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Abstract: High-dimensional self-exciting point processes are widely used to model

discrete event data in which past and current events affect the likelihood of future

events. In this study, we detect abrupt changes in the coefficient matrices of discrete-

time high-dimensional self-exciting Poisson processes, which have yet to be studied

because of the theoretical and computational challenges in the nonstationary and

high-dimensional nature of the underlying process. We propose a penalized dynamic

programming approach, supported by a theoretical rate analysis and numerical

evidence.
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1. Introduction

Self-exciting point processes (sepps) are useful for modeling discrete event

data in which past and current events help to determine the likelihood of future

events. Such data are common in spike trains recorded from biological networks

(e.g., Brown, Kass and Mitra (2004); Pillow et al. (2008)), interactions within a

social network (e.g., Zhou, Zha and Song (2013); Hall and Willett (2016)), pric-

ing changes within financial networks (e.g., Chavez-Demoulin and McGill (2012);

Aı̈t-Sahalia, Cacho-Diaz and Laeven (2015)), power failures in networked elec-

trical systems (e.g., Ertekin, Rudin and McCormick (2015)), crime and military

engagements (e.g., Stomakhin, Short and Bertozzi (2011); Blundell, Beck and

Heller (2012)) and a variety of other settings.

Sepps were, first studied rigorously in a mathematical framework by Hawkes

(1971), who proposed the eponymous Hawkes process. Since then, numerous

studies have examined different aspects of understanding and using the univari-

ate Hawkes process; see Laub, Taimre and Pollett (2015) and Reinhart (2019) for
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comprehensive and contemporary reviews. More recently, the increasing avail-

ability of rich data sets and computational resources has resulted in a shift to

multivariate and even high-dimensional sepps, where the coordinates might cor-

respond to, for example, geographic locations, neurons in a biological neural

network, people in a social network, and so on; see, for instance, Hall, Raskutti

and Willett (2016), Mark, Raskutti and Willett (2018), Chavez-Demoulin and

McGill (2012), and Ertekin, Rudin and McCormick (2015).

In these high-dimensional settings, understanding how events in one coor-

dinate influence the likelihood of events in another coordinate provides valuable

insight into the underlying process. We call the collection of these influences be-

tween pairs of coordinates a “network”. We propose novel methods for detecting

abrupt changes networks with theoretical performance bounds that characterize

the accuracy of the change point estimation and how strong the signals must be

to ensure a reliable estimation.

Although there is a rich body of literature on change point detection, to

the best of our knowledge, there are no methodologies for detecting changes in

sepps in high dimensions. Recent works on high-dimensional change point detec-

tion include those of Wang, Yu and Rinaldo (2018) and Padilla, Yu and Priebe

(2019), who study change point detection in Bernoulli networks and dynamic ran-

dom dot product graphs, respectively. Cho and Fryzlewicz (2015), Cho (2016),

Matteson and James (2014), Wang and Samworth (2018), Dette and Gösmann

(2018) and others have investigated high-dimensional mean change problems.

Wang, Yu and Rinaldo (2017) and Aue et al. (2009), among others have in-

vestigated high/multi-dimensional covariance structure changes. Safikhani and

Shojaie (2017) and Wang et al. (2019) use high-dimensional vector autoregres-

sive models to provide change point detection results, and Li et al. (2017) focus

on a low-dimensional Hawkes process setting, in which the processes may be

characterized by a small number of parameters.

Given the abundant existing literature, we see a vacuum in the research on

high-dimensional integer valued time series change point detection, which on its

own has already been of high demand in application areas. For example, in a

biological neural network, the recorded data are spike trains recorded on neurons

and are in the form of integers. It is of increasing interest to detect and understand

the underlying changes in such a network. In a communication network, the data

can be the number of emails sent by individuals from a large firm and are again

in the form of integers. Estimating underlying changes in the communication

network has been used for legal investigation among many other uses.
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In this paper, we propose a computationally and statistically efficient method-

ology for detecting changes in a network underlying a sepp. The method is based

on a penalized dynamic programming algorithm that estimates the times at which

each change occurs when the underlying network is sparse, that is, when the num-

ber of network edges is small relative to the number of pairs of network nodes. We

demonstrate our method by applying it to neuron spike train data sets to identify

the times at which the functional networks might change because of changes in

the state of consciousness.

Two works are particularly relevant to ours:

• Mark, Raskutti and Willett (2018) examine a penalized regression for sepps,

which we do not cover here. However, there is no change in the underlying

distribution in Mark, Raskutti and Willett (2018). In contrast, in this paper,

it is essential that we characterize what happens when we perform penalized

regression over an interval that does contain a change point, i.e. when there

is more than one distribution governing the data generation. Such analysis

goes beyond the scope of Mark, Raskutti and Willett (2018) and is a major

technical contribution of our submission. More generally, it has been known

for decades in the change point detection community that consistency in

regression settings does not generally translate to the consistency in change

point detection.

