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Abstract: We investigate perfect classification on functional data using finite

samples. Perfect classification for functional data is easier to achieve than for

finite-dimensional data, because a sufficient condition for the existence of a perfect

classifier, called the Delaigle-Hall condition, is available only for functional data.

However, a large sample size is required to achieve perfect classification, even when

the Delaigle-Hall condition holds, because the minimax convergence rate of the

errors with functional data has a logarithm order in the sample size. We resolve

this complication by proving that the Delaigle-Hall condition also achieves fast

convergence of the misclassification error in a sample size under the bounded entropy

condition on functional data. We study a reproducing kernel Hilbert space-based

classifier under the Delaigle-Hall condition, and show that the convergence rate of

its misclassification error has an exponential order in the sample size. Technically,

our proof is based on (i) connecting the Delaigle-Hall condition and a margin of

classifiers, and (ii) handling metric entropy of functional data. The results of our

experiments support our findings, and show that other classifiers for functional data

have a similar property.

Key words and phrases: Convergence rate, functional data, perfect classification,

reproducing kernel Hilbert space.

1. Introduction

The classification problem is one of the most general and significant problems

in functional data analysis. The goal of classification is to predict labels or

categories from functional data given in the form of (possibly) infinite-dimensional

random curves. Because of its versatility, classification has many applications

in the field of science (Varughese et al. (2015)), engineering (Gannaz (2014); Li

et al. (2013); Florindo, de Castro and Bruno (2011)), medicine (Chang, Chen and

Ogden (2014); Islam (2020); Dai, Müller and Yao (2017)), and others. Several

methods have been developed to solve this problem, including distance-based

(Alonso, Casado and Romo (2012); Ferraty and Vieu (2003)), k-nearest neighbor

(Biau, Bunea and Wegkamp (2005); Cérou and Guyader (2006)), partially

least square (Preda, Saporta and Lévéder (2007); Preda and Saporta (2005)),

orthonormal basis (Delaigle and Hall (2013, 2012)), Bayesian (Wang and Qu
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(2014); Yang et al. (2014)), and logistic regression methods (Araki et al. (2009)).

For a survey, see Cuevas (2014).

Perfect classification for functional data was studied by Delaigle and Hall

(2012), and has the advantage of being able to use infinite-dimensional data.

This notion refers to the convergence of the misclassification error to zero under

an optimal classifier, which is also referred to as realizability (Shalev-Shwartz

and Ben-David (2014)). Seminal works (Delaigle and Hall (2012, 2013)) show

that under certain conditions on the mean and covariance functions of functional

data (hereafter, the Delaigle-Hall condition), there exists a classifier that achieves

perfect classification asymptotically. This result does not usually hold with finite-

dimensional data, which is why it focuses on infinite-dimensional vectors, called

functional data. Berrendero, Cuevas and Torrecilla (2018) describe a relation

between this notion and a reproducing kernel, and various methods have been

shown to have a connection to a perfect classifier (Cérou and Guyader (2006);

Dai, Müller and Yao (2017); Cuesta-Aboertos and Dutta (2016); Hanneke et al.

(2021)).

One difficulty is the need for a large sample size to achieve perfect

classification, suggested by a convergence analysis of the misclassification error in

the sample size. Nonparametric methods for functional classification are known

to have a very slow convergence rate, owing to the infinite dimensionality of

functional data. Let R(f) be a misclassification error under a classifier f . Meister

(2016) proves that any classifier f̃n consisting of n observations has the following

relationship with some data-generating process:

R(f̃n)− inf
f
R(f) ≥ c(log n)−α.

Here, c > 0 is a universal constant, and α > 0 is a parameter that depends on

the data-generating process. This result shows that the misclassification error of

functional data cannot avoid errors that decay only on the logarithmic order in

the general setting. Because logarithmic decay is slower than every decay with

a polynomial order, the convergence of this unavoidable error is very slow. As

such, even if a perfect classifier exists, it can be difficult to benefit from it.

This study resolves the aforementioned possibility by showing that the

Delaigle-Hall condition also makes the convergence of the excess misclassification

error sufficiently fast. To achieve our goal, we consider a reproducing kernel

Hilbert space (RKHS) H and study a classifier f̂n ∈ H from n observations using

empirical loss minimization. Furthermore, we consider a family of functional

data that satisfies a bounded entropy condition, implying the continuity and the

boundedness of a norm of such data. Then, we show that f̂n obtains the following

convergence under the Delaigle-Hall condition:

E

(
R(f̂n)− inf

f∈H
R(f)

)
≤ 2 exp(−βn),



FAST PERFECT CLASSIFICATION FOR FUNCTIONAL DATA 1803

with some parameter β > 0. This exponential convergence in n is faster than all

polynomial convergence, ensuring perfect classification.

