
Statistica Sinica 32 (2022), 1723-1743
doi:https://doi.org/10.5705/ss.202019.0414

MAXIMUM Lq-LIKELIHOOD ESTIMATION IN

FUNCTIONAL MEASUREMENT ERROR MODELS
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Abstract: We consider a robust parametric procedure for estimating the structural

parameters in functional measurement error models. The methodology extends the

maximum Lq-likelihood approach to the more general problem of independent, but

not identically distributed observations and the presence of incidental parameters.

The proposal replaces the incidental parameters in the Lq-likelihood with their es-

timates, which depend on the structural parameter. The resulting estimator, called

the maximum Lq-likelihood estimator (MLqE) adapts according to the discrepancy

between the data and the postulated model by tuning a single parameter q, with

0 < q < 1, that controls the trade-off between robustness and efficiency. The maxi-

mum likelihood estimator is obtained as a particular case when q = 1. We provide

asymptotic properties of the MLqE under appropriate regularity conditions. More-

over, we describe the estimating algorithm based on a reweighting procedure, as well

as a data-driven proposal for the choice of the tuning parameter q. The approach

is illustrated and applied to the problem of estimating a bivariate linear normal

relationship, including a small simulation study and an analysis of a real data set.

Key words and phrases: Functional measurement error models, incidental parame-

ters, maximum Lq-likelihood, robustness.

1. Introduction

This study deals with robust estimation in functional measurement error

models based on an extension of the maximum Lq-likelihood (MLq) approach

proposed by Ferrari and Yang (2010). In a typical measurement error model, a

response vector variable Y is functionally related to a vector covariate ξ that

is not observed exactly. Instead, it is observed with an error, a case often en-

countered in practice. Disregarding these measurement errors when estimating

the regression parameters results in asymptotically biased (i.e., inconsistent) es-

timators. Numerous methods have been proposed to correct for measurement

errors; see Fuller (1987), Cheng and Van Ness (1999), Carroll et al. (2006), and

Corresponding author: Patricia Giménez, Centro Marplatense de Investigaciones Matematicas, Facultad
de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CIC, Funes 3350, Mar del
Plata, Argentina. E-mail: pcgimene@mdp.edu.ar.

https://doi.org/10.5705/ss.202019.0414
mailto:pcgimene@mdp.edu.ar
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Buonaccorsi (2010), and the references cited therein.

The classical measurement error model considers that we observe the sur-

rogate X = ξ + u, independent of Y , where the measurement error u is a

random variable. Inference is based on a sample of n independent observations

Z1, . . . ,Zn, where Zj = (XT
j ,Y

T
j )T , for j = 1, . . . , n. If the unobserved covariates

ξ1, . . . , ξn are unknown constants, then the model is referred to as a functional

model, and ξ1, . . . , ξn are nuisance parameters, the number of which increases

with the sample size, called incidental parameters (Neyman and Scott (1948)).

If ξ1, . . . , ξn are considered a random sample from some distribution, then the

model is referred to as a structural model.

In this study, we consider functional models. We model the density function

of Zj , for j = 1, . . . , n, by

fj(zj ;θ, ξj) = fY (yj ;θ1, ξj)fX(xj ;θ2, ξj), (1.1)

where fY and fX are the models describing the relationships with the true unob-

served covariate of the response and the observed covariate, respectively. Further-

more, θ = (θT1 ,θ
T
2 )T and ξj , for j = 1, . . . , n, are vectors of unknown parameters.

Here, θ is the same for each j and is called a structural parameter; ξj , which

appears only once (in fj), is called an incidental parameter. Our main interest

lies in estimating the structural parameter θ.

It is not generally true that a maximum likelihood estimation produces con-

sistent estimators of θ (Stefanski (1985)). The problem is due to the large number

of nuisance parameters (Neyman and Scott (1948); Andersen (1970); Lancaster

(2000)). Mak (1982) studied a method for estimating θ that also covers the

maximum likelihood procedure.

On the other hand, the unwieldy functional likelihood and its failure to pro-

duce consistent estimators have motivated the search for alternative methods

of estimation, for example, the conditional and corrected score (Stefanski and

Carroll (1987); Nakamura (1990); Giménez and Bolfarine (2000); Carroll et al.

(2006)).

Measurement error model regression procedures are known to be non-robust,

because they are highly sensitive to outlying observations and/or mild deviations

from the assumed model, and are less robust than standard regression procedures

(Ammann and Van Ness (1988, 1989)). This has motivated the search for more

robust methods of estimation. In the literature, studies on robust estimation in

measurement error models focused mainly on the structural model. In this case,

unlike the functional model, the results are also sensitive to an incorrect spec-
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ification of the parametric distribution of the true covariate. In many ways, in

structural measurement error models, the methods for obtaining robust estimates

are analogous to those developed for the ordinary regression; see Cheng and Van

Ness (1999, Chap. 7) and the references cited therein, as well as Fekri and Ruiz-

Gazen (2004, 2006) and Croux, Fekri and Ruiz-Gazen (2010). The number of

robust options in the literature for estimating the structural parameter in a func-

tional measurement error model is quite limited, owing to the presence of the

incidental parameters. Carroll and Gallo (1982) discuss the classical independent

error model with replication in the predictors. Zamar (1985) investigates robust

orthogonal regression M -estimators. Abdullah (1989) presents a computational

scheme based on an iteratively reweighted regression method. Luong and Mak

(1991) propose M -estimators. Vilca-Labra, Bolfarine and Arellano-Valle (1998)

obtain robust estimators by deriving maximum likelihood estimators in a func-

tional linear model under the assumption of elliptical distributions of the errors.

In the same way, Galea and de Castro (2017) study a functional model with

replication using Student’s t distribution.