• Wang et al. (2019) examine a sparse regression over a time series that might

contain a change point, but consider only linear models. The sepp model,

however, requires that we consider nonlinear models. There is a wealth of

literature on generalized linear models (GLMs) showing that fitting linear

models to GLM data without accounting for nonlinear link functions is

highly problematic, both theoretically and empirically. More specifically, a

key technical task is to characterize the population quantity corresponding

to fitting a nonlinear model to a time series containing a change point in high

dimensions. This is a challenging task that has not been studied in any past

paper of which we are aware and which requires non-trivial arguments that

go well beyond combining or simply extending known results. In Section 3,

we have pre-processed the data and applied the methods developed in Wang

et al. (2019). We also show the limitations of applying methods designed

for linear data to nonlinear data.

Section 2.2 contains an additional discussion on these two works.
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1.1. Problem formulation

We consider the following model.

Model 1. Let {X(t)}Tt=1 ⊂ ZM be a discrete-time Poisson process. For each

t ∈ {1, . . . , T}, let X (t) = (X(1), . . . , X(t)) ∈ RM×t consist of all the history

up to time t. For each t ∈ {1, . . . , T − 1} and m ∈ {1, . . . ,M}, suppose that

given X (t), all coordinates {Xm(t + 1)} are conditionally independent and the

conditional distribution of Xm(t+ 1) is a Poisson distribution, that is,

Xm(t+ 1)|X (t) ∼ Poisson(exp{λm(t)}), (1.1)

where

λm(t) = v +A∗m(t)gt{X (t)}, (1.2)

the matrix A∗(t) ∈ RM×M is the coefficient matrix at time point t, A∗m(t) is the

mth row of A∗(t), and gt(·) : RM×t → RM is an M -dimensional vector-valued

function.

Suppose that there exists an integer K ≥ 0 and time points {ηk}K+1
k=0 , called

change points, satisfying 1 = η0 < η1 < . . . < ηK ≤ T < ηK+1 = T + 1

and A∗(t) 6= A∗(t − 1), if and only if t ∈ {ηk}Kk=1. Let the minimal spacing

and the minimal jump size be defined as ∆ = mink=1,...,K+1(ηk − ηk−1) and

κ = mink=1,...,K ‖A∗(ηk) − A∗(ηk − 1)‖F, respectively, where ‖ · ‖F denotes the

Frobenius norm of a matrix.

Compared to the abundance of the existing literature, we would like to high-

light that Model 1 allows for change points in a high-dimensional integer-valued

time series. In Model 1, we assume that up to time t, we observe a series of

discrete events associated with M nodes. For each node m ∈ {1, . . . ,M}, we

model the marginal distribution of Xm(t + 1) using a point process with time-

varying rate function exp(λm(t)) that reflects how many events at time point

t + 1, node m is expected to participate. In order to incorporate the temporal

dependence of the time series, we further assume that λm(t) is a linear function

of X (t) = [X1(t), . . . , Xm(t)]. We remark that Model 1 resembles the high-

dimensional vector autoregressive (AR) model, with the main difference being

that all of our observations X (t) are vectors of integers. So we use generalized

linear regression instead of linear regression to establish the temporal dependence

between X (t) and X (t+ 1).

Remark 1 (The intercept). In Model 1, we assume that the intercept v stays

constant across coordinates and over time. In many applications, the intercept

plays the role of background noise, and it is common practice to treat it as a
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constant. On the other hand, allowing the intercept to vary across coordinates

or over time increases the flexibility of the model. With additional assumptions

imposed on the intercepts, the varying intercept case can be seen as a special case

of our results through a simple change of variable argument. We will consider

allowing for varying intercept in the future work.

Note that {X(t)}Tt=1 defined in Model 1 is an sepp, where each Xm(t) is

conditionally distributed as a Poisson random variable. We therefore refer to

(1.1) as a self-exciting Poisson process. When there is no ambiguity, we also refer

to self-exciting Poisson processes as sepps.

In fact, Model 1 is a generalization of a stationary sepp process, which as-

sumes that the coefficient matrices A∗(t) = A∗(1), for t ∈ {1, . . . , T}. Stationary

sepp models have been well studied. For example, Hall, Raskutti and Willett

(2018) and Mark, Raskutti and Willett (2018) show the coefficient matrix of a

point process can be estimated using an `1-penalized likelihood estimator.

Given {X(t)}Tt=1 satisfying Model 1, our main task is to estimate {ηk}Kk=1

accurately. Specifically, we seek estimators {η̂k}K̂k=1 such that the following holds

as the sample size T diverges, with probability tending to one:

K̂ = K and
ε

∆
= ∆−1 max

k=1,...,K
|η̂k − ηk| → 0. (1.3)

Change point estimators satisfying (1.3) are called consistent, and ε is the local-

ization error.