Note that the classifier f̂n is constructed as a linear sum of given kernel

functions. Functional data analysis using an RKHS is widely used in both linear

and nonlinear regression problems (Preda (2007); Lian (2007); Cai and Yuan

(2012); Cui, Lin and Lian (2020); Tian et al. (2020)), but is not widely used

for the classification problem, with the exception of Rincón and Ruiz-Medina

(2012). Note that our approach differs from that of Berrendero, Cuevas and

Torrecilla (2018), who considers functional data as RKHSs, because we construct

the classifier using RKHSs.

As a technical contribution, our theoretical results follow two ideas. First,

we introduce a hard-margin condition, which describes the ease of classification

problems, and connect it to the Delaigle-Hall condition. In a general setting,

a hard-margin condition is suitable for a perfectly classifiable setting, such

as Koltchinskii and Beznosova (2005). We newly develop a new hard-margin

condition for functional data, and then prove that the Delaigle-Hall condition

implies the hard-margin condition by using covariance structures of functional

data. Second, we develop a metric entropy analysis on a classifier for functional

data. To analyze the speed of convergence of the empirical risk minimization

classifier, we study the excess empirical risk on a space of classifiers. However,

because classifiers for functional data are more complicated than those of ordinary

cases, we cannot use the traditional theoretical results. We derive a new entropy

bound for this purpose, which enables us to develop the theory. To the best of

our knowledge, both technical points are new theoretical results.

Note the bounded entropy condition on the functional data for our result.

First, the condition requires a kind of continuity of the functional data, for

example, Lipschitz continuity. Second, it requires that a norm of the functional

data is bounded almost surely, which excludes, for example, Gaussian processes.

These restrictions are necessary for our proof with an entropy condition. To

clarify this point, we provide several examples of stochastic processes that satisfy

the entropy condition.

We conduct numerical experiments to confirm our theoretical findings. Our

results show that the convergence speed of the misclassification error by the

RKHS method varies depending on whether or not the Delaigle-Hall and hard-

margin conditions are satisfied. We also test several additional classification

methods for functional data under the conditions. The results show that the

RKHS method and nonparametric classification methods, such as the Gaussian

process method, give similar effects on their convergence rates, but that linear

methods, such as a linear discriminant analysis, do not cause such an effect.

The remainder of the paper is organized as follows. Section 2 introduces

our setting and method. Section 3 explains the perfect classification and

its convergence result. In Section 4, we confirm our theoretical result using
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experiments. Section 5 concludes the paper. The online Supplementary Material

contains proofs and additional examples.

1.1. Notation

For r ∈ R, sign(r) is a sign function that is 1 if r > 0, −1 if r < 0, and

0 if r = 0. In addition, ⌈r⌉ denotes the largest integer which is no more than

r. For r, r′ ∈ R, r ∨ r′ = max{r, r′}. For a function f : Ω → R on a set

Ω, ∥f∥L∞ = supx∈Ω |f(x)| denotes a sup-norm, and ∥f∥2n = n−1
∑n

i=1 f(Xi)
2 is

an empirical norm with observations X1, . . . , Xn. For an event E , 1{E} is an

indicator function that is one if E holds, and zero otherwise. For two sequences

{an}n∈N and {bn}n∈N, an ≳ bn denotes that there exists a constant c > 0 such

that an ≥ cbn, for all n ≥ n, with some finite n ∈ N; an ≲ bn denotes its opposite,

and an ≍ bn means that both an ≳ bn and an ≲ bn hold. For a variable z, let Cz

be some positive and finite constant that depends only on z. For a space Ω with

a distance d and δ > 0, let N (δ,Ω, d) be the covering number of H, that is, the

minimal number of balls that cover Ω with the radius δ in terms of d.

2. Preliminary

2.1. Problem setting

We consider a functional classification problem. Let X be a subset of an

L2-space on an index set T ⊂ Rd, with some d ≥ 1, and consider its inner

product ⟨x, x′⟩ =
∫
T x(t)x

′(t)dt, with x, x′ ∈ X , and its induced L2-norm ∥ · ∥.
Let B(X ) be an associated Borel σ-field of X . Suppose we have observations

(X1, Y1), . . . , (Xn, Yn) that are n independent copies of a random object (X,Y )

from a joint distribution P , where X is an X -valued random function and Y is

a {−1, 1}-valued discrete random label. We write w = P (Y = −1) ∈ (0, 1). Let

Π on B(X ) be a marginal measure of X. For each label, we define conditional

measures on B(X ) for functional data as P+ = Π(· | Y = 1) and P− = Π(· | Y =

−1). By the definitions, we obtain P+(X ) = P−(X ) = 1 and Π = wP−+(1−w)P+.