We adopt a different approach, and propose a new robust fully parametric

estimation procedure for functional measurement error models based on the MLq

approach introduced by Ferrari and Yang (2010) in the context of small-tail

inference. The method has an information-theoretical perspective because it is

based on minimizing an empirical version of the Tsallis–Havdra–Charvat entropy,

or q-entropy, employed in the context of statistical mechanics (Tsallis (1988)).

Ferrari and La Vecchia (2012) examine its infinitesimal robustness properties,

and show that the procedure is related to minimizing the power divergence, or

q-divergence (Cressie and Read (1984)), between the assumed model and the true

model density underlying the data, when the parameter is properly rescaled.

We obtain an estimator of the structural parameter of the model using the

MLq approach when the incidental parameters are first replaced by their esti-

mates, which depend on the structural parameter. The resulting estimator, called

the maximum Lq-likelihood estimator (MLqE), adapts according to the discrep-

ancy between the data and the postulated model by tuning a single parameter q

(0 < q ≤ 1), which controls the trade-off between robustness and efficiency. When

q < 1, data points with high likelihoods are assigned large weights. Outliers are

usually assigned small weights because of their low likelihoods. When the data

are consistent with the model and q → 1, the maximum likelihood estimator

(MLE) is obtained as a particular case.

The remainder of the paper is organized as follows. In Section 2, we re-

view the MLq estimation approach in the ordinary independent and identically
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distributed (i.i.d.) case. Then, we extend it to estimation in functional mea-

surement error models in the case of independent, but not identically distributed

observations and the presence of incidental parameters. In Section 3, we provide

asymptotic properties of the estimators under appropriate regularity conditions.

Section 4 describes the estimation algorithm and its convergence properties. In

Section 5, we briefly present a data-driven proposal for the choice of the tun-

ing parameter q. Section 6 applies the proposed approach to a bivariate linear

normal relationship and illustrates the performance of the method using a small

simulation study and an analysis of a real data set. Some concluding remarks

are provided in Section 7. The proofs are included in the online Supplementary

Material.

2. MLq estimation

2.1. MLq estimation for i.i.d. observations

Let G represent the true data-generating distribution having density g with

respect to the Lebesgue measure. The true unknown density function g is modeled

by the parametric family of densities F = {f(.;θ) : θ ∈ Θ ⊆ Rp}. It is assumed

that f(.;θ) = fθ and g have common support X ⊂ Rk, and that the family

F is identifiable. One way to estimate the parameters is to minimize a data-

based estimate of some appropriate divergence between the assumed model and

the true density underlying the data. Minimum divergence estimators can afford

considerable robustness at minimal expense of efficiency (Beran (1977)). The

MLq estimation approach introduced by Ferrari and Yang (2010) in the context of

small-tail inference provides a fully parametric estimation method that minimizes

the power divergence, or q-divergence, between the true density g generating the

data and the postulated model density fθ, defined by

Dq(g, fθ) = −1

q
EG Lq

{
f(Z;θ)

g(z)

}
= −1

q

∫
X
Lq

{
f(z;θ)

g(z)

}
g(z) dz, (2.1)

where Lq(u) = (u1−q − 1)/1 − q for q 6= 1, and Lq(u) = log u for q = 1,

recovering the Kullback–Leibler divergence. When q → 1, Lq(u)→ log(u). (2.1)

is a divergence in the sense that Dq(g, fθ) ≥ 0 and Dq(g, fθ) = 0 if and only if

the densities g and fθ are equal. Such a quantity was first considered by Cressie

and Read (1984) in the context of goodness-of-fit testing.

A direct minimization of (2.1) requires a nonparametric density estimation,

which can be troublesome in multidimensional problems. A nonparametric den-

sity estimation can be avoided by approaching the minimization of (2.1) indi-
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rectly by minimizing a generalized information measure called q-entropy, or non-

extensive entropy (Tsallis (1988)), given by

Hq(g, fθ) = −
∫
Lq{f(z;θ)}g(z) dz = −EG{Lq{f(Z;θ)}}. (2.2)

Ferrari and La Vecchia (2012) show that minimizingHq(g, fθ) is equivalent to

minimizing Dq(g(1/q), fθ), where g(1/q) is the density proportional to g1/q. There-

fore, a transformation on the estimates is required in order to obtain consistent

estimates for the true density g. The key advantage of working with (2.2) instead

(2.1) is that the former can be estimated easily from data averages.

Let θ0 and θ∗ be the minimizers of Dq(g, fθ) and Hq(g, fθ), respectively;

whereas θ is a generic element of Θ, θ∗ is called the surrogate parameter. The

existence and uniqueness of θ0 and θ∗ are assumed in the interior Θ◦ of Θ.

For 0 < α <∞, the power transformation of a density g is defined by

g(α)(z) =
g(z)α∫
g(z)α dz

, (2.3)

provided that the integral in the denominator converges and it is assumed that

F is closed under (2.3), for all 0 < α < 1. A continuous mapping τα : Θ → Θ is

defined satisfying f(z; τα(θ)) = f (α)(z;θ), ∀ z ∈ X . That is, τα(θ) is simply the

parameter of the density proportional to fαθ , which can be computed analytically

for common families of distributions, such as the exponential distribution.

The considerations above motivate the following estimation strategy. Given

Z1, . . . ,Zn, an i.i.d. sample from G, with g its corresponding density, a consis-

tent estimator of the surrogate parameter θ∗ can be obtained by minimizing the

empirical version of the q-entropy (2.2) or, equivalently, by maximizing the Lq-

likelihood function. That is, the MLqE is defined by θ̂∗n = argmaxθ∈Θ

∑n
j=1 Lq{

f(Zj ;θ)}.
Let U∗(Z;θ) = ∇Lq{f(Z;θ)} = U(Z;θ)f(Z;θ)1−q be the q-score function,

where U(Z;θ) = ∇ log{f(Z;θ)} is the usual maximum likelihood score function,

and ∇ is the gradient with respect to θ. Then, θ̂∗n is a solution of the estimating

equations
n∑
j=1

U∗(Zj ;θ) =

n∑
j=1

U(Zj ;θ)f(Zj ;θ)1−q = 0. (2.4)

When q 6= 1, (2.4) can be viewed as a weighted version of the efficient maximum

likelihood score equation, with weights proportional to the (1 − q)th power of

the assumed density. Throughout this article, we assume 0 < q < 1, such that
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observations that disagree with the model receive low weight, providing remark-

ably robust estimators with negligible efficiency losses compared with those of

the maximum likelihood. If q = 1, all observations get weights equal to one and

the MLqE coincides with the MLE.

