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Abstract: Protecting respondents from disclosure of their identity in publicly re-

leased survey data is of practical concern to many government agencies. Methods

for doing so include suppression of cluster and stratum identifiers, and altering or

swapping record values between respondents. Unfortunately, stratum and cluster

identifiers are usually needed for variance estimation using linearization or replica-

tion methods. One might feel that releasing a set of replicate weights that also have

stratum and cluster identifiers suppressed might circumvent this problem to some

extent, especially using some random resampling such as the bootstrap. In this

article, we first demonstrate that by viewing the replicate weights as observations

in a high dimensional space one can easily use clustering algorithms to reconstruct

the cluster identifiers irrespective of the resampling method even if the replicate

weights are randomly altered. We then propose a fast algorithm for swapping clus-

ter and strata identifiers of ultimate units before creating replicate weights without

significantly impacting resulting variance estimates of characteristics of interest.

The methods are illustrated by application to publicly released data from the Na-

tional Health and Nutrition Examination Surveys, where such disclosure issues are

extremely important.

Key words and phrases: Balanced repeated replication, bootstrap, confidentiality,

jackknife.

1. Introduction

Protecting against inadvertent disclosure of respondent identity in publicly

released data files from complex surveys is becoming increasingly important as

web-access to census data and other auxiliary data becomes more prevalent,

and computational resources become faster and require less skill. Most of the

literature on the topic considers the masking of the released data itself (see

for example, Lambert (1993) and the remainder of that issue of the Journal of

Official Statistics which is dedicated to the topic; and also see Skinner and Elliot

(2002) and Skinner and Carter (2003) for some nice discussion and a large set

of related references). One common simple measure taken to help avoid identity

disclosure is to suppress the stratum and primary sampling unit (PSU) identifiers

(first-stage cluster identifiers in a multi-stage survey). This can make it more
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difficult for an “attacker” to match a sampled cluster to a population cluster and

thus narrow the search for respondent identity, but it can also make it difficult for

direct variance estimation since stratum and PSU identifiers are typically needed

to obtain asymptotically unbiased variance estimators.

One might feel that releasing a set of replicate weights together with the data

which also have the PSU and stratum identifiers suppressed would circumvent

the problem. Yung (1997) shows this may not be so. He proposes a repeated

bootstrap in an attempt to create replicate weights from which it is more difficult

to reconstruct PSU and/or stratum identifiers. As we will show, this method

falls short of its goal and, in fact, one can quickly and easily reconstruct PSU

identifiers from essentially any set of replicate weights if the problem is viewed

appropriately.

Another method that is commonly used to mask the data in complex sur-

veys is to change data values or swap data values between cases. In our set-

ting, one might swap stratum and/or PSU identifiers before creating the set of

replicate weights. This would only impact the variance estimation and could

be done, such that the impact on resulting variance estimates is small, for the

characteristics measured in the survey. This idea was introduced in Lu (2004),

and a semi-manual method for implementing it in the 2001-2002 release of the

National Health and Nutrition Examination Surveys (NHANES) was presented

in Dohrmann, Lu, Park, Sitter and Curtin (2006). The basic idea is to match

second-stage clusters on some demographic variables by using a record-linkage

algorithm, and then to sort through the matches to decide on ones for which

PSU identifiers would be swapped for all ultimate units in the second-stage clus-

ter. The paper also gives some discussion on how the variables might be chosen

and how to evaluate the impact on variance estimates and on the potential for

disclosure of PSU/strata affiliations via graphical techniques.

The purpose of the current article is two-fold: (1) to illustrate the ease with

which one can identify PSUs through replication weights; and (2) to propose a

solution through a fast algorithm for swapping PSU identifiers. In section 2 we

discuss the general structure of the problem and demonstrate how, by viewing the

problem of reconstructing PSU and/or stratum identifiers from replicate weights

as a high-dimensional clustering problem, one can easily reconstruct PSU identi-

fiers from any of the usual replication methods without knowledge of which repli-

cation method was used, even if the replication weights are randomly perturbed,

or altered at each replicate to account for non-response and/or post-stratification.

We also demonstrate that despite the fact that bootstrap replicate weights seem

at first glance to provide more protection, and the method of repeated boot-

strapping of Yung (1997) even more so, in fact they are actually much easier
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to reconstruct from than say the jackknife or the method of balanced repeated

replications. In Section 3 we propose an extremely fast and simple algorithm

for swapping PSU identifiers and discuss the inclusion of design weights in mea-

sures of distance. In Section 4, we compare the proposed algorithm in terms

of performance and speed to a version of the match-and-swap approach used in

Dohrmann et al. (2006) that we enhance to make more automatic. We finish

with some concluding remarks and relegate proofs to an appendix.