The goal of this problem is to construct a classifier that outputs a label from

a functional input in X . For a given function f : X → R, a corresponding binary

classifier is defined as sign ◦ f . We define the misclassification error of f as

R(f) = P{(X,Y ) : Y ̸= sign(f(X))},

which is also referred as a generalization error of the classification problem.

We discuss the existence of a minimizer of R(f) that is an optimal function

for the Bayes classifier. To this end, we develop a density function of P+ and P−.

Unlike the finite-dimensional data case, it is not trivial to define the densities,

because function spaces do not have the useful Lebesgue measure. Instead, we

use Π as a base measure, which is absolute continuous to P+ and P−, and define
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the following densities by the Radon–Nikodym derivative p+ = dP+/dΠ and

p− = dP−/dΠ. The following result shows that we can guarantee the function

as a minimizer with p+ and p−. The proof is deferred to the Supplementary

Material.

Lemma 1. We define a function f0 : X → R as f0(x) = (1−w)p+(x)−wp−(x).

Then, f0 minimizes R(f).

2.2. Methodology: RKHS classifier

We provide a setting for an RKHS for functional data. Let H be a Hilbert

space on X . In addition, let ⟨·, ·⟩H be an inner product of H, and let ∥ · ∥H
be an induced norm of H. A function K : X × X → R is referred to as a

reproducing kernel for H if it satisfies (i) for every x ∈ X , K(·, x) ∈ H holds,

and (ii) for every x ∈ X and f ∈ H, f(x) = ⟨f,K(·, x)⟩H holds. It is well known

that a reproducing kernel K is symmetric, nonnegative definite and uniquely

determined by an RKHS H. Furthermore, a set of linear form {
∑n

i=1 ciK(xi, ·) :
ci ∈ R, xi ∈ X} is dense in H; see Berlinet and Thomas-Agnan (2011).

An important property of an RKHS is, for any x, x′ ∈ X and f ∈ H, there

exists a constant cH, such that

|f(x)| ≤ cH∥f∥H, and |f(x)− f(x′)| ≤ ∥f∥H∥x− x′∥ (2.1)

holds. For the proof, see Proposition 4.30 in Steinwart and Christmann (2008).

Hereafter, we set cH = 1, without loss of generality. In addition, we impose

the condition that H is dense in a set of continuous functions C(X ). This

property is referred to as universality, and is satisfied by many common RKHSs

(see Definition 4.52 and Corollary 4.55 in Steinwart and Christmann (2008)).

For binary classification problems, we define a classifier f̂n ∈ H. Let ℓ : R →
R be a loss function, such that ℓ ≥ 1(−∞,0] is decreasing, bounded by one, convex,

and 1-Lipschitz continuous. We consider the following optimization problem:

f̂n = argmin
f∈H

1

n

n∑
i=1

ℓ(Yif(Xi)) + λ∥f∥2H , (2.2)

where λ > 0 is a regularization coefficient. This minimization problem can be

solved in several ways, depending on the loss function. We further assume that ℓ

is twice differentiable, its first derivative ℓ′ is negative, increasing, and bounded

below by −1, and its second derivative ℓ′′ is bounded above by 1. The logit loss

ℓ(t) = log(1 + exp(−t)) is a common choice of a loss function that satisfies this

requirement.
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3. Main Result on Convergence of Misclassification Error

Our aim is to study the excess risk R(f̂n)− inff∈HR(f) under a perfect clas-

sifiable setting. To this end, we require an assumption for perfect classification.

3.1. Delaigle-Hall condition for perfect classification

The Delaigle-Hall condition, established by Delaigle and Hall (2012, 2013),

is a condition for functional data to be asymptotically perfect classifiable.

We provide some notation. Consider covariance functions of X ∼ Π as

C(t, t′) = cov(X(t), X(t′)), which is assumed to be strictly positive definite and

uniformly bounded. Further, random functions X+ and X− are drawn from

P+ and P−, respectively, with a corresponding bounded covariance function

Cℓ(t, t
′) = cov(Xℓ(t), Xℓ(t

′)), for ℓ ∈ {−,+}. Their spectral decompositions (e.g.,

Theorem 4.6.5 in Hsing and Eubank (2015)) are written as

C(t, t′) =
∞∑
j=1

θjϕj(t)ϕj(t
′) and Cℓ(u, v) =

∞∑
j=1

θℓjϕℓj(u)ϕℓj(v),

where {θℓj, ϕℓj}∞j=1, and {θj, ϕj}∞j=1 are pairs of nonzero eigenvalues and eigen-