Note that θ̂∗n is weakly consistent for θ∗. Assuming that τq(θ) is defined

for all θ ∈ Θ◦, Ferrari and La Vecchia (2012) show that θ̂n = τq(θ̂
∗
n) is weakly

consistent for θ0. This result is based on the fact that if fθ0 is the true density

generating the data, then Dq(f (1/q)
θ0 , fθ∗) = minθ∈ΘDq(f

(1/q)
θ0 , fθ), which is zero

if and only if fθ∗ = f
(1/q)
θ0 , that is, θ∗ = τ1/q(θ

0).

2.2. MLq estimation in functional measurement error models

Here, we extend the MLq approach to estimate the structural parameter

in functional measurement error models. Adapting the approach to the case

of independent, but not identically distributed observations and the presence

of incidental parameters requires a substantial and nontrivial extension to the

approach followed in the case of i.i.d. observations.

Let us assume that our data Z1, . . . ,Zn are independent, where Zj = (XT
j ,

Y T
j )T , with Yj the vector response variable and Xj the observed covariate. We

assume that each Zj has distribution function Gj and density gj with respect to

the Lebesgue measure. We want to model gj by the family Fj = {fj(.;θ, ξj), θ ∈
Θ ⊂ Rp, ξj ∈ Ξ ⊂ Rr}, for all j = 1, . . . n, where fj(.;θ, ξj) = fθ,ξj is the

assumed model density of Zj given in (1.1). Here, the observations Z1, . . . ,Zn
are independent, but not identically distributed. The structural parameter θ is

the same for each j, but fj depends also on the incidental parameter ξj .

We assume that for j = 1, 2, . . . , Fj is closed under the power transformation

(2.3). We define a continuous mapping τα : Θ × Ξ → Θ × Ξ, where τα(θ, ξj) =

(τ1
α(θ), τ2

α(ξj)), satisfying fj(z; τ1
α(θ), τ2

α(ξj)) = f
(α)
j (z;θ, ξj) ∀ z ∈ X , for j =

1, 2, . . . . The closure of Fj under (2.3) in the functional model seems to be a

stronger condition than in the structural model. However, a closed form for τα
can be obtained in some relevant cases. Consider, for example, the regression

setting where the response variable Yj follows the exponential family of densities

fY (yj ;β, ξj) = exp{η(βT ξj)
Ta(yj)− b(βT ξj)},

with a(.) and b(.) known functions. Here, the explanatory vector ξj is measured

with an independent normal error such that Xj follows a multivariate normal

density with mean ξj and covariance matrix Σ. When η(βT ξj) = βT ξj and

θ = (βT , vechTΣ)T , we obtain τ1
α(θ) = (αβT , α−1vechTΣ) and τ2

α(ξj) = ξj .
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Another example is given in Section 6.

We also assume the existence and uniqueness of (θ0, ξ0
1, . . . , ξ

0
n) and (θ∗, ξ∗1,

. . . , ξ∗n) as the minimizers of the averaged q-divergence (1/n)
∑n

j=1Dq(gj , fθ,ξj )
and the averaged q-entropy (1/n)

∑n
j=1Hq(gj , fθ,ξj ), respectively, for all large n.

We call θ∗ the surrogate structural parameter. Finally, we assume that τq is

defined for all (θ, ξ) in the interior of Θ× Ξ.

Given the sample Z1, . . . ,Zn, the MLqE θ̂∗n, ξ̂
∗
1, . . . , ξ̂

∗
n is defined by (θ̂∗n, ξ̂

∗
1,

. . . , ξ̂∗n) = argmaxθ,ξ1,...,ξn
∑n

j=1 Lq{fj(Zj ;θ, ξj)}. The main interest lies in esti-

mating the structural parameter. The approach pursued here replaces the inci-

dental parameters ξj with the estimators ξ̂j = ξ̂j(Zj ;θ), for j = 1, 2, . . . , given

by ξ̂j = argmaxξj∈Ξ Lq{fj(Zj ;θ, ξj)}, for j = 1, 2, . . . . Let

Hn(θ) =

n∑
j=1

Lq{fj(Zj ;θ, ξ̂j(Zj ;θ))} =

n∑
j=1

hj(Zj ;θ) (2.5)

be the objective function. Then, we can characterize θ̂∗n, if it exists, as θ̂∗n =

argmaxθ∈ΘHn(θ).

We assume that the following derivatives exist a.e. for all j :

∇khj(Zj ;θ) = U †jk(Zj ;θ) and ∇klhj(Zj ;θ) = I†jkl(Xj ;θ), k, l = 1, . . . , p,

where ∇k and ∇kl represent the partial derivatives with respect to the indicated

components of θ. Let U †j (Zj ;θ) = (U †j1(Zj ;θ), . . . , U †jp(Zj ;θ))T and I†j (Zj ;θ) be

the symmetric matrix with (k, l)th element equal to I†jkl(Zj ;θ).

Differentiating (2.5) with respect to θ, we have the following estimating equa-

tion:
n∑
j=1

U †j (Zj ;θ) =

n∑
j=1

Ũj(Zj ;θ)f̃j(Zj ;θ)1−q = 0, (2.6)

where

f̃j(Zj ;θ) = fj(Zj ;θ, ξ̂j) and Ũj(Zj ;θ) = Uj(Zj ;θ, ξ̂j), (2.7)

with Uj(Zj ;θ, ξj) = ∇ log fj(Zj ;θ, ξj).