To the best of our knowledge, we are the first to study high-dimensional

sepps with change points. In addition to introducing our mathematical model, we

investigate the consistency of the abrupt change point location estimators, under

minimal conditions. The proposed penalized dynamic programming approach in

Section 2 is computationally efficient and tailored for this novel setting.

Notation. For any integer pair (t1, t2) ∈ Z2, let [t1, t2] denote the integer interval

[t1, t2] ∩ Z. The same notation applies to open intervals. For any matrix A ∈
RM×M , let Am denote the mth row of A and Am,m′ denote the (m,m′)th entry

of A. With some abuse of notation, for any vector v and any matrix M , let ‖v‖2,

‖v‖1, ‖M‖F, and ‖M‖1 be the `2- and `1-norms of v, the Frobenius norm of M ,

and the `1-norm of vec(M), respectively, where vec(M) is the vectorized version

of M by stacking all the columns of M . For any v(t) : [1, T ]→ Rm, let ‖Dv‖0 =∑T
t=2 I{v(t−1) 6= v(t)}, where I{·} ∈ {0, 1} is the indicator function. For any set

S ⊂ {(m,m′) : m,m′ = 1, . . . ,M}, let AS ∈ RM×M satisfy (AS)m,m′ = Am,m′ ,

if (m,m′) ∈ S, and (AS)m,m′ = 0, otherwise. Given any A(t) : [1, T ] → RM×M
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and any I ⊂ [1, T ], if A(·) is unchanged in I, then we denote A(I) = A(t), for

t ∈ I.

2. The Penalized Dynamic Programming Algorithm

To detect the change points in Model 1, we propose the penalized dynamic

programming (pdp) algorithm, stated in (2.4), with necessary notation in (2.1),

(2.2), and (2.3). The pdp algorithm consists of two layers: an estimation of the

coefficient matrices A∗(t), for t ∈ [1, T ], and an estimation of the change points.

For the coefficient matrix estimation, we let Â(I) be the penalized log-

likelihood estimator of the coefficient matrix over an integer interval I ⊂ [1, T ],

that is,

Â(I) = argmin
A∈C

H(A, I), (2.1)

where H(A, I) and C are the penalized log-likelihood function and the constrained

domain of the coefficient matrices, respectively. Specifically, with a prespecified

tuning parameter λ > 0 and I = [s, e], let

H(A, I) =

e−1∑
t=s

M∑
m=1

(
exp [v +Amgt{X (t)}]

−Xm(t+ 1)[v +Amgt{X (t)}]
)

+ λ|I|1/2‖A‖1 (2.2)

and

C =

{
A ∈ RM×M : max

m=1,...,M
‖Am‖1 ≤ 1

}
. (2.3)

The loss function H(·, ·) is a penalized negative logarithmic conditional like-

lihood function, recalling that Xm(t+1) given X (t) follows a Poisson distribution

with intensity exp [v +Amgt{X (t)}]. The penalty term λ|I|1/2 in (2.2) is intro-

duced in a way such that the tuning parameter λ is independent of the interval

length. The term |I|1/2 reflects the order of the standard error of the sum of

|I| marginal log-likelihood functions. We elaborate on this scaling factor and its

derivation in Lemma S8 and its proof.

The constraint on C ensures that the sepp as a vector-valued time series is

stable (see, e.g., Lütkepohl (2005)). For a stationary sepp estimation, Mark,

Raskutti and Willett (2018) proposed a constraint similar to (2.3).

Given the above framework, we can now estimate the change points by setting

P̂ = argmin
P

{∑
I∈P

H(Â(I), I) + γ|P|

}
, (2.4)
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where γ > 0 is a tuning parameter, the minimization is over all possible interval

partitions of [1, T ], and P denotes one such partition. Specifically, an interval

partition has the form P = {Ik, k = 1, . . . ,KP} and satisfies Ik′ ∩ Ik = ∅ and⋃KP
k=1 Ik = [1, T ]. We let K̂ = |P̂| − 1 ≥ 0, ηK̂+1 = T + 1, and

P̂ =
{
{1, . . . , η̂1 − 1}, . . . , {η̂k, . . . , η̂k+1 − 1}K̂k=1

}
.

We call {η̂k}K̂k=1 the change point estimators induced by P̂.

The optimization problem in (2.4) is known as the minimal partitioning prob-

lem on a linear chain graph, and can be solved using dynamic programming (e.g.,

Friedrich et al. (2008)). The worst-case computational cost is O{T 2Cost(T )},
where Cost(T ) denotes, in our case, the computational cost of computing Â(I) in

the interval I with |I| = T . Using coordinate decent, one can achieve Cost(T ) =

O(TM2). Several works have focused on optimizing the computational aspect of

the minimal partition problem, including Killick, Fearnhead and Eckley (2012)

and Maidstone et al. (2017), among others. Some variants (e.g., the PELT al-

gorithm proposed in Killick, Fearnhead and Eckley (2012)) of this problem can

have a linear computational cost under stronger model assumptions. In practice,

one may use these variants to solve (2.4), but the theoretical results presented in

this paper hold only when the minimal partition algorithm is executed.