2. Disclosure Risk from Replication Weights

2.1. Complex survey, design weights and replication

To introduce replication-based variance estimation methods, consider a strat-

ified multi-stage design in which PSUs (clusters) are selected with replacement or

are so treated for the purposes of variance estimation, with independent subsam-

ples taken within clusters that are selected more than once. Suppose nh PSUs are

selected with probabilities phi with replacement or with inclusion probabilities

πhi = nhphi, independently within each stratum. Let Ŷ hi be a linear unbiased

estimator of the vector of totals for the i-th PSU from stratum h based on sam-

pling at the second and subsequent stages, so that Ŷ h =
∑nh

i=1 Ŷ hi/(nhphi) is a

linear unbiased estimator of the vector of stratum totals Y h. A linear unbiased

estimator of the total Y =
∑

h Y h is then given by Ŷ =
∑

h Ŷ h. This can be

written as

Ŷ =
∑

(hik)∈s

whikyhik, (2.1)

where s is the total sample of elements, and whik and yhik = (y1hik, . . . , yphik)
′,

respectively, denote the sampling (or design) weight and the vector of item val-

ues attached to the hik-th sampled element (k = 1, . . . , nhi; i = 1, . . . , nh;h =

1, . . . ,H).

Often a survey estimator can be expressed as a function of a vector of es-

timated totals as in (2.1), θ̂ = g(Ŷ ). The population distribution function can

be estimated by F̂n(t) =
∑

s whikI[yhik≤t]/(
∑

s whik), where I[ · ] is the indicator

function. Some non-smooth estimators that are often of interest are the p-th

sample quantiles, F̂−1(p), where F̂−1 is the inverse of F̂ .

For replication methods, subsamples are repeatedly selected from the full

sample, the statistic of interest is computed for each subsample, and the vari-

ability among the subsample or replicate estimates is used to estimate the vari-

ance of the full sample statistic. The delete-1 jackknife variance estimator is

given by vJ =
∑H

g=1(ng − 1)n−1
g

∑ng

j=1(θ̂(gj) − θ̂)2, where θ̂(gj) is calculated as

before but with whik replaced by whik(gj) = bgjwhik, where bgj = 0 if (hi) = (gj);
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= ng/(ng−1) if h = g and i 6= j; = 1 if h 6= g. This estimator requires n =
∑

h nh

replicates.

The method of balanced repeated replications (BRR) for nh = 2 (McCarthy

(1966)) forms a set of R balanced half-samples or replicates by deleting one PSU

from the sample in each stratum simultaneously, where this set is defined by an

R × H matrix (αrh)R×H with αrh = +1 or −1 according to whether the first or

the second PSU of stratum h is in the r-th half-sample and
∑R

r=1 αrhαrh′ = 0

for all h 6= h′; that is, the columns of the matrix are orthogonal. A minimal

set of R balanced half-samples can be constructed from an R × R Hadamard

matrix by choosing any H columns excluding the column of all +1’s, where

H +1 ≤ R ≤ H +4. The estimator θ̂(r) is obtained using the same formula as for

θ̂, with whik changed to whik(r) which equals 2whik or 0 according to whether or

not the hi-th PSU is selected in the r-th half-sample or not. The BRR variance

estimator for θ̂ is then given by vBRR =
∑

r(θ̂(r)−θ̂)2/R (for extentions to nh > 2,

see Gurney and Jewett (1975), Wu (1991) and Sitter (1993)).

A generalization that has some advantages is often termed the Fay BRR

(Dippo Fay and Morganstein (1984) and Judkins (1990). Choose 0 ≤ ǫ < 1,

redefine wh1k(r) = [1 + αrh(1 − ǫ)]wh1k, wh2k(r) = [1 − αhr(1 − ǫ)]wh2k, and let

vFBRR =
∑

r(θ̂
(r) − θ̂)2/[R(1 − ǫ)2]. Fay’s BRR is the usual BRR when ǫ = 0.

There have been a number of bootstrap methods proposed for stratified

multi-stage sampling (Rao and Wu (1988), Sitter (1992a,b), Booth, Butler and

Hall (1994) and Shao and Tu (1995)). One simple method is the rescaling boot-

strap of Rao and Wu (1988) (see also Rao, Wu and Yue (1992)):

1. Draw m∗
h clusters with replacement from the nh sample PSUs in each stratum.

2. Let n∗
hi be the number of times the hi-th sample PSU is selected (

∑

i n∗
hi =

m∗
h).

3. Define bootstrap weights

w∗
hik = whik

[{

1 −
(

m∗
h

nh − 1

)
1

2

}

+

(

m∗
h

nh − 1

)
1

2

(

nh

m∗
h

)

n∗
hi

]

,

where n∗
hi =number of times the hi-th PSU is resampled, and calculate θ̂∗

using the bootstrap weights.

4. Repeat a large number of times, R, to get θ̂∗(1), . . . , θ̂
∗
(R) and let vB =

∑R
r=1(θ̂

∗
(r)

−θ̂)2/R.

Note that, if n∗
h is chosen as nh − 1, w∗

hik = whikn
∗
hinh/(nh − 1).

The variance estimators vJ , vBRR and vB have been shown to be consistent

for smooth functions of estimated means or totals (see Krewski and Rao (1981)
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and Rao and Wu (1985, 1988)) and vBRR and vB for nonsmooth estimators (see

Shao and Tu (1995) and references therein).

2.2. Replicate weights and stratum/PSU identifiers

In this section, we suppress the triple index and write Ŷ =
∑

j∈s wjyj , where

j = (hik). For public release data where stratum and PSU identifiers are being

suppressed, this is how the data would be released in some random order.