The MLqE θ̂∗n is obtained as a solution of the estimating equation (2.6). This

equation is satisfied by the maximizer of Hn(θ) in (2.5), whenever this maximum

exists.

We also define the matrices

Λn(θ) =
1

n

n∑
j=1

EGj

[
I†j (Zj ;θ)

]
and Γn(θ) =

1

n

n∑
j=1

EGj

[
U †j (Zj ;θ)U †j (Zj ;θ)T

]
.
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If the true densities belong to the model family, then these matrices will depend

on the incidental parameters ξ1, . . . , ξn.

3. Asymptotic Properties

In this section, we study the asymptotic properties the MLqE of the structural

parameter. The consistency and asymptotic normality of the MLqE θ̂∗n can be

derived under appropriate regularity conditions. Because in a functional model,

the basic assumption that the observations are i.i.d. is not met, these regularity

conditions are quite different from the usual i.i.d. case. We assume the following:

C0. (1/n)
∑n

j=1EGj
[hj(Zj ; .)] converges uniformly to a function h̄(.) in a neigh-

borhood of θ†, where θ† ∈ Θ◦ is a local maximum of h̄.

Some additional regularity conditions (C1 to C6) are provided in the Sup-

plementary Material to establish the asymptotic properties of the MLqE.

Moreover, the asymptotic results of this section are derived under the as-

sumption that at θ†, we have

EGj
[U †j (Zj ;θ

†)] = 0, j = 1, 2, . . . . (3.1)

Theorem 1. Let θ† in the interior of Θ satisfy the regularity conditions C0 and

C1 to C6 in the Supplementary Material, as well as assumption (3.1),

(i) With probability tending to one, (2.6) has a root θ̂∗n, which converges in

probability to θ†. If θ̃n is any other consistent root of (2.6), then θ̂∗n = θ̃n
with probability tending to one.

(ii) θ̂∗n is asymptotically normal with mean θ† and covariance matrix n−1Ωn(θ†),

where Ωn(θ) = Λ
−1
n (θ)Γn(θ)Λ

−1
n (θ)T .

The proof is provided in the Supplementary Material.

Remark 1. When all the true densities gj belong to the model family so that

gj = fj(.;θ
0, ξ0

j ), for some common θ0, we have that

n∑
j=1

Dq(f (1/q)
θ0,ξ0j

, fθ∗,ξ∗j ) = min
θ,ξ1,...,ξn

n∑
j=1

Dq(f (1/q)
θ0,ξ0j

, fθ,ξj ),

for all n, which is zero if and only if fθ∗,ξ∗j = f
(1/q)
θ0,ξ0j

, for j = 1, 2, . . . , that is

θ∗ = τ1
1/q(θ

0) and ξ∗j = τ2
1/q(ξ

0
j ), for j = 1, 2, . . . . Owing to the noise in estimating

ξ̂j , in general, θ† is not equal to θ∗, unlike what happens for an i.i.d. sample.
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In this case, θ† depends in general on the surrogate structural parameter θ∗ and

the incidental parameters ξ∗1, . . . , ξ
∗
n. Assumption (3.1) is satisfied when it is

possible to obtain estimators ξ̂j(Zj ;θ) so that θ† is determined only by θ∗ and

is independent of the incidental parameters. In this case, there exists a function

ρ(.) such that θ† = ρ(θ∗), as shown in the model considered in Section 6.

Remark 2. When the true densities belong to the model family and there exists

a one-to-one function ρ(.) such that θ† = ρ(θ∗), a consistent estimator of θ0 is

given by θ̂n = ηq(θ̂
∗
n), where ηq = τ1

q ◦ ρ−1. When this is the case, we call θ̂n
the corrected MLqE. We have that θ̂n is asymptotically normal with mean θ0

and covariance matrix n−1DΩn(θ†)DT , where D is the matrix ∇ηq evaluated in

θ†. The asymptotic properties of the MLqE depend on the asymptotic behavior

assumed for the incidental parameter sequence. When q = 1, we can obtain, as a

particular case, the asymptotic results derived by Mak (1982), which include the

maximum likelihood estimation in functional measurement error models.

4. Estimation Algorithm

The form of the estimating equation suggests exploring reweighting strategies

to compute the estimates. If we define

ωj = ωj(Zj ;θ) =
f̃j(Zj ;θ)1−q∑n
k=1 f̃k(Zk;θ)1−q

, (4.1)

the estimating equation can be written as
∑n

j=1 ωjŨj(Zj ;θ) = 0, where ωj , for

j = 1, . . . , n, are weights that depend on the assumed model density, such that∑n
j=1 ωj = 1. If θ(s) denotes the estimator in step s, then the estimator in step

s+ 1 satisfies
n∑
j=1

ω
(s)
j Ũj(Zj ;θ

(s+1)) = 0, (4.2)

where the weights ω
(s)
j = ωj(Zj ;θ

(s)), computed using (4.1), are updated at each

step. If 0 < q < 1, observations that disagree with the model receive a low weight.

In the case q = 1, all observations receive the same weight and the estimators

coincide with the MLE. The algorithm can be initialized by setting θ(0) as the

MLE. The process continues until the convergence criterion ‖θ(s+1) − θ(s)‖ < δ,

for a certain stopping rule δ, is satisfied. The results in Arslan (2004) can be used

to study the convergence properties of the algorithm.

It can be shown that the algorithm (4.2) produces at each step an ascent of

the objective function Hn given in (2.5). If we define the function Qn : Θ×Θ→
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R by Qn(u,v) = −
∑n

j=1 f̃j(zj ;v)1−q log f̃j(zj ;u), then the iterative procedure

given by (4.2) implicitly defines a mapping Mn : Θ→ Θ with θ(s+1) = Mn(θ(s)),

for s = 0, 1, 2, . . . , whereMn(v) = argminu∈Θ Qn(u,v). Because ∂Qn(u,v)/∂u =

−
∑n

j=1 f̃j(zj ;v)1−qŨj(zj ;u), we can see that v is a stationary point of Hn if and

only if it is a fixed point of Mn.