For completeness, we summarize the pdp procedure in Algorithm 1. The

quantities and functions are defined in (2.1), (2.2), and (2.3).

2.1. Localization rate of the pdp estimators

In order to establish the consistency of the change point estimators resulting

from the pdp procedure detailed in Algorithm 1, we first impose Assumption 1.

Assumption 1. Let {X(t)}Tt=1 ⊂ ZM be a discrete-time sepp generated accord-

ing to Model 1 and satisfying the following:

A1. There exists a subset S ⊂ {(m,m′) : m,m′ = 1, . . . ,M} such that, for all

t ∈ [1, T ], A∗m,m′(t) = 0 if (m,m′) /∈ S. Let d = |S|.

A2. It holds that

max
t=1,...,T

max
m=1,...,M

‖A∗m(t)‖1 ≤ 1.

A3. For any ξ > 0, there exist absolute constants C∆,1, C∆,2 > 0 such that

∆ ≥ C∆,1T and ∆ ≥ C∆,2 log2+ξ(TM)d2 max{κ−2, κ−4}.
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Algorithm 1 Penalized Dynamic Programming. PDP({X(t)}nt=1, λ, γ)

INPUT: Data {X(t)}Tt=1, tuning parameters λ, γ > 0.
Set B = ∅, p = (0, . . . , 0)︸ ︷︷ ︸

T

, B = (∞, . . . ,∞)︸ ︷︷ ︸
T

and B0 = −γ. Denote Bi to be the i-th

entry of B.
for r in {1, . . . , T ]} do

for l in {1, . . . , r]} do
b← Bl−1 + γ +H(Â(I), I), where I = [l, . . . , r];
if b < Br then

Br ← b;
pr ← l − 1.

end if
end for

end for
To compute the change point estimates from p ∈ NT , k ← T .
while k > 0 do

h← pk;
B = B ∪ h;
k ← h.

end while
OUTPUT: The estimated change points B.

A4. There exist absolute constants p ∈ Z+ and ω > 0 such that, for any t, the

matrix

E[gt{X (t)}gt{X (t)}>|X (t− p)]− ωIM

is positive definite, where IM ∈ RM×M is an identity matrix. In addition, v

and ‖gt(·)‖∞, for all t, are uniformly upper bounded by an absolute constant

Cg > 0.

Model 1 and Assumption 1 completely characterize the problem, with model

parameters M (the dimensionality of the time series), d (the sparsity parameter

indicating an upper bound of the number of nonzero entries in all coefficient

matrices), ∆ (the minimal spacing between change points), and κ (the minimal

jump size), along with the sample size T . The consistency we establish is based

on allowing M and d to diverge and κ to vanish as the sample size T diverges

unbounded.

The number of parameters at each time point is of order M2, which is al-

lowed to exceed the sample size. We therefore have the sparsity constraint in

Assumption A1, which is a standard assumption in the high-dimensional statis-

tics literature. Note that the set S is the union of all (m,m′) pairs with a nonzero

entry in any coefficient matrix. Assumption A2 echoes the imposition of the con-
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straint domain C (2.3) in the optimization (2.1) to ensure the stationarity of the

sepp. In fact, the constant one in the upper bound can be relaxed to any ab-

solute constant, but is set to one here to avoid a problem with identification.

Specifically, we input the product of Am(t) and gt{X (t)} into the model, where

the latter term to be upper bounded in the sup-norm in Assumption A4.

Assumption A3 can be regarded as a signal-to-noise assumption. It requires

that the minimal spacing ∆ is at least a constant fraction of the total sample

size, implying that the number of change points is O(1). This might appear to be

strong compared with other findings reported in the change point detection liter-

ature. The problem we face, however, is challenging because of the nonlinearity

of the sepp model. In order to estimate the change points accurately, we need

to estimate the underlying distribution. In an analysis, we have intervals, say

I, containing more than one underlying distribution, and control the estimation

error ‖ÂI −A∗I‖F, where ÂI is the penalized estimator and A∗I is the population

coefficient matrix for the whole interval I. With nonlinear models, such as the

sepp model considered here, it is difficult to characterize A∗I . As a result, we use

the current minimal spacing condition, which is still the sharpest in the existing

literature. The number of change points can grow with n if we assume knowledge

of the minimal spacing between change points, ∆. In this case, we can repeat our

proposed pdp method in every segment of length C∆, where C > 1 is an absolute

constant. Thus we focus in the below on the setting where ∆ is unknown.

In fact, Assumption A3 is a mild condition and covers some challenging

scenarios. For instance, Assumption A3 holds if M � exp(T 1/2), d � T 1/4, and

κ � log(T ). The quantity ξ can be set arbitrarily small, and it ensures the

consistency of the estimator, as explained below after Theorem 1.