All of the replication methods of the previous section can be rewritten as

selecting R subsets of the full sample y1, y2, . . . ,ym, where m =
∑

(hi)∈s nhi is

the total number of ultimate units in the sample, according to some re-sampling

mechanism to form replicate estimates denoted as θ̂(1), θ̂(2), · · · , θ̂(R). The r-

th replicate estimate, θ̂(r), is calculated in the same way as θ̂ but using the

r-th set of replicate weights wj(r), j = 1, . . . ,m. The variation among replicate

estimates, v(θ̂) =
∑R

r=1 cr(θ̂(r) − θ̂)2, is then used to estimate V (θ̂), where the cr

are constants specific to the replication method.

Table 1. The matrix representation of design weights and replicate weights.

Sample Characteristics Design Weights Replicate Weights

1 y1 w1 w1(1) w1(2) · · · w1(R)

2 y2 w2 w2(1) w2(2) · · · w2(R)

...
...

...
...

...
. . .

...

m ym wm wm(1) wm(2) · · · wm(R)

The typical form of the released data is given in Table 1. The end-user can

then use the same program that calculates θ̂ from y1, . . . ,ym and w1, . . . , wm

to get θ̂(1), . . . , θ̂(R) by applying it to y1, . . . ,ym and w1(r), . . . , wm(r) for r =

1, . . . , R. To understand how one can use the replicate weights in Table 1 to

reconstruct the PSU and/or stratum identifiers even if they are tabled in some

arbitrary order, let δj(r) = wj(r)/wj , the ratios of replicate weights and design

weights, where j = 1, · · · ,m and r = 1, · · · , R, depicted in Table 2.

Table 2. The matrix representation of indicator variables

Replicate

Sample 1 2 · · · R

1 δ1(1) δ1(2) · · · δ1(R)

2 δ2(1) δ2(2) · · · δ2(R)

...
...

...
. . .

...

m δm(1) δm(2) · · · δm(R)
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Suppose the replicate weights are full jackknife replicate weights. As each

jackknife replicate is formed by deleting all the elements from a particular PSU

and up-weighting those in the same stratum as the one removed, the relationship

between jackknife replicate weights and the original design weights is obvious. In

particular, the r-th column of Table 2, corresponding to the r-th replicate, will

only consist of three different values: 0, 1 and a positive constant, say kr(> 1).

If we know or deduce that these are jackknife replicate weights, we can easily

conclude that the elements in column r with δj(r) = 0, δj(r) > 1 and δj(r) = 1

are from the deleted PSU, the same stratum as the deleted PSU, and from a

different stratum from the deleted PSU, respectively. Thus the PSU and stratum

identifiers can be easily determined by examining all R columns in Table 2.

In the case of BRR, it may seem more difficult to reconstruct the stratum

and/or PSU identifiers as each BRR replicate consists of half of the sampled

PSUs from each stratum. However, if any two rows of Table 2 are identical, then

the two corresponding sample units are from the same PSU;, and if any two rows

of Table 2 are complementary to each other, meaning that the sum of two rows is

a vector of 2’s, the two corresponding units are from different PSUs in the same

stratum. A similar idea will work for Fay’s BRR (FBRR).

For bootstrap replicate weights, it seems even more difficult to reconstruct

the stratum and/or PSU identifiers than for the BRR or jackknife. Yung (1997)

considers the special case of the rescaling bootstrap with m∗
h = nh − 1 PSUs

randomly selected from each stratum with nh original clusters to form bootstrap

replicates. He notes that some partial cluster membership can be identified in

this case. In particular, for any bootstrap replicate, at least one PSU from each

stratum will be excluded from the replicate, resulting in replicate weights of 0

for all elements from these PSUs. Yung goes on to propose a mean bootstrap

method (M-bootstrap) in an effort to hide the PSU identifiers from the end users.

The key idea is to repeat the resampling procedure for each bootstrap replicate

enough times, say b times and average bootstrap replicate weights in an effort to

select each PSU at least once in each replicate. Therefore, all the final bootstrap

weights will be nonzero for each replicate. We delay further discussion on this to

the sequel.

2.3 A simple method for reconstructing PSU/stratum identifiers

In the previous section, we discussed the connection between replicate weights

and stratum and/or PSU identifiers and argued that, by closely examining the

relative change of replicate weights and knowing the replication method was a

jackknife or BRR, we are able to reconstruct at least the original PSU identi-

fiers and perhaps the stratum identifiers, provided that neither non-response nor

post-stratification weight adjustment is applied. We could further investigate the
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impact of such weight adjustments, which is likely to make the reconstruction

procedure a little more complex. However, we find that reconstructing PSU iden-

tifiers is actually much simpler than it appears. In this section, we introduce a

simple approach and then apply it to some data combined with a small numerical

study to illustrate the simplicity and effectiveness of the proposed method, even

when the weights are randomly perturbed or have been adjusted in some way.

To motivate the idea, treat the i-th row of Table 2 as an R dimensional

object with entries δj(1), · · · , δj(R), and define a distance, d(j, l), of any pair of

sample elements j and l. The following two lemmas demonstrate the potential

advantages of viewing the problem in this way.

Lemma 1. Let d(j, l) =
∑R

r=1 |δj(r) − δl(r)|.
(a) For jackknife replicate weights, d(j, l) = 0, 2nh/(nh − 1), and 4 if sample

elements j and l are from the same PSU, different PSUs within the same

stratum, and different strata, respectively.