In the following proposition, we show that if θ(s), for s = 0, 1, 2, . . . , is not

a fixed point of Mn, then the sequence {Hn(θ(s))}, for s = 0, 1, 2, . . . , forms a

monotone increasing sequence.

Proposition 1. If v is not a fixed point of Mn, then Hn(v) < Hn(Mn(v)).

The global convergence behavior of the sequences {θ(s)}s≥0 and {Hn(θ(s))}s≥0 is

presented in the following proposition.

Proposition 2. Let {θ(s)}s≥0 be a sequence generated by the equation θ(s+1) ∈
Mn(θ(s)), with an initial point θ(0) ∈ Θ. If all the points {θ(s)}s≥0 are contained

in a compact subset of Θ, then all the limit points of {θ(s)}s≥0 are stationary

points of Hn, and Hn(θ(s)) converges increasingly to Hn(θ∗), where θ∗ ∈ Θ is a

stationary point of Hn.

Note that the notation θ(0) here refers to the starting point, and not to the

true value of the parameter θ0.

When the reweighting algorithm starts from a point very close to the max-

imum of the objective function Hn, then the sequence {θ(s)}s≥0 converges to it

(Arslan (2004)). If the MLE cannot be computed efficiently, then it might be

better to take a random starting point. Another alternative could be to take the

naive MLE, which maximizes
∑n

j=1 log{fY (yj ;θ,xj)}, assuming that the covari-

ates ξ1, . . . , ξn are observed without error.

5. Choice of Parameter q

Having a reasonable strategy for selecting q is crucial for applying the method

to practical real-data scenarios, because there may be substantial variation in the

performance of the estimators. The meaning of the parameters of each model

could determine a more restrictive range of admissible values of q, as is the case

for the application of Section 6.

There can be no universal way of selecting an appropriate value of q in a given

situation. Choosing the tuning parameter to minimize the estimated summed

mean squared error is a quite general approach for families of robust methods

indexed by tuning parameters. Warwick and Jones (2005) and Ghosh and Basu

(2015) minimize of the estimated asymptotic mean squared error. For the numer-
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ical example of Section 6, we consider a data-based choice of an appropriate value

of q by minimizing a parametric bootstrap estimate of the mean squared error of

the corrected MLqE, θ̂n. Given the observed sample {z1, . . . ,zn}, for q fixed in a

grid Q = {q1, . . . , qm}, the corresponding θ̂
(q)
n is computed and ξ̂

(q)
j = ξ̂j(zj ; θ̂

(q)
n ),

for j = 1, . . . , n. Then, B bootstrap samples of size n, {z∗1 , . . . ,z∗n}, are taken

from the densities fj(.; θ̂
(q)
n , ξ̂

(q)
j ), for j = 1, . . . , n. For each of the B samples,

the estimators θ̂
(q)
n,(b), for b = 1, . . . , B, are calculated and the mean squared er-

ror (MSE) of θ̂
(q)
n is estimated using M̂SE(θ̂

(q)
n ) = B−1

∑B
b=1 ‖θ̂

(q)
n,(b) − θ̂

(q)
n ‖2.

The procedure is repeated for all q ∈ Q, and the optimal q is chosen as qopt =

argminq∈Q M̂SE(θ̂
(q)
n ). A parametric bootstrap estimate of the MSE may be more

accurate than its nonparametric version, because in the latter case, outliers in

the original sample may appear multiple times in a resample.

6. Application to the Simple Linear Functional Model with Normal

Errors

Consider the simple linear regression model represented by the equations

Yj = α+ βξj + ej , and Xj = ξj + uj , j = 1, . . . , n, (6.1)

where ej and uj are independent and normally distributed with zero means and

variances σ2
e and σ2

u, respectively. Here, we consider the case where λ = σ2
e/σ

2
u

is assumed to be known for the identifiability of the model. Without loss of

generality, it is assumed that λ = 1, implying that σ2
e = σ2

u = φ. The structural

parameter is θ = (α, β, φ)T . The unknown quantities ξ1, . . . , ξn are incidental

parameters because their number increases with the sample size. Denote the true

unknown parameters by θ0 = (α0, β0, φ0)T and ξ0
j , for j = 1, 2, . . . . Model (6.1)

can be written as Zj = a+ bξj + εj , for j = 1, . . . , n, where Zj = (Xj , Yj)
T are

observable, εj = (uj , ej)
T , for j = 1, . . . , n are i.i.d. with εj ∼ N2(0, φI2), a =

(0, α)T , and b = (1, β)T . Then, Zj ∼ N2(µj , φI2), where µj = a + bξj . We

denote by fj(zj ;θ, ξj) the assumed model density. Observations Z1, . . . ,Zn are

independent, but not identically distributed. Here, the structural parameter

θ = (α, β, φ)T is the same for each j, but fj depends also on the incidental

parameter ξj . Note that the family density model is closed under transformation

(2.3), where τq(θ, ξj) = (τ1
q (θ), τ2

q (ξj)), with τ1
q (θ) = (α, β, q−1φ) and τ2

q (ξj) = ξj .