Assumption A4 can be interpreted as the restricted eigenvalue condition for

sepp processes. We refer readers to Section 4 of Mark, Raskutti and Willett

(2018) for a number of common self-excited point process models satisfying As-

sumption A4.

In what follows, we show the consistency of the pdp algorithm in Theorem

1.

Theorem 1. Let {X(t)}Tt=1 ⊂ ZM be an sepp generated from Model 1 and

satisfying Assumption 1. Let {η̂k}K̂k=1 be the change point estimators from the

pdp algorithm in Algorithm 1, with tuning parameters

λ = Cλ log(TM) and γ = Cγ log2(TM)d
(
1 + dκ−2

)
, (2.5)

where Cλ, Cγ > 0 are absolute constants depending only on p, ω, C∆,1, C∆,2, and
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Cg. We have that

P
{
K̂ = K and max

k=1,...,K
|η̂k − ηk| ≤ Cεd2 log2(TM) max{κ−2, κ−4}

}
≥ 1− 2(TM)−1,

where Cε > 0 is an absolute constant depending only on p, ω, C∆,1, C∆,2, and

Cg.

The proof of Theorem 1 is deferred to Section S1, where we show that the

order of the estimation error is of the form

λ2d

κ2
+
λ2d2

κ4
+

γ

κ2
.

Owing to the signal-to-noise ratio condition in Assumption A3, we have that

maxk=1,...,K |η̂k − ηk|
∆

.
d2 log2(TM) max{κ−2, κ−4}

∆

.
d2 log2(TM) max{κ−2, κ−4}
d2 log2+ξ(TM) max{κ−2, κ−4}

→ 0,

as T → ∞. This explains the role of the quantity ξ in Assumption A3 and

shows the consistency of the pdp algorithm. In fact, if we let d = 1 and assume

κ > 1, then the localization error we have derived here coincides with the optimal

localization error in the univariate mean change point detection problem (e.g.,

Wang, Yu and Rinaldo (2020)).

Two tuning parameters are involved: λ is used in the optimization (2.2) to

recover the sparsity when estimating the high-dimensional coefficient matrices,

and γ is involved in optimizing (2.4) to penalize the over-partitioning. The order

of λ required in (2.5) is a logarithmic quantity in T and M , resulting from a

union-bound argument applied to a sub-exponential concentration bound. The

requirement on γ is essentially γ � λ2
(
d+ d2κ−2

)
, which can be intuitively ex-

plained as an upper bound on the difference between H(Â(I1), I1) +H(Â(I2), I2)

and H(Â(I1∪I2), I1∪I2), where I1 and I2 are two relatively long, non-overlapping

and adjacent intervals, and there is no true change point near the shared endpoint

of I1 and I2. In this case, one would not wish to partition I1 ∪ I2 into I1 and

I2. If we focus only on the log-likelihood functions, the resulting over-estimating

yields

H(Â(I1), I1) +H(Â(I2), I2) < H(Â(I1 ∪ I2), I1 ∪ I2).

The penalty we impose using γ prevents this over-partitioning.



DETECTING CHANGES IN HIGH-DIMENSIONAL SEPPS 1663

2.2. Comparisons with related work

In a broad sense, numerous studies have been conducted on various aspects

of sepps. Another related area is the analysis of piecewise-stationary time series

models. The two works most related to ours are those of Mark, Raskutti and

Willett (2018), who examine a stationary, high-dimensional sepp, and Wang et al.

(2019), who study a piecewise-stationary high-dimensional linear process.

Mark, Raskutti and Willett (2018) examine a stationary version of Model 1,

with K = 0. Their penalized estimator of the coefficient matrix is almost the

same as that (2.1). There are a few fundamental differences between our work

and that of Mark, Raskutti and Willett (2018). First, owing to the piecewise-

stationarity assumed in Model 1, when estimating the coefficient matrices in (2.1)

and (2.2), it is possible that a true change point exists in the interval of interest,

and that the estimator we seek is an estimator of a mixture of different true

coefficient matrices. Second, we provide a more refined analysis to that of Mark,

Raskutti and Willett (2018). For instance, the optimization constraint domain

C defined in (2.3) is a cleaner version of its counterpart in Mark, Raskutti and

Willett (2018); a subspace compatibility condition is required in Mark, Raskutti

and Willett (2018) to control the ratio of different norms of the coefficient matrix,

and this assumption is shown to be redundant in our analysis.

The other work related to ours is that of Wang et al. (2019), who investigate

the change point localizing problem in piecewise-stationary vector autoregressive

models, using a penalized dynamic programming approach. The main difference

between our work and theirs is in the underlying model. The vector autoregressive

model is a linear model in the sense that given X (t), the history data until time

point t, the conditional expectation of X(t + 1) is a linear combination of the

columns of X (t), which is not the case here. The sepp is a nonlinear model, and

as noted earlier, the logarithm of the conditional intensity is a linear function

of the history. Another key difference is that Wang et al. (2019) focus on sub-

Gaussian innovation sequences, whereas the counting processes we study here

determine the heavy-tail properties of the data.