(b) For FBRR replicate weights, d(j, l) = 0, 2R(1 − ǫ), and R(1 − ǫ) if sample

elements j and l are from the same PSU, different PSUs within the same

stratum, and different strata (Note that ǫ = 0 implies BRR), respectively.

Proof. See Appendix in online Supplementary Document.

Lemma 2. Let

d(j, l) =
[

R
∑

r=1

(δj(r) − δl(r))
2
]

1

2

.

For bootstrap replicate weights, d(j, l) = 0, E∗[d
2(j, l)] = 2nhR/(nh − 1) and

E∗[d
2(j, l)] = 2R, if sample elements j and l are from the same PSU, different

PSUs within the same stratum, and different strata, respectively, where E∗ de-

notes expectation under the resampling. In addition, V∗[d(j, l)2] = 10n2
h(nh −

2)R(nh − 1)−3, if sample elements j and l are from different PSUs within the

same stratum, and

V∗[d(j, l)2] =

[

20 − nh(5nh − 6)

(nh − 1)2
− nh′(5nh′ − 6)

(nh′ − 1)2

]

R,

if sample elements j and l are from different strata. Here V∗ denotes variance

under the resampling.

Proof. See Appendix in online Supplementary Document.

Lemma 1 demonstrates that, for the jackknife and FBRR, if we treat the rows

in Table 2 as points in an R dimensional space, the m rows will shrink to replicates

of n distinct points in that space provided no weight adjustments have been made.
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If some noise or perturbation is added to the original replicate weights, either

to attempt to limit an attacker’s ability to reconstruct the PSU and/or stratum

identifiers or due to nonresponse and/or post-stratification adjustments redone

for each replicate, it is very likely that we will still observe n distinguishable

clusters in the R dimensional space as the magnitude of the perturbations should

be small relative to that of the distance between any two originally distinct

points; otherwise, intuitively, the magnitude of the added variability due to these

(possibly) random perturbations will be comparable to the variability measured

by the replication method and make its usefulness limited.

Lemma 2 suggests this will also be true for the bootstrap. To see this, note

that E∗[d
2(j, l)] is about 2R if j and l are from different PSUs and 0 if they are

from the same PSU, while twice the standard deviation is about 2
√

10R. Thus,

the clusters associated with each PSU will be well-separated.

With the idea of clustering sampled units in mind, we need only find a

clustering algorithm, preferably easy to access and use, and test whether or not

the algorithm can identify the PSU membership with high accuracy. A quick

search in the common packages R and SAS found function “hclust” and procedure

“Proc FASTCLUS”, respectively. Both accept multivariate data and form cluster

trees. Though we found both to work well, the SAS procedure is much faster

and handles very large data sets easily, so we restrict further discussion to “Proc

FASTCLUS”. We did not try anything more sophisticated to make the point

that even someone with rudimentary skills and tools could do this.

We used a set of publicly released NHANES data with 42 sets of Fay BRR

replicate weights. To investigate the impact of adding noise to the replicate

weights, possibly for the purpose of limiting an attacker’s ability to obtain PSU

identifiers, we introduce a random noise εj(r) to the replicate weights denoting

the perturbed replicate weights as

w∗
j(r) = wj(r)(1 + εj(r)) = δj(r)(1 + εj(r))wj = δ∗j(r)wj , (2.2)

where δj(r) = wj(r)/wj are the elements in Table 2, δ∗
j(r) the perturbed ones,

and the εj(r) are independent and identically distributed U(−∆,∆). For values

∆ = 0.1, 0.2, 0.3, 0.4, 0.5, we applied “Proc FASTCLUS” (simple SAS code given

in the Appendix in the online Supplementary Document) as described above to

obtain the PSU membership. If we assumed the number of PSUs to be known,

which is often so, in all cases the method correctly assigned units to PSU. If

we set the maximum number of clusters to be larger than the true number of

clusters, in all cases the results were a partition of the true set of PSUs. That is,

“Proc FASTCLUS” yielded more clusters than the truth, but only by splitting

PSUs.
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To illustrate that the bootstrap or the M-bootstrap method provided even
less protection, we designed the following numerical study: (1) create 100 sets of
bootstrap weights, each of which was the average of 20, precisely as was done in
the Yung (1997) paper; (2) apply the method using only 2,000 sets of the 9,965
replicate weights and only 2, 3, 4, and 5 of the replicates. It turns out that the
error rate for assigning units to original PSUs was 2.5% using 2 replicates and 0
using 3 or more replicates, respectively. We repeated the simulation without av-
eraging weights, that is using the ordinary bootstrap method with m∗

h = nh − 1.
The error rates were 47.5%, 28%, 5.5% and 1.5% using 2 to 5 replicates, respec-
tively. The clustering algorithm performs very well in terms of reconstructing
original PSUs in both cases, even if only a few sets of replicate weights are used.