The Lq-likelihood function is given by
∑n

j=1 Lq{fj(Zj ;θ, ξj)}. Solving ∂Lq{
fj(Zj ;θ, ξj)}/∂ξj = 0, we obtain for each j and a given θ, the conditional MLqE

of ξj given θ, ξ̂j = ξ̂j(Zj ;θ) = c−1[Xj + β(Yj − α)], where c = bTb = 1 + β2.
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Then, replacing ξj by ξ̂j in the Lq-likelihood, we obtain the objective function

Hn =

n∑
j=1

hj(Zj ;θ) =

n∑
j=1

Lq{f̃j(Zj ;θ)}, (6.2)

where f̃j(Zj ;θ) = fj(Zj ;θ, ξ̂j) = (1/2πφ) exp
{
−(1/2cφ)(Yj − α− βXj)

2
}
.When

the true density belongs to the model, that is, gj(.) = fj(.,θ
0, ξ0

j ), with θ0 =

(α0, β0, φ0)T , there exists a parameter θ† = (α0, β0, kφ0)T , where k = q − (1/2),

that maximizes (1/n)
∑n

j=1Ej [hj(Zj ;θ)] for all large n. Furthermore, the pa-

rameter satisfies Ej [U
†
j (Zj ;θ

†)] = 0, for j = 1, 2, . . . , where Ej denotes the

expectation with respect to the model distribution N2(µ0
j , φ

0I2), with µ0
j =

a0 + b0ξ0
j , a

0 = (0, α0)T , and b0 = (1, β0)T . Derivations of these results are

included in Lemmas 1 to 3 in Section S3.2 of the Supplementary Material.

Because the parameter φ† = kφ0 is related to the error variance, it must be

that k > 0, and then we have 1/2 < q ≤ 1. Furthermore, it can be shown that

the regularity conditions are satisfied, provided that the sequence of incidental

parameters (ξ0
j ) verify 0 < lim inf(1/n)

∑n
j=1(ξ0

j − ξ̄0
n)2 ≤ lim sup(1/n)

∑n
j=1(ξ0

j −
ξ̄0
n)2 < ∞, where ξ̄0

n = (1/n)
∑n

j=1 ξ
0
j and limn→∞(1/n1+γ/2)

∑n
j+1 |ξ0

j |2+γ = 0,

for some γ > 0 (see Mak (1982)). Because the sequence of incidental parameters is

not observable, we cannot guarantee the validity of these assumptions. However,

we can see that they are satisfied if ξ̄0
n and (1/n)

∑n
j=1(ξ0

j − ξ̄0
n)2 converge to finite

limits. This latter condition is the most commonly adopted in the literature on

asymptotics in functional measurement error models; see, for example, Gleser

(1983).

Obtaining an explicit expression for the asymptotic covariance matrix and

asymptotic relative efficiency with respect to the MLE involves extensive, though

not complicated calculations, which we omit here for brevity. These results and

an extension of the MLq approach to the multivariate linear model are deferred

to future research.

A simple reweighting algorithm can be derived to compute the MLqE θ̂∗n =

(α̂∗n, β̂
∗
n, φ̂

∗
n)T , following the strategy described in Section 4. The resulting equa-

tions are a weighted version of the maximum likelihood equations (Kimura (1992);

Gleser (1981)). A derivation of the algorithm is included in Section S3.1 of the

Supplementary Material.

Note that the MLqE of θ is consistent for α and β, but not for φ. We have

that ηq(θ̂
∗
n) = (α̂∗n, β̂

∗
n, k
−1φ̂∗n)T , with k = q − 1/2, is consistent for θ, where ηq

corresponds to the mapping defined in Remark 2 of Section 3.

In the next subsections, we analyze the performance of the estimators by
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means of a small simulation study and the analysis of a real data set.

6.1. Simulation study

We perform a small simulation study in order to investigate the efficiency

and robustness of the MLqE under the pure model and various levels and types

of contamination. We focus mainly on analyzing the behavior of the estimators

when q varies. Owing to space considerations we do not include a simulation here

to explore the empirical performance of the data-driven selection criterion for the

tuning parameter under the different scenarios of contamination.

We used 1,000 replications to estimate the empirical bias, variance, and MSE

of the MLqE of parameter θ = (α, β, φ)T . The MSE is the sum of the MSEs of

the three individual estimators. For each simulation experiment, we choose the

true values of the parameters to be α0 = 0, β0 = 1, and φ0 = 0.1. We take

the sample size as n = 50. We choose true covariates ξj randomly from the

N(0, 1) distribution. To create different scenarios of contamination, we choose

the random errors uj and ej as follows:

uj ∼ (1− δx)N(0, φ) + δxN(2, φ) and ej ∼ (1− δy)N(0, φ) + δyN(2, φ).

This gives the case where approximately 100δx% of the observations represent

leverage points, and 100δy% of the residuals are large. The case of a fully pure

model with no artificially introduced large residuals or leverage points is obtained

by fixing δx = 0 and δy = 0. Choosing δx = 0 or δy = 0, we have just large

artificial residuals or leverage points, respectively. We fixed a grid for 0.5 < q ≤ 1

with increments of 0.01.

For brevity, we present only some results for the sample size n = 50 and

φ = 0.1. The results for other sample sizes and values of φ are qualitatively

similar. In Table 1, the overall Monte Carlo MSE of the corrected MLqE of θ

is presented for several values of q and different levels of contamination given by

combinations of δx and δy. The minimum values of MSE in the table are shown

in bold, and qminMSE denotes the value of q that minimizes the Monte Carlo

mean squared error.