3. Numerical Experiments

In this section, we examine the performance of the pdp algorithm using

numerical experiments, with simulated data in Section 3.1 and with a real data

set in Section 3.2.
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3.1. Simulated data analysis

We generate data according to Model 1 and Assumption 1. In particular,

we adopt the setting in Mark, Raskutti and Willett (2018), and assume that the

design function gt(·) is defined as

gt{X (t)} = (min{X1(t), Cg}, . . . ,min{XM (t), Cg})> ∈ RM , (3.1)

where Cg > 0 is a constant, X (t) is an M × t matrix, and Xm(t) denotes the mth

row of X (t), for m ∈ {1, . . . ,M}. For the two tuning parameters λ and γ defined

in (2.2) and (2.4), respectively, with the theoretical guidance in Theorem 1, we

fix λ = 90 log(TM) and γ = log2(M)/2 in all experiments in this section.

Remark 2 (The robustness of γ). Note that the tuning parameter γ is crucial in

terms of determining the number of estimated change points. In our analysis, we

conducted identical analyses to a range of γ in all simulation settings. Specifically,

we let γ ∈ {0.2, 0.5, 1, 1.3, 2}× log2(M), which yielded identical numerical results,

supporting the robustness of the choice of γ in our algorithms.

The piecewise-stationary sepp model proposed here is new, and so has no

direct competitors. For illustration purpose, however, we compare our pdp al-

gorithm with the SBS-MVTS algorithm (Cho and Fryzlewicz (2015)), E-Divisive

procedure (Matteson and James (2014)), and VARDP algorithm (Wang et al.

(2019)), all of which are designed to detect abrupt change points in multivari-

ate time series, but none are designed specifically for the scenarios we study

here. Nevertheless, we chose algorithms for several reasons. The SBS-MVTS al-

gorithm can identify covariance changes in high-dimensional autoregressive time

series, and the E-Divisive procedure can estimate both the number and the loca-

tions of change points under mild assumptions on the first or second moments of

the underlying distributions. Because Poisson random variables have the same

means and variances, these two competitors may be able to detect the changes in

Poisson processes with piecewise-constant parameters. The VARDP adopts the

same `0-penalization framework and can detect change points in the regression

coefficients in the high-dimensional vector autoregressive models. In order to ap-

ply the VARDP algorithm, we add independent noise (Uniform[0, 0.01]) to every

univariate data point Xi(t), for i ∈ {1, . . . ,M} and t ∈ {1, . . . , T}. We then ap-

ply the logarithm transform to the resulting data. Note that there is an optional

local refinement (LR) second step to the VARDP algorithm that improves its

results, provided that it produces consistent estimators.
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In all the simulated experiments, the tuning parameters for the SBS-MVTS

algorithm and the E-Divisive procedure are selected according to the information-

type criteria and permutation tests in the R (R Core Team (2017)) packages wbs

(Baranowski and Fryzlewicz (2019)) and ecp (Nicholas A. James and Matteson

(2019)), respectively. The tuning parameters for the VARDP algorithm are se-

lected based on a cross-validation procedure (https://github.com/darenwang/

vectordp).

Let {η̂k}K̂k=1 and {ηk}Kk=1 be a collection of change point estimates and a

collection of true change points, respectively. We evaluate the performance of

the estimators using the absolute error |K − K̂| and their Hausdorff distance.

The Hausdorff distance between two sets A and B is defined as

D(A,B) = max{d(A|B), d(B|A)}, (3.2)

where

d(A|B) = max
a∈A

min
b∈B
|a− b|.

In the following, we consider three settings. Recall that T is the total number

of time points, M is the dimensionality of the time series, and Cg is the threshold

used in the design function gt(·), which is specified in (3.1). Every setting is

repeated 100 times. Additional setting details are listed below.

(a) One change point and varying jump size. Fix T = 450, M = 30, Cg = 6,

and the intercept v = 1/2, which is defined in (1.2). Let

A∗(t) =

{
(ρv1, ρv2, 0M×(M−2)) ∈ RM×M , t ∈ [1, 150],

(ρv2, ρv1, 0M×(M−2)) ∈ RM×M , t ∈ [151, 450],

where v1 ∈ RM , with the odd coordinates equal to 1 and the even coordi-

nates equal to −1, v2 = −v1, 0M×(M−2) ∈ RM×(M−2) is an all-zero matrix,

and ρ ∈ {0.15, 0.20, 0.25, 0.30, 0.35}.

