the bivariate

normality distribution for ηi and εi that, when an outcome is observed in phase

I,

Pr{R1,i = 1|yi,θ, σ2, σ12} = 1− Φ

(
xTi γ

√
1 +

σ212
σ2

+
σ12(yi − xTi β)

σ
√
σ2 + σ212

)
.

When the outcome is missing in phase I, the probability that this occurs is

Pr{R1,i = 0|yi,θ, σ2, σ12} = Φ

(
xTi γ

√
1 +

σ212
σ2

+
σ12(yi − xTi β)

σ
√
σ2 + σ212

)
.

Without incorporating the additional phase II data, the likelihood function of

the traditional Bayesian selection model (BSM) takes the form

L(θ, σ2, σ12|y, R1,i, R2|1,i)

∝
m∏
i=1

φ

(
yi − xTi β√
σ2 + σ212

)
×

{
1− Φ

(
xTi γ

√
1 +

σ212
σ2

+
σ12(yi − xTi β)

σ
√
σ2 + σ212

)}
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×
n∏

i=m+1

∫
φ

(
yi − xTi β√
σ2 + σ212

)
× Φ

(
xTi γ

√
1 +

σ212
σ2

+
σ12(yi − xTi β)

σ
√
σ2 + σ212

)
dyi.

With additional data from phase II, the likelihood is given by

L(θ, σ2, σ12|y, R1,i, R2|1,i)

∝
m∏
i=1

φ

(
yi − xTi β√
σ2 + σ212

)
×

{
1− Φ

(
xTi γ

√
1 +

σ212
σ2

+
σ12(yi − xTi β)

σ
√
σ2 + σ212

)}

×
m+r∏
i=m+1

φ

(
yi − xTi β√
σ2 + σ212

)
× Φ

(
xTi γ

√
1 +

σ212
σ2

+
σ12(yi − xTi β)

σ
√
σ2 + σ212

)

×
n∏

i=m+r+1

∫
φ

(
yi − xTi β√
σ2 + σ212

)
× Φ

(
xTi γ

√
1 +

σ212
σ2

+
σ12(yi − xTi β)

σ
√
σ2 + σ212

)
dyi.

In a traditional selection model when no data in phase II are available, identifica-

tion of the parameter could be a problem. The rationale of the NSBSM methods

is that the additional information provides valuable information for identifying

the model parameters. In this study, we propose a probit model for R1,i but

not for R2|1,i. Generally, the NSBSM methods are based on a partial likelihood

(Cox, 1972) with the component regarding the selection process R2|1 discarded

from the analysis. The identification problems remains if the selection model also

includes a probit model for R2|1,i; we leave this for future research.

3.4. Prior

Assume the prior distribution

f(θ, σ12, σ
2) = f(θ)f(σ12)f(σ2),

where

f(θ) ∼MVN (θ0,Ψ
−1
0 ),

f(σ12) ∼ N (c0, d
−1
0 ),

f(σ−2) ∼ G
(
v0
2
,
(w0

2

)−1)
.

Here, MVN , N , and G denote the multivariate normal, the univariate normal,

and the gamma distribution, respectively. G(v0/2, (w0/2)−1) denotes a gamma

distribution with shape parameter v0/2 and scale parameter (w0/2)−1. Prior

parameters {θ0,Ψ0, c0, d0, v0, w0} are specified in simulation studies and data

applications. Proper priors are used to ensure that the resulting posterior densi-

ties have closed form.
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3.5. Posterior

Let y∗i denote augmented outcomes. The conditional means and variances

of the bivariate normal variables (ui, y
∗
i ) have the forms

µy∗|u = xTi β + σ12(ui − xTi γ), σy∗|u = σ2,

µu|y∗ = xTi γ +
σ12

σ2 + σ212
(y∗i − xTi β), σ2u|y∗ = 1− σ212

σ2 + σ212
.

The Gibbs sampling algorithm including data augmentation (imputation) is sum-

marized in the following steps. Additional details and expressions for the param-

eters of the various posteriors are given in the Appendix.

1. If R1,i = 1, y∗i = yi and ui|(y∗i ,θ, σ12, σ2) ∼ T N (µu|y∗ , σ
2
µ|y∗ ; 0,∞), where

T N denotes truncated normal distribution.

2. If R1,i = 0 and R2|1,i = 1, y∗i = yi and ui|(y∗i ,θ, σ12, σ2) ∼ T N (µu|y∗ , σ
2
µ|y∗ ;

−∞, 0).

3. If R1,i = 0 and R2|1,i = 0, y∗i |(θ, σ12, σ2) ∼ N (xTi β, σ
2 + σ212) and ui|(y∗i , θ,

σ12, σ
2) ∼ T N (µu|y∗ , σ

2
µ|y∗ ;−∞, 0).