As expected, at the true model (δx = 0 and δy = 0), the MSE of the corrected

MLE (q = 1) is smaller than that of the MLqE with q < 1. This situation changes

progressively as the level of contamination increases. By setting q < 1, we can

successfully trade bias for variance and obtain a better estimation. We see that

as the contamination increases, the MLE performs worst and the MSE of the

MLqE tends to be smaller for values of q increasingly far from one. In Table
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Table 1. Simulated MSE of the corrected MLqE of θ, with φ = 0.1 and sample size
n = 50.

q

δx δy 1 0.95 0.90 0.85 0.80 0.75 0.70 qminMSE

0 0 0.0092 0.0094 0.0099 0.0109 0.0127 0.0169 0.0259 1

0.02 0 0.0185 0.0131 0.0112 0.0115 0.0131 0.0173 0.0266 0.89

0.05 0 0.0429 0.0277 0.0166 0.0137 0.0144 0.0191 0.0283 0.84

0.10 0 0.1007 0.0764 0.0472 0.0269 0.0207 0.0230 0.0328 0.79

0.15 0 0.1733 0.1493 0.1136 0.0703 0.0448 0.0375 0.0441 0.76

0.20 0 0.2465 0.2280 0.1989 0.1513 0.1001 0.0748 0.0724 0.71

0.02 0.02 0.0293 0.0187 0.0133 0.0125 0.0138 0.0186 0.0281 0.86

0.02 0.05 0.0612 0.0400 0.0227 0.0154 0.0152 0.0201 0.0289 0.83

0.05 0.05 0.0793 0.0558 0.0322 0.0192 0.0177 0.0223 0.0314 0.81

0.02 0.10 0.1500 0.1179 0.0772 0.0421 0.0302 0.0305 0.0402 0.78

0.05 0.10 0.1603 0.1324 0.0940 0.0539 0.0379 0.0376 0.0472 0.78

0.02 0.15 0.2799 0.2503 0.2045 0.1388 0.0917 0.0779 0.0791 0.73

0.05 0.15 0.2881 0.2647 0.2266 0.1627 0.1061 0.0853 0.0946 0.73

2, we compare the behavior of the MLE and the MLqE of the parameter β

for q = qminMSE , in terms of bias, variance, and MSE, for different levels of

contamination. The MLqE has bias noticeably smaller than that of the MLE

under all considered contamination scenarios. There is also a variance reduction

in the MLqE with respect to the MLE, except for percentages of contamination

between 15% and 20%. Figure 1 shows the bias distribution of the MLqE of the

parameter β for percentages of contamination with leverage points 5%, 10%, 15%,

and 20% for various values of q. The box plots represent distributions of 1,000

simulated values β̂r − β0, for r = 1, . . . , 1000. We can see, for example, that the

MLqE of β can withstand up to 5% contamination for q = 0.85, 15% for q = 0.8,

and almost 20% for q = 0.75. The behavior for the other model parameters with

different values of φ is similar, though the optimal values of q increase and are

closer to one when φ increases.

6.2. Numerical example

In this section, we explore the numerical performance of the MLqE by ana-

lyzing a real data set. For all numerical calculations, the stopping rule for the

reweighting algorithm is taken as δ = 10−6. The algorithm converges quickly,

typically around 15 or 20 iterations, for values of q near the optimal.

We compare the robustness performance of the MLqE with respect to that

of the MLE, considering the consistent estimator of the parameter φ. We present
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Table 2. Monte Carlo squared bias, variance, and MSE of the MLE and MLqE of β with
q = qminMSE , for φ = 0.1 and sample size n = 50.

MLE MLqE

δx δy bias2 Var MSE bias2 Var MSE q

0 0 0.0000 0.0049 0.0049 0.0000 0.0049 0.0049 1

0.02 0 0.0014 0.0075 0.0089 0.0000 0.0058 0.0058 0.89

0.05 0 0.0079 0.0101 0.0180 0.0000 0.0071 0.0071 0.84

0.10 0 0.0253 0.0126 0.0379 0.0001 0.0008 0.0109 0.79

0.15 0 0.0480 0.0128 0.0608 0.0007 0.0197 0.0204 0.76

0.20 0 0.0697 0.0126 0.0823 0.0031 0.0371 0.0402 0.71

0.02 0.02 0.0000 0.0126 0.0126 0.0000 0.0064 0.0064 0.86

0.02 0.05 0.0053 0.0195 0.0248 0.0001 0.0077 0.0078 0.83

0.05 0.05 0.0002 0.0228 0.0230 0.0000 0.0096 0.0096 0.81

0.02 0.10 0.0276 0.0315 0.0591 0.0003 0.0160 0.0163 0.78

0.05 0.10 0.0109 0.0352 0.0461 0.0004 0.0216 0.0220 0.78

0.02 0.15 0.0699 0.0400 0.1099 0.0020 0.0466 0.0486 0.73

0.05 0.15 0.0430 0.0517 0.0947 0.0022 0.0516 0.0538 0.73

2% 5% 10
%

15
% 2% 5% 10
%

15
% 2% 5% 10
%

15
% 2% 5% 10
%

15
%

-0.5

0.0

0.5

q = 1 q = 0.9 q = 0.8 q = 0.75

Figure 1. Bias distributions of the MLqE of β for values of q = 0.75, 0.80, 0.90, and 1
under a contaminated normal distribution with percentages of contamination 2%, 5%,
10%, and 15%, for φ = 1 and n = 50.

a data-driven way of choosing the tuning parameter q by minimizing a bootstrap

estimate of the MSE, as described in Section 5. We fixed a grid for 0.5 < q ≤ 1

with increments of 0.01, and based the calculations on 500 bootstrap repetitions.

Example 1. (Hertzsprung–Russell data of the star cluster). These data come

from astronomy and are taken from Rousseeuw and Leroy (1987), who studied
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the robust least median of squares (LMS) estimator in the context of an ordinary

simple linear regression. The Hertzsprung–Russell diagram of the star cluster

CYG OB1 contains 47 stars in the direction of Cygnus. For these data, x is the

logarithm of the effective temperature at the surface of the star (Te), and y is

the logarithm of its light intensity (L/L0). Rousseeuw and Leroy (1987) inferred

that there are two groups of data points; the four stars known as red giants (with

indices 11, 20, 30, and 34) in the upper-left corner of the scatter plot (Fig. 2)

represent a huge leverage point, and clearly form a separate group. The data

were also analyzed by Ghosh and Basu (2013, 2015) for robust regression using

the density power divergence approach. Here, we consider a simple linear re-

gression with measurement errors (which corresponds to the case of model (6.1),

with p = 1), taking into account that, in general, linear regression in astronomy