functions of Cℓ and C, for ℓ ∈ {−,+}. We assume that they are sorted as

θ1 ≥ θ2 ≥ · · · and θℓ,1 ≥ θℓ,2 ≥ · · · . We also introduce coefficients of mean

functions for each label. Let X+ and X− be random functions generated from

P+ and P−, respectively. Then we define its mean as

µ+ := EP+
[X+] =

∞∑
j=1

µ+,jϕj, and µ− := EP− [X−] =
∞∑
j=1

µ−,jϕj,

with coefficients µ+,j and µ−,j, for j ∈ N, by the generalized Fourier decomposi-

tion. Using the basis {ϕj}∞j=1, we express the difference µ+ − µ− =
∑∞

j=1 µjϕj by

coefficients µj, for j ∈ N.
We now introduce a condition for perfect classification. The following

condition is developed in section 4.2 of Delaigle and Hall (2012):

Definition 1 (Delaigle-Hall condition (Delaigle and Hall (2012))). The

joint measure P satisfies the Delaigle-Hall conditions if the following holds for

ℓ ∈ {+,−}:

lim
M→∞

(
∑M

j=1 θ
−1
j µ2

j)
2∑∞

j=1 θℓj(
∑M

i=1 θ
−1
i µi

∫
ϕi(u)ϕℓj(u)du)2

= ∞. (3.1)

We can simplify condition (3.1) under a specific setting: if C+ and C− have

common eigenfunctions, that is, ϕj = ϕ+j = ϕ−j, then the condition (3.1) is

rewritten more intuitively as
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∞∑
j=1

θ−1
j µ2

j = ∞.

This condition indicates that the covariance of functional data is too concise

compared with the mean difference. If the functional data are nearly independent

for each input, the Delaigle-Hall condition is more likely to be satisfied, because

θj decays faster as j increases. The Delaigle-Hall condition implies the following

result.

Proposition 1 (Theorem 1 in Delaigle and Hall (2012)). If the Delaigle-

Hall condition is satisfied and X | Y is Gaussian, then there is a perfect

classification; that is, inff R(f) = 0 holds.

A similar result holds without the Gaussianity of X|Y (see Theorem 2 in Delaigle

and Hall (2012)).

This Delaigle-Hall condition gives a sufficient condition for Gaussian mea-

sures on infinite-dimensional spaces to be mutually singular, based on the classical

Hájek–Feldman theorem Da Prato and Zabczyk (2014). Because this type of

singularity appears more easily than on finite-dimensional spaces, this shows one

advantage of using infinite-dimensional functional data. Next, we provide an

example of functional data distributions that satisfy the Delaigle-Hall condition.

Example 1 (Decaying coefficients). We give a specific example of θj and µj,

and consider when the Delaigle-Hall condition is satisfied. Suppose that θj ≍ j−α

with α > 0 and µj ≍ j−β with β > 0 hold. Then, the Delaigle-Hall condition is

satisfied with 2β − α ≤ 1. Because α describes the complexity of the covariance

C(t, t′) and β indicates the smoothness of µ, the Delaigle-Hall condition is more

likely to be satisfied when the functional data are less smooth and the covariance

decays quickly.

3.2. Conditions

Here, we discuss several assumptions needed for the fast convergence. Recall

that N (ε,X , d) denotes a covering number of X , which is common in empirical

process theory and statistical learning theory (for an introduction, see van

der Vaart and Wellner (1996)). We consider the following condition.

Assumption 1 (Covering bound). There exists constants ε̄ > 0, γ > 0, and

V > 0 such that for every ε ∈ (0, ε̄), the following holds:

logN (ε,X , d) ≤ V ε−γ .

Meister (2016) uses this type of assumption for convergence analysis of functional

data. Here, γ represents the complexity of the functional data space X , and

controls the smoothness of X and a dimension of inputs for X.
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Assumption 1 restricts the form of functional data in X in the following

ways. First, it requires a kind of continuity or differentiability for the functional

data. The degree of smoothness is adjusted by the decay rate γ in Assumption

1. Second, it also requires that a norm of the functional data be bounded.

This constraint excludes Gaussian processes, and so we use a truncated version

of Gaussian processes instead. The following examples satisfy Assumption 1.

Additional examples are deferred to the Supplementary Material.

Example 2 (Smooth path). For α ∈ N, suppose that X is a set of functions

f on [0, 1]p that have partial derivatives up to an order α− 1 that are uniformly

bounded by some constant, and the highest partial derivatives are Lipschitz

continuous. In this case, a setting γ = p/α satisfies Assumption 1 with d = ∥·∥L∞

(Theorem 2.7.1 in van der Vaart and Wellner (1996)).

