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Abstract: Although the properties of inferences based on a composite likelihood are

well established, they can be surprising, leading to misleading results. In this note,

we show by example that the variance of a maximum composite likelihood estimator

can increase when the nuisance parameters are known, rather than estimated.

In addition, we show that estimators based on more independent component

likelihoods can be less efficient than those based on fewer such likelihoods, and

that incorporating higher-dimensional marginal densities can also lead to a less

efficient inference. The role of information bias is highlighted to understand why

these paradoxical phenomena occur.
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1. Introduction

Suppose y = (y1, . . . , yp)
T is a p-dimensional random vector with probability

density f(y; θ), where θ is in a q-dimensional parameter space Θ. The composite

likelihood (CL) (Lindsay (1988)) is defined as CL(θ; y) =
∏K
k=1 Lk(θ; y)wk , where

the sub-likelihoods Lk(θ; y) are usually the joint or conditional densities of some

sub-vectors of y, and the weights wk can be positive or negative (Yi (2017)).

Given n random samples, y(i), for i = 1, . . . , n, the composite log-likelihood is

c`(θ; y) =
∑n

i=1 logCL(θ,y(i)), and the maximum composite likelihood estimator

(MCLE) is θ̂CL = argmaxθc`(θ; y).

CLs lead to inferences similar to those based on genuine likelihoods.

Under some regularity conditions, θ̂CL is consistent and asymptotically normally

distributed, with variance equal to the Godambe information matrix, G(θ) =

H(θ)J−1(θ)H(θ) (Varin, Reid and Firth (2011)), where H(θ) = E{−∇θuc(θ; y)},
J(θ) = var{uc(θ; y)}, with the composite score function uc(θ; y) = ∇θc`(θ; y).

However, several aspects of inferences based on CLs, are qualitatively different

from those based on a full likelihood. In this note, we describe three such

properties using examples that allow us to calculate the Godambe information or

asymptotic variances analytically, and show how information bias plays a key role.
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Note that a CL is information-unbiased if H(θ) = J(θ), and is information-biased

otherwise (Lindsay (1982)).

2. Three properties of CLs

Property 1. An information-biased CL may lead to less efficient

estimators of the parameters of interest when the nuisance parameters

are known than when they are unknown and estimated. Suppose

y(1), . . . ,y(n) are n independent observations from N(0,Σ). Here Σ = σ2{(1 −
ρ)Ip + ρJp}, where Ip is the p × p identity matrix, Jp is a p × p matrix with all

entries equal to one, the parameter of interest ρ ∈ [1/(1− p), 1], and σ2 > 0 is a

nuisance parameter.

When σ2 is unknown, the maximum pairwise likelihood estimate (MPLE) ρ̂

is identical to the MLE of ρ (Mardia et al. (2009)). Hence, it is fully efficient,

with asymptotic variance avar(ρ̂) = 2(1−ρ)2{1+(p−1)ρ}2/{np(p−1)}. When σ2

is known, the MPLE ρ̃ is less efficient than the MLE of ρ (Cox and Reid (2004)).

Comparing avar(ρ̃) and avar(ρ̂), we have

r(ρ) =
avar(ρ̃)

avar(ρ̂)
=

c(p, ρ)

(1 + ρ2)2{1 + (p− 1)ρ}2
, (2.1)

where c(p, ρ) = (1−ρ)2(3ρ2 +p2ρ2 +1)−pρ(3ρ3−8ρ2 +3ρ−2). The ratio r(ρ), as

a function of ρ, is plotted in S1 Figure 1 for p = 3. When ρ is positive, ρ̃ is more

efficient than ρ̂; when ρ < 0, the opposite direction is observed. Comparisons for

different p yield the same results. It can be shown that the asymptotic covariance

between ρ̂ and the MPLE σ̂2 is 2ρ(1 − ρ){1 + (p − 1)ρ}σ2/(np), which goes to

zero as ρ → 1/(1 − p) or one, and the asymptotic covariance between ρ̃ and σ̂2

is not equal to zero at ρ = 1/(1− p). This may explain why the paradox occurs

when ρ→ 1/(1− p), by Theorem 1 of Henmi and Eguchi (2004).