4. Sample θ from MVN (θ̃, Ψ̃
−1

), where

θ̃ = Ψ̃
−1{Z′(Σ−1 ⊗ In)ỹ + Ψ0θ0},

Ψ̃ = Z′(Σ−1 ⊗ In)Z + Ψ0,

Z =

(
Z1 0

0 Z2

)
,

with ỹ =

(
y∗

u

)
, Z1 = Z2 = (1,x).

5. Sample σ12 from N (c̃, d̃−1), where c̃ = d̃−1(σ−2η′ε+c0d0) and d̃ = σ−2ε′ε+

d0.

6. Sample σ−2 from G(ṽ/2, (w̃/2)−1), where ṽ = n+v0 and w̃ = (η−εσ12)T (η−
εσ12) + w0.

7. Return to Step 1 and repeat.

4. Simulation Studies

This section illustrates the properties of the NSBSM method using simulation
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studies and compares the performance of NSBSM to other methods under differ-

ent missing data mechanisms in phase II. For each simulation study, six methods

were applied to estimate regression coefficient of simple linear regression model

based on outcome Yand covariate X:

(1) BD: estimates use the full data generated from simulation before missing

values are created, as a benchmark method.

(2) CC: complete case analysis uses respondents from both phase I and phase

II, discarding cases where are still missing after phase II.

(3) IL: ignorable likelihood method through multiple imputation uses data from

both phase I and phase II, assuming ignorable missingness.

(4) NSMI: multiple imputation in the nonrespondent subsample in phase I uses

only additional data from phase II.

(5) BSM: Bayesian selection model uses data from only phase I.

(6) NSBSM: Bayesian selection model uses data from both phase I and phase

II.

All six methods except method (5) utilized all the observed data in phase I

and II. Method (5) uses only information in phase I to estimate parameters in a

regression model. We compared the performance of each of the methods using

empirical bias, standard error (SE), root mean square error (RMSE), and the

coverage probability of the 95% highest posterior density (HPD) interval.

The outcome was generated by the linear regression model

yi = 1 + xi + zi + xi × zi + ηi, ηi
i.i.d.∼ N (0, 1).

with xi sampled from the standard normaln, zi from the Bernoulli with probabil-

ity 0.5, and xi × zi is the interaction term, for i = 1, 2, . . . , 1,000. The response

was subject to missingness, while xi and zi were fully observed. Phase I missing

values in Y were generated based on the MNAR mechanism

Pr(R1,i = 0|yi, xi, zi) = Φ(−3× yi + 2.5).

This missing data generation scheme results in approximately 35% of the values

Y being missing in phase I.

Let R2|1,i denote the response indicator in the subsample of nonrespondents

in phase I. Phase II responses in yi were generated under three missing data

mechanisms:

(1) MAR: Pr(R2|1,i = 0|yi, xi, zi) = Φ(−xi − zi − xi × zi + c1),
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(2) MNAR: Pr(R2|1,i = 0|yi, xi, zi) = Φ(−0.3× yi + xi + zi + xi × zi + c2),

(3) MNAR: Pr(R2|1,i = 0|yi, xi, zi) = expit(−0.3× yi + xi + zi + xi × zi + c3),

where c1, c2 and c3 were assigned different values for various selection pro-

portions in phase II. Appropriate c1, c2 and c3 were set so that the corre-

sponding selection proportions of phase II responses in Y were approximately

{40%, 30%, 20%, 10%}, and expit(·) = exp(·)/{1 + exp(·)}. The third scenario

is included to evaluate how the NSBSM method performs when data are not

simulated from the same model as the NSBSM method. Let k denote the dimen-

sion of coefficients. Prior parameters were set as {θ = 0,Ψ−10 = 100 · Ik, c0 =

0, d0 = 1, v0 = 10, w0 = 10} to obtain a balanced variance-covariance matrix Σ

and comparable variability for both σ2 and σ212 (Li (1998)). Results are based

on 200 repetitions for each simulated condition. For each data set the Markov

chain Monte Carlo (MCMC) algorithm was run for 12,000 iterations, where the

first 2,000 draws were discarded as burn-in period. The Gelman-Rubin statistics

and trace plot suggested that the Markov chain was mixing well. The biases,

RMSEs, and coverage probabilities of the 95% HPD intervals from MAR and

MNAR of phase II response are reported. CC and IL yield biased estimates of

the regression coefficient since phase I missingness is MNAR; therefore we focus

on the results from NSMI, BSM and NSBSM.

For the data simulated based on MAR mechanism in phase II (Table 2), both

NSMI and NSBSM yield approximately unbiased estimates of the regression co-

efficients. The NSMI method has moderately larger SEs and RMSEs because of

increased variability in the imputed values, which uses subjects from Patterns

2, 3 and 4, but not subjects from Pattern 1 (Zhang, Chen and Elliott (2016)).