Example 3 (Nonsmooth path). For α′ ∈ (0, 1], X is a set of α′-Hölder-

continuous functions on [0, 1]p, which is a set of functions f : [0, 1]p → R, such
that

|f(x)− f(x′)| ≤ C∥x− x′∥α

holds for every x, x′ ∈ [0, 1]p, with some constant C > 0. In this case, a setting

γ = p/α satisfies Assumption 1 with d = ∥ · ∥L∞ (Theorem 2.7.1 in van der Vaart

and Wellner (1996)). Note that this set includes nondifferentiable functions.

Example 4 (Unbounded path with finite peaks). We consider a family of

functions f on [0, 1], such that

f(x) = g(x) +
J∑

j=1

ψ(x; aj, tj),

where g is a function from the Sobolev space with order α ∈ N (a space of α-times

weakly differentiable functions in terms of ∥ · ∥L2), ψ(x; aj, tj) = aj/|(x− tj)|1/3 is
an unbounded peak function with scale parameters aj ∈ [0, 1] and fixed locations

tj ∈ [0, 1], and J is a number of peaks. We can show that a set of such functions

satisfies Assumption 1 with γ = 1/α, and with d = ∥ · ∥L2 and sufficiently large

V > 0; see Proposition 1 in the Supplementary Material.

Next, we give the second condition for the distribution Π of X. For x ∈ X
and δ > 0, define B(x; δ) as an x-centered open ball with radius δ in terms of

∥ · ∥. Then, we impose the following assumption.

Assumption 2 (Positive small ball probability). For any x in a support of

Π and δ > 0, Π(B(x; δ)) > 0 holds.

This assumption is satisfied for a general class of distributions, even in the

functional data setting. We provide several examples in the Supplementary

Material.
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3.3. Convergence result

Now, we provide our main result on the convergence speed of the generaliza-

tion error. We provide an outline of the proof and details of the constants outline

in the next section, and the full proof in the Supplementary Material.

Theorem 1. Let H be an RKHS on X with a universal kernel. Let f̂n ∈ H be

a classifier, minimizing the empirical loss, as defined in (2.2). Suppose that the

Delaigle-Hall condition and Assumptions 1 and 2hold. Then, there exist positive

and finite constants CV,γ and CV,Π,H, such that the following inequality holds for

any λ ∈ [λ, λ], with λ = max{(log n)−1/γ , CV,γ log log n/n} and λ = CV,Π,H, and

any n ∈ N, as λ ≥ λ:

E

[
R(f̂n)− inf

f∈H
R(f)

]
≤ 2 exp(−βn),

where β > 0 is a parameter that depends on H,Π, and V .

This result shows that very fast convergence of the generalization error is obtained

under the Delaigle-Hall condition and a sufficient sample size. In other words,

because this convergence is exponential in n, the error decays faster than all

polynomial convergence in n, in contrast to the logarithmic convergence of Meister

(2016), that is, R(f̃n)−inff R(f) ≥ C(log n)−1/γ holds. This suggests that adding

the Delaigle-Hall condition reduces the complexity of the functional classification

problem more than expected.

The following two technical points are important. First, the minimum

required n is determined by γ, which reflects the complexity of the functional

data in Assumption 1. When the functional data are more complex, that is,

γ is large, the required sample size increases. Second, β depends on various

parameters and is complicated to describe. Rigorous values are provided in the

full proof.

Remark 1 (Role of the RKHS). We use RKHSs for classifiers for the following

reasons. First, the pointwise bound (2.1) in RKHSs is important for the error

analysis. Second, an RKHS is closely related to the Delaigle-Hall condition (3.1),

because the condition is regarded as measuring the difference between the means

of the distributions in terms of an RKHS norm. This relation makes our error

analysis simple.

Remark 2 (Selection of H). We discuss the effect of the choice of the RKHS.

The exponential convergence in n, which is the main claim of Theorem 1, holds

for all RKHSs, as long as the requirements are satisfied.
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3.4. Proof overview

The proof of Theorem 1 comprises three steps: (i) rewrite the Delaigle-Hall

condition as a hard-margin condition; (ii) decompose the misclassification error;

and (iii) study each of the components. Hereafter, we set L as a Lipschitz constant

of f∗ and assume that ∥f∗∥H ≥ 1, without loss of generality.

Step (i). Rewrite the Delaigle-Hall condition as a hard-margin cond-

ition: We first introduce the hard-margin condition, which is a general

condition in many classification problems.

Definition 2 (Hard-margin condition). A margin of Π with f : X → R is

defined as

δ(f,Π) = sup {δ : Π({x : |f(x)| < δ}) = 0} .