(b) Two change points and varying minimal spacing. Let

T ∈ {180, 240, 300, 360, 420},

M = 40, Cg = 8, and the intercept v = 1/4. Let the coefficient matrices

satisfy (A∗(t))ij = 0, |i− j| > 1, t ∈ [1, T ],

https://github.com/darenwang/vectordp
https://github.com/darenwang/vectordp
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(A∗(t))ij =



0.15 t ∈
[
1, T3

]
∪
(

2T
3 , T

]
,

−0.15 t ∈
(
T
3 ,

2T
3

]
,

i = j,

−0.15 t ∈
[
1, T3

]
,

0.15 t ∈
(
T
3 , T

]
,

i− j = −1,

0.15 t ∈
[
1, 2T

3

]
,

−0.15 t ∈
(

2T
3 , T

]
,

i− j = 1.

(c) Two change points and varying dimension. Let T = 450, Cg = 4, v = 1/5,

and M ∈ {15, 20, 25, 30, 35}. Let

A(t) =


(v1, v2, v3, 0M×(M−3)), t ∈ [1, 150],

(v2, v3, v3, 0M×(M−3)), t ∈ [151, 300],

(v3, v2, v1, 0M×(M−3)), t ∈ [301, 450],

where v1, v2, v3 ∈ RM are

v1 = (−0.075, 0.15, 0.3,−0.3, 0, . . . , 0)>,

v2 = (0, . . . , 0︸ ︷︷ ︸
4

, 0.375,−0.225,−0.075, 1.5, 0.225, 0, . . . , 0)>,

v3 = (0, . . . , 0︸ ︷︷ ︸
8

,−0.15,−0.075, 0.45,−0.225, 0, . . . , 0)>.

We show the simulation results in Tables 1, 2, and 3, for Settings (a), (b),

and (c), respectively. Each cell contains the mean and standard error of 100 rep-

etitions. These three settings range over various situations. The pdp algorithm

clearly outperforms both competitors in all settings on both metrics. Note that

the better performance of the pdp algorithm compared with that of the VARDP

algorithm demonstrates that it is crucial to develop nonlinear data-specific meth-

ods. Merely preprocessing data and applying linear model-specific methods is

not reliable.

3.2. Real-data example

We consider the neuron spike train data set previously analyzed in Watson

et al. (2016b). The three chosen data sets are from Watson et al. (2016a), with

each consisting of wake-sleep episodes of multi-neuron spike train recording ses-
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Table 1. Simulation results for Setting (a). Each cell shows the mean(standard error).

For the metrics, D denotes the Hausdorff distance defined in (3.2), and |K̂ −K| denotes
the absolute error when estimating the numbers of change points. The pdp algorithm
uniformly outperforms the other methods across a range of ρ values, reflecting the jump
size.

Metric ρ = 0.15 ρ = 0.20 ρ = 0.25 ρ = 0.30 ρ = 0.35

PDP D 3.1(9.8) 1.1(1.0) 0.7(0.5) 0.6(0.5) 0.6(0.5)

SBS 282.6(69.1) 226.5(119.9) 114.7(130.8) 47.3(52.9) 9.3(21.3)

ECP 151.0(0.0) 151.0(0.0) 151.0(0.0) 151.0(0.0) 151.0(0.0)

VAR 131.16(6.33) 44.84(7.61) 100.12(6.16) 67.68(6.86) 60.28(8.01)

VAR(LR) 123.76(8.00) 30.24(7.52) 104.36(6.03) 72.68(7.19) 52.68(8.21)

PDP |K̂ −K| 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

SBS 0.9(0.2) 0.7(0.4) 0.4(0.5) 0.5(0.5) 0.1(0.3)

ECP 300.0(0.0) 300.0(0.1) 300.0(0.5) 296.4(16.2) 287.2(31.4)

VAR 0.82(0.05) 0.22(0.06) 4.52(0.32) 1.20(0.14) 0.78(0.13)

VAR(LR) 0.82(0.05) 0.22(0.06) 4.52(0.32) 1.20(0.14) 0.78(0.13)

Table 2. Simulation results for Setting (b). Each cell shows the mean(standard error).

For the metrics, D denotes the Hausdorff distance defined in (3.2), and |K̂ −K| denotes
the absolute error when estimating the numbers of change points. The pdp algorithm
uniformly outperforms the other methods across a range of T values, reflecting the min-
imal spacing.