is characterized by measurement errors in the variables (Kelly (2007)). On the

other hand, because the only stars of interest are those represented in the sample,

we can consider that the true covariates are not a random sample from a large

population. Then, it seems appropriate to consider a functional model. The pa-

rameters of the model are α, β, and φ. The assumption that both measurements

are subject to random errors with equal variances seems reasonable. The MLqE

of the model parameters for some values of q are presented in Table 3. It is clear

that the MLE corresponding to q = 1 is highly sensitive to the presence of the

four leverage points. We can see that for 0.7 ≤ q ≤ 0.95, the MLqE is quite close,

can ignore the outliers, and provides satisfactory fits. The optimal q obtained us-

ing the parametric bootstrap is q = 0.88, and the corresponding MLqE estimates

are α̂ = −21.09, β̂ = 5.90, and φ̂ = 0.01. For comparison, we find the MLE and

the MLqE after removing the four extreme outliers (cases 11, 20, 30, and 34) and

the outlying point 7. The resulting estimates are presented in Table 4, and the

fitted lines along with the MLE and the MLqE fits for the full data are plotted in

Figure 2. We can see that the MLE fits without the outliers are very close to the

MLqE fit for the full data with q = 0.88. Moreover, as expected, the MLqE fits

after removing the outliers are very close to the MLE fits, with optimal values of

q closer to one.

7. Conclusion

We have provided a robust fully parametric estimation procedure that ex-

tends maximum likelihood estimation in functional measurement error models.

The method also extends the MLq approach to the more general problem of esti-

mation where we have independent, but not identically distributed observations



MAXIMUM Lq-LIKELIHOOD ESTIMATION 1739

Table 3. MLqE and number of iterations of the algorithm for the Hertzsprung–Russell
data using several values of q.

q 1 0.95 0.90 0.85 0.80 0.75 0.70
α̂ 35.43 -20.46 -21.01 -21.13 -21.03 -20.78 -20.44

β̂ -7.06 5.77 5.88 5.91 5.88 5.83 5.75

φ̂ 0.08 0.01 0.01 0.01 0.01 0.01 0.01
iter. 1 28 17 17 14 19 26

Table 4. MLE and MLqE for the Hertzsprung–Russell data using all data and with
outliers removed.

Using all data Removing cases Removing cases

11, 20, 30, 34 7, 11, 20, 30, 34

Estimates MLE MLqE MLE MLqE MLE MLqE

q = 0.88 q = 0.90 q = 0.93

α̂ 35.43 -21.09 -18.26 -21.01 -20.75 -20.95

β̂ -7.06 5.90 5.28 5.88 5.84 5.87

φ̂ 0.08 0.01 0.01 0.01 0.01 0.01
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Figure 2. Scatter plot and four fitted regression lines for Hertzsprung–Russell data. MLE
using all data and with outliers removed and MLqE using all data.

and the presence of incidental parameters. The method applies generally to any

functional measurement error model, as long as the model family assumed is

closed under a power transformation. We have established asymptotic properties

of the MLqE under appropriate regularity conditions. The estimation procedure
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can be implemented easily by a simple and fast reweighting algorithm with well-

established convergence behavior. The MLqE adapts according to the discrepancy

between the data and the postulated model by tuning a single parameter q, which

for 0 < q < 1 controls the balance between robustness and efficiency. Choices of

q near one afford considerable robustness, while retaining efficiency close to that

of the MLE.

Our illustration of the methodology using a simple linear model showed that

the MLqE is appealing in that it provides practitioners with a simple and fast es-

timation strategy with satisfactory fit to real-world data, while keeping a simple

normal model. A simulation study and real-data analysis showed the satisfac-

tory behavior of the MLqE and its advantages over the MLE in the presence

of outlying observations and/or deviations from the assumed model. There can

be no universal way of selecting an appropriate value of q in a given situation.

We consider a data-based choice of an appropriate value of q by minimizing a

bootstrap estimate of the mean squared error of the estimators. However, other

strategies for the optimal selection of q should be explored as well.

For the sake of brevity, we illustrated the proposed approach using a normal

simple linear model. However, the results can be extended without difficulty to

a multivariate functional linear model. In this case, the steps of the reweighting

algorithm reduce to a simple variable transformation of the algorithm proposed

by Gleser (1981).

Estimation for functional generalized linear measurement error models in

canonical form when the explanatory vector is measured with an independent

normal error could be addressed using the proposed methodology. For some of

these models, the family of densities of Zj = (XT
j , Yj)

T , given by (1.1), will

be closed under the power transformation (2.3), as mentioned in Section 2.2.

Moreover, for these models, we might consider replacing the incidental parame-

ters ξj with uniform minimum variance unbiased estimators that depend on the

structural parameters, as in Stefanski and Carroll (1987).

Furthermore, because the proposed approach uses a quite general incidental

parameter framework, it can be applied in settings beyond functional measure-

ment error models, such as panel, longitudinal, or clustered data models, when

the likelihood can be fully specified.

In this study, we replace the incidental parameters in the Lq-likelihood with

their estimates, which depend on the structural parameters. Moreover, in some

models, the incidental parameters can be eliminated by conditioning on certain

sufficient statistics (Andersen (1970)). Then, based on a conditional density

independent of the incidental parameters, an MLq approach can be explored.
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Another case of interest is the hypothesis testing problem. Asymptotics on

MLqE can be used to develop a robust and efficient test of a hypothesis involving

the structural parameter. Wald-type tests and Lq-likelihood-ratio-type tests, as

introduced by Qin and Priebe (2017), can be considered.

Supplementary Material

The online Supplementary Material includes (i) the regularity conditions used

to prove the asymptotic properties, (ii) proofs of Theorem 1 and Propositions 1

and 2, and (iii) derivations of some results in the simple linear functional model.
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