We say Π satisfies the hard-margin condition with given f if δ(f,Π) > 0 holds.

This condition requires that a discrepancy between the sets {x : f(x) > δ}
and {x : f(x) < −δ} is large, almost surely. In other words, the margin with f

is contained in a Π-null set. A margin is useful notion for handling the difficulty

of classification problems. This condition is related to a common condition for

other classification problems, namely, the strong noise condition (Koltchinskii

and Beznosova (2005); Audibert and Tsybakov (2007)).

To show the connection between the Delaigle-Hall condition and the hard-

margin condition, we introduce f∗ as follows. We define the sum of the orthogonal

basis ψM =
∑M

j=1 θ
−1
j (µ+,j − µ−,j)ϕj and f∗

M as

f∗
M(x) = (⟨x− µ+, ψM⟩)2 − (⟨x− µ−, ψM⟩)2 .

Furthermore, we define f∗ = limM→∞ f∗
M . This function measures whether the

input x is closer to µ+ or µ−, with the weight ψ∞, and the sign of f∗(x) works as

a classifier. Then, the following result shows the equivalence of the Delaigle-Hall

and hard-margin conditions:

Proposition 2 (Delaigle-Hall implies hard-margin). If the Delaigle-Hall

conditions holds, then δ(f∗,Π) > 0 holds.

Proposition 2 shows that the Delaigle-Hall condition leads to the margin of

Π being positive. This is similar to Theorem 5 in Berrendero, Cuevas and

Torrecilla (2018), which states that the Delaigle-Hall condition is equivalent to

the discrepancy between the supports of two measures P+ and P− under the

Gaussian homoscedastic model. Proposition 2 also shows that f∗ is an effective

classifier with a sufficiently large margin under the Delaigle-Hall condition. The

proof is based on an idea in Delaigle and Hall (2012), who apply a property that

distances between functional data become infinitely large under the weighting by

θj from the covariance.
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Step (ii). Generalization error decomposition: In preparation, we convert

the perfect classifier f∗ into a controllable form. To this end, we define

f̃M(x) := fM(x)/|fM(x)| and f̃∗(x) = limM→∞ f̃M(x). Because the risk

depends only on the sign of f∗, we have R(f̃∗) = R(f∗). In the following,

we study the classification error based on f̃∗, rather than f∗.

The first step is to rewrite the generalization error as an integral that involves

probabilities associated with the signs of f̃∗ and f̂ . The standard calculation

yields the following transformation, by the Bochner integral:

E[R(f̂n)−R(f̃∗)] ≤
∫

|η(x)|Pr(f̂n(x)f̃∗(x) ≤ 0) dΠ(x),

where η(x) = E[Y |X = x]. Next, for each x, we decompose the probability term

Pr(f̂n(x)f̃
∗(x) ≤ 0). For x such that f̃∗(x) > 0 holds, the misclassification error

is rewritten as

Pr(f̂n(x)f̃
∗(x) ≤ 0) = Pr(f̂n(x) ≤ 0)

≤ Pr(f̂n(x) ≤ 0 , ∥f̂n∥H ≤ U)︸ ︷︷ ︸
=T1

+Pr(∥f̂n∥H > U)︸ ︷︷ ︸
=T2

,

with a threshold value U > 0, specified in the full proof. We divide the event

by the value of ∥f̂n∥H associated with U , and then study each probability term

separately.

Step (iii). Bound the probability terms : We bound T1, using the hard-

margin condition. Define Ln(f) := n−1
∑n

i=1 ℓ(Yif(Xi)) + λ∥f∥2H. We show

that f̂n cannot be a minimizer of Ln(f) as (2.2) when T1 is large under

the hard-margin condition. Then, using the contradiction, we prove that T1

converges exponentially in n. This part mainly follows the same proof in

Koltchinskii and Beznosova (2005).

We bound T2 using the empirical process technique. This part is specific

to functional data, and hence some theory, such as Koltchinskii and Beznosova

(2005) does not work. First, we show that bounding the excess loss Ln(f̂n) −
Ln(f̃

∗) is sufficient to achieve the goal. To show the convergence of the excess

loss, we develop a covering number bound for H (Lemma 4 in the Supplementary

Material), and develop the following bound with probability at least 1− exp(−t):

|Ln(f)− L(f)| ≤ RcV,γ(log n)
−1/γ +

√
2t

n
,

for any f ∈ H such that ∥f∥H ≤ ∥f †∥H holds, and any t > 0 (Lemma 3 in the

Supplementary Material). Here, cV,γ is a constant depending on V and γ, which

are specified in the full proof. As a result, we achieve our goal with a sufficiently

large n.
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4. Experiments

In this section, we conduct numerical experiments to support our theoretical

result; that is, we analyze the change in the convergence rate of various

classification methods for functional data under the Delaigle-Hall and hard-

margin conditions.