In summary, it is evident that the replicate weights, no matter how they
are created, with or without weight adjustments, can be used to reconstruct
the original PSU identifiers quite easily, even for an unsophisticated user. In
addition, randomly perturbing the replicate weights provides little protection.
Note that, though it is true that the stratum identifiers are harder to reconstruct
when little is known about the replication method, confidentiality of stratum
indicators may be less important in many cases. For example, for NHANES the
PSUs are counties or metropolitan areas. Thus PSU level census data is available
and could be used to identify a sampled PSU.

3. Proposed Swapping Algorithm

3.1. Sequential swapping approach

The idea of this section is to swap the PSU identifiers of ultimate units
(one could alternately swap PSU identifiers for second stage clusters (SSUs) of
units in the case of multi-stages), before constructing the replicate weights or to
create pseudo-PSUs for the purpose of variance estimation. We sometimes refer
to this as swapping units between PSUs as the two are essentially equivalent.
This should be done such that the variance estimates of key characteristics are
disturbed as little as possible. Ideally, this should be done via some automatic
fast algorithm. Such a swapping algorithm should meet the following criteria:

1. Since one of our major goals is to hide the original PSU identifiers from the
end users, a considerable portion of units should be swapped from each origi-
nal PSU, making it unidentifiable for any cluster analysis of replicate weight
patterns. Furthermore, in any formed pseudo-PSU, the number of units from
any one original PSU should not be inordinately large.

2. Another goal is to limit the resulting change in variance estimators.

Dohrmann et al. (2006) use a two-stage approach, where in the first stage
units from different PSUs are paired together, and at the second stage a user-
specified proportion of these paired units are swapped between PSUs. We delay
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discussion of the details of their approach and our suggested improvements to
make it more automatic to the next section, where we will compare its perfor-
mance to our proposed algorithm.

Instead we propose a sequential swapping approach. The idea is to avoid
swapping a proportion of matched pairs of units at the same time. Instead
we establish a rule to determine the best single pair of units for swapping un-
der some optimality criterion at the current step, swap them, and then repeat
until enough units have been swapped. This is more in the spirit of the algo-
rithms used for grouping of strata for combined-strata variance estimation in
Lu, Brick and Sitter (2006), which was adapted from scheduling theory. The
key question is, how to establish a good rule that only swaps units satisfying
pre-determined requirements.

Assume we have defined an appropriate distance measure that reflects our
preferences and requirements (see next section for discussion). That is, the
smaller the distance between two units, the more likely we are to swap them.
We first rank all

(

n
2

)

possible pairs of units in ascending order of distance. After
so ordering, we need only select the eligible pair of units with smallest distance
at the current step and swap them.

Denote uhi = ⌊α ∗ nhi⌋ + 1 as the minimum number of units to be swapped
from PSU hi, and vhi = ⌊β∗uhi⌋ as the maximum number of units to be swapped
from PSU hi to any particular other PSU, where ⌊·⌋ denotes the largest integer
less than or equal to, and β is a tuning parameter which prevents the swapping
rate between any two PSUs from being inordinately large. Denote the set of all
possible

(

n
2

)

pairs of units as A = {(j, l) : (hjijkj), (hlilkl) ∈ s}.

Proposed Sequential Algorithm
Step 1. Preparation

(a) Compute the distance for all pairs from A and order∗ them as:
d1 ≤ d2 ≤ · · · ≤ d(n

2
), where dk is associated with (jk, lk) ∈ A,

k = 1, · · · ,
(

n
2

)

.
(b) Compute uhi, vhi for all PSUs. Let Uhi = 0 for all (hi);

let Vhi(h
′i′) = vhi for all (hi) and (h′i′); let A′ = ∅ and k = 1.

Step 2. Swapping
(a) Assume jk ∈ (h0i0) and lk ∈ (h1i1).

If jk ∈ A′, lk ∈ A′, Vh0i0(h1i1) = 0 or Vh1i1(h0i0) = 0, go to Step
2(c).

(b) Let Uh0i0 = Uh0i0+1, Uh1i1 = Uh1i1+1, Vh0i0(h1i1) = Vh0i0(h1i1)−1,
Vh1i1(h0i0) = Vh1i1(h0i0) − 1 and A′ = A′ ∪ {jk, lk}.

(c) Let k = k + 1.
Step 3. If k =

(

n
2

)

, or Uhi ≥ uhi for all (hi), stop; otherwise, go to Step 2.
∗We use a fast Fortran sorting algorithm available at

http://www.fortran-2000.com/rank/index.html
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The proposed algorithm is simple and very fast because, after the initial

sorting there is very little computation left during the examining and swapping

step. The only complexity is in tracking how many units have been swapped

from each PSU and how many of these have been swapped to any particular

other PSU. These are monitored in the algorithm by Uhi and Vhi(h
′i′), respec-

tively. The algorithm’s simplicity also makes it very flexible to accommodate

different constraints or requirements; for example, to treat high-disclosure-risk

PSUs differently from low-disclosure-risk PSUs (discussed in the next section).

These properties are preferable in practice because a data swapping procedure

takes a great deal of time and effort, and needs to be repeated many times under

different settings in order to obtain a satisfactory final swapping result, since

typically only some of the characteristics are used for matching, and one must

examine the resulting performance of variance estimators on all characteristics.

In Section 4, we use a small simulation study to demonstrate these properties.