Metric T = 180 T = 240 T = 300 T = 360 T = 420

PDP D 11.5(6.2) 3.7(4.6) 2.5(4.6) 2.8(4.3) 1.2(3.6)

SBS 177.0(21.1) 233.3(38.1) 270.1(85.5) 243.8 (156.1) 263.5(185.2)

ECP 61.0(0.0) 81.0(0.0) 101.0(0.0) 121.0(0.0) 141.0(0.0)

VAR 58.08(1.16) 76.20(1.72) 87.92(4.08) 106.52(4.75) 126.04(4.84)

VAR(LR) 56.96(1.35) 76.00(1.66) 87.36(3.74) 104.36(5.02) 122.12(5.12)

PDP |K̂ −K| 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

SBS 2.0(0.2) 1.9(0.3) 1.9(0.4) 1.6(0.7) 1.6(0.6)

ECP 178.9(0.3) 238.9(0.3) 298.9(0.3) 358.8(0.4) 418.8(0.4)

VAR 1.92(0.06) 2.04(0.08) 1.94(0.15) 1.96(0.18) 2.30(0.28)

VAR(LR) 1.92(0.06) 2.04(0.08) 1.94(0.15) 1.96(0.18) 2.30(0.28)

sions of one laboratory animal. Each wake-sleep episode includes at least seven

minutes of wake time, followed by at least 20 minutes of sleep time. Note that the

wake and sleep periods were recorded so the true change point in each data set

is the end of the wake period. For each data set, we first compute the firing rate

(FR) of each neuron using a five-second discretization time window, and then

apply Algorithm 1 with λ = 800 and γ = log2(M)/2, as in Section 3.1. For com-

parison, we also apply the SBS-MVTS algorithm (Cho and Fryzlewicz (2015)),

E-Divisive procedure (Matteson and James (2014)) and the VARDP algorithm
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Table 3. Simulation results for Setting (c). Each cell shows the mean(standard error).

For the metrics, D denotes the Hausdorff distance defined in (3.2), and |K̂ −K| denotes
the absolute error when estimating the numbers of the change points. The pdp algorithm
uniformly outperforms the other methods across a range of M values, the dimension of
the time series.

Setting (c)

Metric M = 15 M = 20 M = 25 M = 30 M = 35

PDP D 3.3(5.0) 3.6(5.5) 3.2(4.5) 5.0(12.4) 6.1(13.2)

SBS 401.4(112.8) 378.2(129.9) 411.3(101.7) 377.7(134.1) 375.4(134.5)

ECP 151.0(0.0) 151.0(0.0) 151.0(0.0) 151.0(0.0) 151.0(0.0)

VAR 134.24(4.19) 146.84(2.17) 148.40(0.95) 149.08(0.84) 146.78(2.79)

VAR(LR) 131.44(6.42) 146.64(2.87) 149.72(0.10) 149.88(0.07) 149.56(0.34)

PDP |K̂ −K| 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

SBS 1.8(0.4) 1.7(0.5) 1.9(0.3) 1.8(0.4) 1.8(0.4)

ECP 448.6(0.5) 449.0(0.3) 449.0(0.1) 449.0(0.0) 449.0(0.0)

VAR 1.48(0.20) 1.74(0.07) 1.86(0.05) 1.94(0.03) 1.89(0.76)

VAR(LR) 1.48(0.20) 1.74(0.07) 1.86(0.05) 1.94(0.03) 1.89(0.76)

Table 4. The results of three algorithms on multi-neuron spike train data sets. For
the metrics, D denotes the Hausdorff distance defined in (3.2), and |K̂ − K| denotes
the absolute error when estimating the numbers of change points. The pdp algorithm
uniformly outperforms the other methods.

Subject Metric PDP SBS ECP VAR VAR(LR)

20140528 565um
D 38 382 2,966 708 646

|K̂ −K| 0 0 740 1 1

BWRat17 121912
D 84 140 1,816 1,162 1,138

|K̂ −K| 0 0 595 8 8

BWRat19 032413
D 1 99 1,996 1,889 1,989

|K̂ −K| 0 0 773 12 12

(Wang et al. (2019)).

The relevant subjects are 20140528 565um, BWRat17 121912, and BWRat19

032413. The numbers of neurons, that is, the dimensions of the time series M ,

are 24, 33, and 41, respectively. The total numbers of five-second time intervals,

that is, the total numbers of time points T considered in Model 1, are 3750, 2995

and 3920, respectively. The true change points are at the points 788, 1184, and

2001, respectively.

The results are summarized in Table 4, showing that our pdp algorithm

consistently outperforms the other algorithms in these real-data examples.
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4. Conclusions

We have examined studied piecewise-stationary discrete-time high-dimensional

self-exciting Poisson processes, the theoretical properties of which have not previ-

ously been studied. The number of stationary segments in the whole time series is

assumed to be an unknown constant. All other model parameters are allowed to

be functions of the sample size T . We have proposed a computationally efficient

and theoretically guaranteed algorithm.

In our numerical experiments, we fixed the tuning parameters. In future

research, we would like to investigate data-driven methods for selecting the tuning

parameters. Possible methods include variants of the stationary bootstrap (Politis

and Romano (1994)) or information criteria (e.g., Chen and Chen (2012)).

Another future research direction is to extend the techniques derived here

to other popular time series models. For instance, a key feature of sepps is the

varying variance structure and heavy-tail behaviors, which are similar to those

of GARCH models, which are widely used in finance.

Supplementary Material

All the proofs are in the Supplementary Materials.
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