4.1. Experimental setting

For the functional classification problem, we consider the following settings.

We generate functional data from two groups, with labels {−1, 1}. For each

group, we generate n functions on T = [0, 1], with a northogonal basis ϕ0(t) = 1

and ϕj(t) =
√
2 sin(πjt), ∀j ≥ 1. Here, n is set from 1 to 3,000. For a label +1,

we generate functional data Xi+(t) =
∑50

j=0(θ
1/2
j Zj+ + µj+)ϕj(t) with random

variables Zj+ and coefficients θj, µj+, for j = 0, 1, . . . , 50 and i = 1, . . . , n.

Similarly, for a label −1, we generate Xi−(t) =
∑50

j=0(θ
1/2
j Zj− + µj−)ϕj(t) with

random variables Zj− and coefficients µj−.

We consider the following two scenarios. The values of the random variables

and coefficients are determined separately. In Scenario 1, to consider perfect

classifiable data using the Delaigle-Hall condition, we set θj = j−2, µj− = 0, and

µj+ = j−γ , and draw Zj+, Zj− from a standard normal Gaussian distribution.

Here, γ handles the complexity of the mean of functional data, and thus

determines whether the data-generating process satisfies/violates the Delaigle-

Hall condition. If γ ≤ 3/2, the Delaigle-Hall condition is satisfied, and is violated

otherwise. In Scenario 2, we examine perfect classification according to the

hard-margin condition. We set θj = j−2, µj− = 0, and µj+ = 1{j = 0}µ,
and let Zj+, Zj− be from a uniform distribution on [−1/2, 1/2]. Here, µ is a key

parameter in terms of satisfying or violating the hard-margin condition. If µ ≥ 1

holds, the hard-margin conditions are satisfied, because the domains of P+ and

P− do not overlap. Otherwise, the hard-margin condition is violated. For each

method and n, we study its misclassification rate using 1,000 newly generated

data sets. We repeat each simulation experiment 200 times and report its mean.

The case in which the basis functions differ between labels is discussed in the

Supplemental Material.

4.2. RKHS classifier and the Delaigle-Hall/hard-margin condition

Here, we examine the misclassification rate of the RKHS method in (2.2).

We set the loss function as the logit loss ℓ(u) = log(1 + exp(−u)), and construct

the hypothesis space H using the functional RKHS associated with the Gaussian

kernel k(x, x′) = exp(−∥x − x′∥2/h), with functions x = x(t)and x′ = x′(t) and

a hyperparameter h > 0. The norm in the kernel is calculated as
∑∞

j=0(ξj − ξ′j)
2,

where ξj = ⟨x, ϕj⟩ and ξ′j = ⟨x′, ϕj⟩. By the representer theorem (Theorem 5.5
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Figure 1. Error (logarithm of misclassification error rate) by the RKHS against
log n. Left: Scenario 1 for the Delaigle-Hall condition, with γ ∈ {1.3(solid), 1.4(dashes),
1.6(dots), 1.7(dotdash)}. Right: Scenario 2 for the hard-margin condition, with µ ∈
{1.2 (solid), 1.1 (dashes), 0.9 (dot), 0.8 (dotdash)}.

in Steinwart and Christmann (2008)), the minimization problem is rewritten as

min
{wj}n

j=1

1

n

n∑
i=1

ℓ

(
Yi

n∑
j=1

wjk(Xi, Xj)

)
+ λ

n∑
j=1

w2
j ,

with the parameters w1, . . . , wn. We solve the optimization problem by using the

gradient descent method. The bandwidth h and the penalized parameter λ are

determined using cross-validation (CV) from {2−5, 2−4, . . . , 24}, minimizing the

misclassification rate in the newly generated test data.

In Scenario 1, we consider configurations of the mean decay parameter as

γ ∈ {1.6, 1.7} to satisfy the Delaigle-Hall condition, or γ ∈ {1.3, 1.4} to violate

the condition. In Scenario 2, we consider µ ∈ {0.8, 0.9} to satisfy the hard-

margin condition, or µ ∈ {1.1, 1.2} to violate it. For each scenario, we plot error

(logarithm of misclassification error) against logn in Figure 1.

Our results reveal the following findings. First, in Scenario 1 for the Delaigle-

Hall condition, the error curves show slight differences in shape and slope. That

is, the curves are convex when γ = 1.6 or 1.7 (the Delaigle-Hall condition is not

satisfied), which appears to result in slow convergence. Second, in Scenario 2

for the hard-margin condition, the error curves show fast convergence only when

µ = 1.2 and 1.1 (the hard-margin condition is satisfied). These results show that

the conditions affect the decay speed and errors, weakly for the Delaigle-Hall

condition, and drastically for the hard-margin condition.