3.2. Distance measure

Both the proposed sequential swapping algorithm and the match-and-swap

approach described in the next section require a distance measure to determine

which units to swap or match, respectively. One could merely adopt the same

type of approach as is typically used when masking the released data itself

through swapping of record elements (see Takemura (2002)). That is, merely

use a Euclidean distance measure for continuous data and some form of Ham-

ming distance for categorical variables. For example, let the distance between

units i1 and i2 be d(i1, i2) = 0 or 1 if they belong to the same category or not, for

categorical variables, and d(i1, i2) = |yi1−yi2|/range(yi), for continuous variables.

This rescales the measure to be in [0, 1] for all variables. Different importance of

variables can be handled by multiplicative weights.

We do consider this approach in the next section when evaluating perfor-

mance (denoted D3). However, in this context of swapping PSU identifiers specif-

ically for the purpose of then creating replicate weights for variance estimation,

one can more directly rationalize a distance measure that captures the explicit

desire to limit the impact on resulting variance estimates. To see this, first con-

sider the linear estimator Ŷ . All of the replication-based variance estimators

given in Section 2 reduce to (approximately for the bootstrap)

v(Ŷ ) =

H
∑

h=1

1

nh(nh − 1)

nh
∑

i=1

yhi − ȳh)(yhi − ȳh)T , (3.1)

where yhi =
∑nhi

k=1 whikyhik and ȳh =
∑nh

i=1 yhi/nh.
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The impact of having swapped the PSU identifiers of units in some set

{(hik) ∈ s0 ⊂ s} with the PSU identifiers of units {(hik) ∈ s1 ⊂ s ∩ sc
0} will be

v′(Ŷ ) = v(Ŷ ) + ∆01,

where v′ is the variance estimator applied after swapping and ∆01 is the impact

of the swapping given in Lemma 3.

Lemma 3. Let A01 ={(j, l) : (hjijkj) ∈ s0 swapped PSU identifiers with (hlilkl)

∈ s1} and let ∆jl = whjijkj
yhjijkj

− whlilkl
yhlilkl

for ordered pair (j, l) ∈ A01.

Then

∆01 =
∑

(j,l)∈A01

{(

nhj
−1

nhj

+
nhl

−1

nhl

)

∆jl∆
T
jl +

(

yhjij
−ȳhj

nhj

−yhlil
− ȳhl

nhl

)

∆T
jl

+∆jl

(

yhjij
− ȳhj

nhj

− yhlil
− ȳhl

nhl

)T
}

,

where the sum is over pairs (j, l) so that each pair occurs only once in the sum.

Proof. See Appendix in online Supplementary Document.

Lemma 3 emphasizes the importance of the design weights. One simple way

to incorporate the weights is to apply the usual distance measures to whikyhik

rather than yhik (denoted D1), that is, try to make all of the ∆jl small. This

should better ensure that the impact of the swapping on the variance estimation

for the variables under consideration will be as small as possible. Another is to

merely include the weights as an additional variable in the swapping (denoted

D2), that is, make the distance measure between weights small and between

y’s small. D2 has the advantage that by making the weight change as little as

possible should reduce the impact on variables not considered in the swapping.

These are also considered in the next section.

Whichever of these ideas is adopted for determining a measure of distance,

one must in addition alter or penalize the measure to take into account the

desires represented in Criterion 1 of Section 3.1; that is, to ensure that units not

be swapped within PSU (and to a lesser extent, strata). A simple way to do this

is to add a penalty. Suppose γ1 + γ2 is greater than the largest distance between

any two units. Then alter the distance measure as

d∗(i, j) = d(i, j) + γ1I[i,j∈ same strata] + γ2I[i,j∈ same PSU]. (3.2)

Since I[i,j∈ same PSU] = 1 implies I[i,j∈ same strata] = 1, this penalizes swap-

ping within PSU more than within stratum.

In some applications, there are PSUs that are of greater concern for disclosure

risk. This can happen if the size of the PSU is small and/or has a distinct
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demographic makeup. In such cases, it would be preferable to add a term to the

distance measure that encourages swapping between low disclosure-risk PSUs

and high disclosure-risk PSUs. For example, let δi = 1 or −1 if the i-th PSU is

high-risk or low-risk, respectively, and add term γ3(δiδj +1). This adds a penalty

of 2γ3 to the distance if PSUs i and j are both low-risk or both high-risk.

4. Evaluation of Performance

Before considering the speed and performance of the proposed algorithm

with the various possible distance measures, we describe an enhanced version of

the match-and-swap approach in Dohrmann et al. (2006) so that we can then

include it in the comparisons.

4.1. Match-and-swap approach

One approach to swapping PSUs of units is to adapt methods for local record

swapping which have been proposed for the purpose of disclosure control on

the micro data set itself (Takemura (2002)). Then elements of the so paired

records are swapped. To adapt this to our problem, add the PSU identifier as

one of the components of the record. Then adjust the distance measure to a

form such as (3.2) so that if two records are from the same PSU (stratum),

the measure of distance becomes large. This prohibits records from the same

PSU from being paired together. Apply the pairing algorithm, and once pairs

have been formed, choose α% of the pairs and switch their PSU identifier (see

Dohrmann et al. (2006) for discussion). The idea being that the matching will

help ensure Criterion 2 of Section 3.1. One possible matching algorithm is the

publicly available implementation of a version of Edmonds’ (1965) algorithm

called WMATCH (see Gabow (1973)).