The BSM method shows significant bias in estimating the regression coefficients.

This is not surprising because of the identification problem with the traditional

selection model. By varying the proportion of sampled in phase II, we see the

precision increases as the sampling proportion in phase II increases. Even sam-

pling 10% of the nonrespondents in phase I is enough to distinguish the NSBSM

and NSMI method from other competing methods.

When the phase II missing data mechanism is MNAR (Table 3), the NSBSM

is the only method that provides unbiased estimates of the regression. All other

methods show significant biases because the MAR assumptions are violated. We

again see that precision increases as sampling proportion in phase II increases,

and the improvement is substantial even if we only collect data from 10% of the

nonrespondents in phase I.
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When the phase II missing data mechanism is simulated based on the logit

model (Table 4) rather than a probit model, the NSBSM still outperforms com-

peting methods. This implies that the NSBSM method is robust to slight viola-

tion of the model assumptions.

5. Application to QOL Dataset

We applied the proposed method to a quality of life (QOL) dataset from

a community-based study — the Children in the Community study (CIC) (Co-

hen et al. (2005)). A brief description of this dataset can be found in Chen

and Cohen (2006). The 750 participants sample was originally drawn from 100

neighborhoods in two upstate New York counties in 1975. From 1991 to 1994

(T1), these 750 youths (mean age of 22.0 years and SD of 2.8 years) were in-

terviewed at home by trained interviewers. QOL was assessed using the young

adult quality of life instrument (YAQOL) (Chen et al. (2004)). In 2001-2004

(T2) at mean age of 32.0 years (SD = 2.8 years), the same group of participants

was surveyed using the same YAQOL instrument. Of the 750 participants as-

sessed for QOL at T1, 603 (80.4%) completed the survey at T2 while 147 did

not respond to the survey at T2 (phase I). For those 147 subjects who did not

respond to the survey, an abridged version of the YAQOL instrument was mailed

to their home address (phase II). Subjects were paid for their participation upon

return of the completed surveys. Of the 147 eligible subjects, 39 (26.5%) returned

their YAQOL instrument. Since phase II data collection was completed within

three months of phase I, it was assumed that the YAQOL outcomes remained

unchanged from phase I. We focused our analysis on the resources subscale of

the YAQOL instrument.

The goal of the QOL analysis is to determine whether the resources subscale

at T2 is related to major demographic variables — age, gender, race and educa-

tion. We regressed the resources on gender (male versus female), age (in years),

race (White vs. non-White), and education (High school or above vs. less than

high school). We applied the CC analysis, IL method using multiple imputation,

the NSMI method, the BSM method, and NSBSM method to the dataset. The

NSMI method is valid if, among the 147 nonrespondents, the missingness after

phase II is MAR, meeting the assumptions for NSMI. When phase I missingness

is MNAR, the NSBSM method is more efficient than the BSM because the addi-

tional data collected from phase II provide valuable information for modeling the

missing data mechanism and improve the identification of the model parameters.
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When both phase I and phase II missingess are MNAR, the NSBSM method is

the only method that provides valid estimation of the regression model for the

resources subscale.

To correct for the skewness of the outcome and improve the posterior esti-

mation, the resources subscales was log-transformed. The results from all five

methods are shown in Table 5. The results are quite consistent across five differ-

ent methods, although the effect of sex and age are a little weaker for the NSMI

method. All methods showed a significant effect of age with White race having

significantly more resources than non-White participants. Those with at least

high-school education also had significantly more resources at mean age of 33

compared to those with less than high school education.

6. Discussion

Two-phase sampling has been proposed and used in surveys to adjust for non-

response bias for more than five decades. The traditional methods (i.e., weight-

ing) fail to make full use of the additional data collected in the second phase.

Little research has demonstrated the utility of NTS sampling and answered the

question of what proportion of the nonrespondents should be surveyed in the sec-

ond phase. Zhang, Chen and Elliott (2016) provided an efficient NSMI method

that yields valid estimates when the missing data mechanism in the subsample of

nonrespondents is MAR, regardless of the missing data mechanism in phase I. We

proposed the NSBSM method that improved over the NSMI methods by yielding

valid inference even when the missing data mechanism in phase II is MNAR. Our

simulation studies also showed that it is beneficial even by collecting data from

a small proportion of the nonrespondents.

Prior literature in missing data has primarily focused on preventing and min-

imizing nonresponse in the data collection stage (Groves and Couper (2012)), and

developing methods to handle missing data after the data collection (Little and

Rubin (2002)). Many of the methods rely on assumptions that are untestable,

which motivated the research in sensitivity analyses (Troxel, Ma and Heitjan

(2004); Scharfstein et al. (2014)). Two-phase sampling provides an alternative

way to remedy nonresponse. The utilities of NTS sampling are two-fold. It

minimizes nonresponse by collecting additional data from nonrespondents; the

additional data from the initial nonresponsents provide valuable information re-

garding the missing data mechanism and therefore improves the modeling of the

missingness. The proposed NSBSM methods and the NSMI methods are effective
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means to make use of the additional data from phase II sampling.