Here, we investigate the effect of bandwidth selection on the results.

Specifically, we consider Scenario 1, and set the bandwidth to 10, 50, and

100, repeat each simulation 200 times, and calculate the average classification
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Figure 2. Error (logarithm of misclassification error rate) by the RKHS against log n.
Upper left: Scenario 1, with the bandwidth selected using CV. Other three: Scenario 1
for bandwidth λ = 10, 50, 100.

error. The results are shown in Figure 2. As the bandwidth increases, the

decay of the errors becomes more gradual. When the bandwidth is large, the

perfect classification does not hold, because the expressive power of the kernel is

reduced. Therefore, regardless of the value of γ, it becomes more difficult for the

exponential decay of the errors to hold.

4.3. Others methods and the Delaigle-Hall/hard-margin condition

In this section, we compare the misclassification errors of several common

classification methods for functional data. We consider the following classifiers:

(a) the kernel classifier (Dai, Müller and Yao (2017)); (b) the centroid method

(Delaigle and Hall (2012)); (c) the centroid method with a partial least square

(PLS) (Preda, Saporta and Lévéder (2007)); (d) a logistic regression with

a Gaussian process (GP); and (e) a linear discriminant analysis (LDA). The

hyperparameters in (b) and (c) are chosen in the same way as in Delaigle and

Hall (2012). The bandwidth of the kernel in (a) and the number of components

for the dimension reduction in (e) are selected using CV. The hyperparameters

in (d) are optimized using Algorithm 5.1 in Rasmussen and Williams (2006). We
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set n from 5 to 1,000. The remaining settings of the data-generating process and

the RKHS method are the same as those of the previous sections.

The results are shown in Figure 3: the left column shows Scenario 1 with

γ = 1.3, 1.4, 1.6, and 1.7, and the right shows Scenario 2 with µ = 1.2, 1.1, 0.9,

and 0.8. In Scenario 1 (left column), the parameter γ does not have a significant

impact on the curves, although the RKHS method shows a slight difference in

shape, as in the previous section. In Scenario 2 (right column), the parameter µ

has a significant impact. As µ increases and the hard-margin condition is satisfied,

the nonlinear methods (RKHS, GP, centroid, and kernel classifier) achieve fast

convergence. In contrast, the linear methods (PLS and LDA) do not. This

finding indicates that the nonlinear methods may achieve fast convergence with

the hard-margin condition.

5. Conclusion

In this study, we investigate the convergence rate of the misclassification

error of the classification problem for functional data, and discuss the feasibility

of a small error with finite samples. The Delaigle-Hall condition guarantees the

existence of a perfect classifier, which is a specific condition for functional data

that cannot occur for finite-dimensional data. However, the minimax rate of the

misclassification error with functional data, that is, the worst-case error, follows

logarithmic convergence in the sample size. Hence, it is not clear whether we can

achieve the perfect classification in practice with a realistic sample size. Our result

reveals that the Delaigle-Hall condition leads not only to the existence of a perfect

classifier, but also to the exponential convergence of the error. Furthermore,

the Delaigle-Hall condition is helpful when estimating from finite samples. This

reveals the specific advantage of treating functional data explicitly, because the

Delaigle-Hall condition is specific to infinite-dimensional data.

Note that Assumption 1 on a covering number restricts the available class

of functional data. This is unavoidable as long as we handle the properties of

functional data in a uniform way using the notion of metric entropy. A possible

way to avoid this is to use a spectral decomposition-based approach, as in Hall

and Horowitz (2007), which deals directly with the randomness of functional data

without entropy.

The considered classifier is typical and also different from modern adaptive

methods, such as neural networks. However, owing to this simplicity, we succeed

in clarifying the theoretical properties with a perfect classification. Moreover,

because analyses of adaptive methods are often extensions of analyses for simple

methods, our results may serve as a basis for further research.
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Figure 3. Error (logarithm of misclassification error) by the RKHS against log n of the
RKHS method (solid), centroid method (dots), logistic regression with Gaussian process
(dashdot), kernel classifier (bold dash), linear discriminant analysis (bold solid), and
centroid method with partial least square (bold dashdot). Left column: Scenario 1 with
γ ∈ {1.3, 1.4, 1.6, 1.7}. Right column: Scenario 2 for the hard-margin condition with
µ ∈ {1.2, 1.1, 0.9, 0.8}.
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Supplementary Material

The Supplementary Material contains detailed proof of the main theorem

and examples that satisfy conditions.
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