With the matching obtained, we propose a linear programming approach

to choose which matched pairs to swap, aiming to balance the proportion of

switched pairs of units over all PSUs. Let nj be the number of units in the j-th

PSU, j = 1, . . . ,m, and n0 =
∑

j nj/2 be the number of matched pairs. We then

let (aj1, aj2), j = 1, . . . , n0, denote the matched pairs, (pj1, pj2) be their PSU

identifiers and d1, . . . , dn0
their corresponding distance measures. Then solve the

linear programming (LP) problem,

min
xk∈{0,1}

d1 · x1 + · · · + dn0
· xn0

s.t.
∑

k∈Pj

xk ≥ α · nj, j = 1, · · · , n0. (4.1)

The optimization procedure will be accomplished through indicator variables xk,

k = 1, . . . , n0, which determine whether the matched pairs of units are being

swapped or not. It is easy to recognize that any feasible solution will satisfy the
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requirement of α% swapping for all PSUs and the optimal solution will further
minimize the overall distance of switched pairs of units. This does not entirely
satisfy Criterion 1 as there is no real guarantee of avoiding a large number of
swaps between pairs of PSUs and thus this would have to be evaluated after the
process is complete.

The match-and-swap strategy does encounter some difficulties. It may be
difficult or impossible to match all units (termed complete matching) due to the
extreme computational time when the number of units is large. Takemura (2002)
suggests considering only a unit’s K nearest neighbors as candidates for matching.
This decreases computation time, but may not yield a complete matching. The
free source code (WMATCH) we obtained did achieve complete matching in the
cases considered in the next section. For cases where this was not possible and
further discussion, see Lu (2004).

4.2. Application to NHANES

Because the proposed approaches are motivated by survey problems, we
chose to apply the proposed algorithms and evaluate their performance using
the NHANES survey, where the problems originally occurred. However, this
involves some sensitive information. Thus, we apply the proposed algorithms to
the NHANES 2003-2004 Sample Person Demographics and Examination Files
(see NHANES links on http://www.cdc.gov/nchs/), currently released for public
use, to compare the speed, similarity of swapped units and flexibility for both the
sequential swapping and match-and-swap algorithms. To do so we pretend the
pseudo-PSU and stratum identifiers given there are the true PSU and stratum
identifiers, and then apply the various strategies to mask these. One should note
that this could, in principle, bias the results somewhat.

We choose two groups of characteristics for our simulation. The first group
of four demographic and five medical examination variables given in Table 3 are
used to determine the distance of any paired records. The column headings corre-
spond to those on the above website. The variables were chosen to be correlated
with a broad range of health and nutrition variables. The second group of 26 lab-
oratory variables and 2 medical examination variables given in Table 4 are used
for evaluating the performance of the proposed algorithms in terms of variance
estimation of variables not used to do the swapping (note laboratory variables
are medical examination variables which had to be processed at a laboratory and
are thus filed separately). The 2003-2004 full data set includes 10,122 individual
records, each of which is associated with a PSU identifier numbered from 1 to 30.
However, we use only the 6,217 records with no missing values at the swapping
stage. Our goal is to apply the proposed algorithms for swapping the PSU iden-
tifiers for a certain percentage of individual records without noticeably changing

the resulting variance estimators of all first and second group variables.
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Table 3. NHANES variables used for swapping.
Item # Data File Item ID Label

Demographic Variables

4 DEMO C RIAGENDR Gender-Adjudicated

5 DEMO C RIDAGEYR Age at Screening Adjudicated-Recode

8 DEMO C RIDRETH1 Race/Ethnicity-Recode

13 DEMO C INDFMPIR CPS Family PIR

Examination Variables
378 BMX C BMXWT Weight (kg)

384 BMX C BMXHT Standing Height (cm)

386 BMX C BMXBMI Body Mass Index (kg/m**2)

419 BPX C BPXSY1 Systolic: Blood pres (1st rdg) mm Hg
420 BPX C BPXDI1 Diastolic: Blood pres (1st rdg) mm Hg

Table 4. NHANES variables used for evaluation of swapping

Item #s Data File Component

Laboratory Variables

45-48 L16 C Urinary Albumin and Creatinine

57-76 L25 C Complete Blood Count
137,140 L40 C Biochemistry Profile

Examination Variables

395,401 BMX C Body Measures

We applied the match-and-swap and the proposed sequential swapping al-

gorithm for α = 10%, 20%, 30% and 40%, the required percentage of units to

be swapped from any PSU. For the proposed sequential swapping algorithm,

we have better control during the swapping process in terms of the source of

swapped units in any specific PSU. In addition to α, we can define the quantity

β as the upper limit on the percentage of units swapped from any other PSU

to the target PSU. By introducing β, we tend to monitor the component for

each formed pseudo-PSU such that the swapped units in it are from a variety

of original PSUs. This is beneficial for confidentiality concerns. The result for

each combination of α and β levels is attainable in our simulation. To measure

the performance we use the average percent absolute relative difference (ARD)

of the variance estimators before and after swapping, defined as

ARD = 100 · q−1
q

∑

p=1

|v′(Ŷp) − v(Ŷp)|
v(Ŷp)

,

where the sum is over the q variables, and v and v′ denote the variance estimator

in (3.1) before and after swapping, respectively. The q = 9 variables in Table
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Table 5. Match-and Swap Approach: time and ARD for the variables used
in swapping.