In theory, the NSBSM method could be extended to a full selection model

specification by including a selection model for the missingness indicator in phase

II, conditional on missingness in phase I. Such models are subject to the same

identification issues with the traditional selection models. Other approaches,

such as the multiply robust estimators (Han (2014)), the instrumental variable

approach (Wang, Shao and Kim (2014)), and the pattern mixture model de-

veloped for repeated attempt design (Daniels et al. (2015)), may be alternative

methods to a full selection model specification. The proposed NSBSM could

be extended by modeling the covariance structure following Barnard, McCulloch

and Meng (2000) to incorporate prior information in the posterior inference. The

parametric assumptions of the NSBSM model could be extended to a t-model

(Marchenko and Genton (2012)) for the error distributions or be relaxed through

the nonparametric approach studied in Chib, Greenberg and Jeliazkov (2009).

For data arising from complex survey setting, the weights can be incorporated

in the pseudo-likelihood to reflect the design feature (Chambers et al. (2012)).

These extensions will be the subject of future work.
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Appendix: MCMC Sampling Algorithm

We provide some additional details about the MCMC sampling algorithm

regarding to the augmented likelihood

L(θ, σ2, σ12|ỹ) ∝ |Σ⊗ In|−1/2 exp

(
−1

2
(ỹ− Zθ)T (Σ⊗ In)−1(ỹ− Zθ)

)
,

where ỹ =

(
y∗

u

)
, Σ =

(
σ2 + σ212 σ12
σ12 1

)
, and In is identity matrix with dimen-

sion n.

Gibbs sampling on θ

The full conditional distribution of θ is of the form

p(θ|ỹ, σ2, σ12)
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∝ |Σ⊗ In|−1/2 exp

(
−1

2
(ỹ− Zθ)T (Σ⊗ In)−1(ỹ− Zθ)

)
× |Ψ−1|−1/2 exp

(
−1

2
(θ − θ0)

TΨ(θ − θ0)

)
∝ exp

(
−1

2
(ỹ− Zθ)TΣ−1 ⊗ In(ỹ− Zθ)− 1

2
(θ − θ0)

TΨ(θ − θ0)

)
∝ exp

(
− 1

2
(−ỹTΣ−1 ⊗ InZθ − θTZTΣ−1 ⊗ Inỹ + θTZTΣ−1 ⊗ InZθ

+ θTΨ0θ − θTΨ0θ − θΨ0θ0)
)

∝ exp

(
−1

2
(θ − θ̃)T Ψ̃(θ − θ̃)

)
,

where θ̃ = Ψ̃
−1

(Z′(Σ−1 ⊗ In)ỹ + Ψ0θ0) and Ψ̃ = Z′(Σ−1 ⊗ In)Z + Ψ0.

Gibbs sampling on σ12

The full conditional distribution of σ12 is given by

p(σ12|·) ∝|Σ⊗ In|−1/2 exp

(
−1

2
(ỹ− Zθ)T (Σ⊗ In)−1(ỹ− Zθ)

)
× exp

(
−1

2
d0(σ12 − c0)2

)
Since ỹ− Zθ =

(
η

ε

)
and Σ−1 =

(
1/σ2 −σ12/σ2

−σ12/σ2 1 + σ212/σ
2

)
,

p(σ12|·) ∝ exp

−1

2

(
η

ε

)T (
1/σ2 −σ12/σ2

−σ12/σ2 1 + σ212/σ
2

)
⊗ In

(
η

ε

)
× exp

(
−1

2
d0(σ12 − c0)2

)
∝ exp

(
−1

2

(
εT εσ212
σ2

− 2ηT εσ12
σ2

+ d0(σ12 − c0)2
))

∝ exp

(
−1

2
d̃(σ12 − c̃)2

)
,

where c̃ = d̃−1[σ−2η′ε + c0d0] and d̃ = σ−2ε′ε + d0.

Gibbs sampling on σ−2

The full conditional distribution of σ12 takes the form

p(σ−2|·) ∝|Σ⊗ In|−1/2 exp

(
−1

2
(ỹ− Zθ)T (Σ⊗ In)−1(ỹ− Zθ)

)
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×
(
σ−2

)v0/2−1
exp

(
−w0

2
σ−2

)
∝
(
σ−2

)n/2
exp

(
−1

2
σ−2(ηTη − 2ηT εσ12 + εT εσ212)

)
×
(
σ−2

)v0/2−1
exp

(
−w0

2
σ−2

)
∝
(
σ−2

)(v0+n)/2−1
exp

(
−w0 + (η − εσ12)

T (η − εσ12)

2
σ−2

)
.
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