CPU Time α%

Dist. K in seconds 10% 20% 30% 40%

D1 5 481 0.188 0.293 0.763 1.543
10 567 0.222 0.363 1.027 1.564

20 668 0.173 0.227 1.105 1.664

40 949 0.147 0.281 0.762 1.725

D2 5 290 0.288 0.157 0.369 0.288

10 347 0.519 0.439 0.307 0.397

20 447 0.399 0.485 0.313 0.581
40 682 0.413 0.475 0.322 0.658

D3 5 285 1.156 1.105 1.875 2.930

10 338 1.741 2.906 3.378 4.781

20 448 2.191 2.739 1.721 1.317

40 696 1.943 2.583 1.554 1.175

3 were used for the swapping with the 3 distance measures discussed in Section

3: D1) weights incorporated by applying the distance measure to whikyhik; D2)

incorporating the weights by including them as an extra variable; and D3) no

weights.

Table 5 gives the time in seconds (on a Dell Notebook D810 with a 2GHz

processor and 1GB of RAM) and ARD over the variables used in the swapping

for the various α using the match-and-swap approach with various values of K.

Table 6 gives the ARD for the proposed sequential swapping algorithm using the

same α’s and various β’s. As one can see, using D1 yields better results than

using D2, which in turn yields better results than using D3. Also, the proposed

sequential algorithm performs extremely well and much better than the match-

and-swap approach using D1, while there is no clear winner using D2 or D3.

However, one must remember that we introduce another control factor β in the

proposed sequential algorithm to better limit disclosure. In addition, in all cases

the sequential algorithm took between 20 and 36 seconds of CPU time, and thus

is much faster than using a match-and-swap approach.

Table 7 and 8 give similar results for the q = 28 variables not used to deter-

mine the swapping. We also include random swapping of units for comparison.

The random swapping was repeated 1,000 times and averaged. As one can see,

the impact on these variables is also reasonably small.
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Table 6. Sequential swapping approach: ARD for the variables used in swap-
ping.

Dist. β\α 10% 20% 30% 40%

D1 10% 0.052 0.144 0.359 0.468

20% 0.055 0.172 0.284 0.410
30% 0.047 0.173 0.288 0.435

40% 0.049 0.173 0.288 0.435

D2 10% 0.406 0.413 0.355 0.665

20% 0.408 0.384 0.474 0.823

30% 0.408 0.384 0.474 0.823

40% 0.408 0.384 0.474 0.823

D3 10% 1.560 2.938 2.170 1.145
20% 1.289 2.843 2.183 1.030

30% 1.289 2.843 2.183 1.030

40% 1.289 2.843 2.183 1.030

Table 7. Match-and Swap Approach: ARD for the variables not used in
swapping.

α%

Dist. K 10% 20% 30% 40%

D1 5 3.732 6.530 8.491 9.136
10 1.848 4.945 6.160 7.113

20 4.199 5.472 6.028 8.276

40 3.930 4.317 6.018 8.503

D2 5 1.558 3.056 3.766 3.285

10 1.769 3.734 6.101 5.137

20 1.707 3.725 6.093 5.451
40 1.718 3.725 6.164 5.504

D3 5 2.954 5.720 8.092 8.781
10 3.546 6.860 9.962 11.826

20 4.514 7.282 9.352 9.934

40 4.260 7.135 9.262 9.871

Random Swap 15.72 29.60 41.48 51.34

5. Concluding Remarks

After demonstrating the risk of disclosing PSU and stratum identifiers through

the replicate weights in publicly released survey data, we propose a fast sequen-

tial swapping algorithm to exchange PSU identifiers between records before con-

structing replicate weights. In this way, the true PSU identifiers can be masked

without major impact on resulting variance estimators. Application to the Na-
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Table 8. Sequential swapping approach: ARD for the variables not used in
swapping.

Dist. β\α 10% 20% 30% 40%

D1 10% 0.42 1.72 2.34 4.07

20% 0.44 1.78 2.26 4.05
30% 0.38 1.77 2.23 4.01

40% 0.38 1.77 2.23 4.01

D2 10% 2.59 3.54 7.59 4.85

20% 2.40 3.50 7.70 4.64

30% 2.40 3.50 7.70 4.64

40% 2.40 3.50 7.70 4.64

D3 10% 4.06 9.11 9.59 10.93
20% 4.17 8.88 9.66 11.09

30% 4.17 8.88 9.66 11.09

40% 4.17 8.88 9.66 11.09

Random Swap 15.72 29.60 41.48 51.34

tional Health and Nutrition Examination Surveys demonstrates the potential of

the approach. The speed of the algorithm, even when handling thousands of

records, allows the analyst within the releasing agency to apply and evaluate the

method many times in exploring which variables to use for swapping, and the

impact on variance estimation and on disclosure risk.

One cautionary note: if all of the weights within a PSU are the same (SRS)

but differ between PSUs, swapping PSU identifiers will not help. This does give

some indication of the overall difficulty of this problem.
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