An information-biased CL may also lead to less efficient estimators by

incorporating more independent CLs or by using higher-dimensional component

likelihoods.

Property 2. Information additivity may not hold for the product

of independent information-biased CLs. Suppose the random vector

(Y1, Y2, Y3)
T follows a normal distribution N(µ,Σ), where Σ = diag(Σ1, σ

2) and

Σ1 = (1− ρ)I2 + ρJ2. Assume that σ2 is known, µ and ρ are unknown, and µ is

the only parameter of interest. Consider the independence likelihood CL12(µ) =

f(y1;µ)f(y2;µ), which is free of the nuisance parameter ρ, and the CL, CL123(µ)

= CL12(µ)f(y3;µ), which incorporates information from the independent variable

Y3 and is used to estimate µ. Given a random sample of size n, the MCLEs from

CL12 and CL123 are µ̂12 = (ȳ1 + ȳ2)/2 and µ̂123 = {σ2(ȳ1 + ȳ2) + ȳ3}/(1 + 2σ2),

respectively, with variances (1 + ρ)/(2n) and {2(1 + ρ)σ4 + σ2}/{n(1 + 2σ2)2},



NOTE ON INFORMATION BIAS AND EFFICIENCY OF CL 525

respectively, where ȳj =
∑n

i=1 y
(i)
j /n, for j = 1, 2, 3.

We can compare the variances of the two MCLEs directly. For example, when

σ2 = 2, the variance of µ̂123 is (10+8ρ)/(25n), which is smaller than (1+ρ)/(2n)

if and only if ρ > −5/9. Note that if ρ = −1, this result is expected, because

(Y1, Y2) determines µ exactly, with µ ≡ (Y1 + Y2)/2. However, the dependence

on σ2 of the range of ρ over which Y3 degrades the inference is surprising; as σ2

increases, this range approaches [−1,−1/2).

Property 3. Pairwise likelihood may be less efficient than independence

likelihood. Suppose (Y1, Y2, Y3, Y4)
T follows a Multinomial(1; θ, θ, θ/k,1 − 2θ −

θ/k), where k > 0 and 0 ≤ θ ≤ k/(2k + 1). The parameter θ controls both

the mean and the covariance structures, and we can change the value of k to

adjust the strength of the dependence. Here, Y4 is determined completely by

1−
∑3

i=1 Yi. We estimate θ based on the independent triplets (y
(i)
1 , y

(i)
2 , y

(i)
3 )T, for

i = 1, . . . , n. Comparing the independence likelihood and the pairwise likelihood

of all independent triplets, we obtain the following ratio of Godambe information:

r(θ) =
G(θind)

G(θpair)
=
H2
ind(θ)Jpair(θ)

H2
pair(θ)Jind(θ)

. (2.2)

Detailed calculations of Hind and Jind and of Hpair and Jpair are presented in

the Supplementary Material, Section S2. In particular, for k = 5, the ratio as a

function of θ is plotted in Figure 2 in Section S1 of the Supplementary Material,

and r(θ) = 1 has a solution θ = 1/3. When θ < 1/3, then r(θ) < 1, and when

θ > 1/3, then r(θ) > 1. Specifically, both the independence likelihood and the

pairwise likelihood are fully efficient when k = 1; when k → 0, the pairwise

likelihood is more efficient than the independence likelihood and r(θ)→ 1; when

k →∞, the independence likelihood is more efficient than the pairwise likelihood

and r(θ)→ 1.

3. Discussion

This note serves as a reminder that inferences based on a CL require care,

beyond adjusting the variance of the MCLEs or the limiting distribution of the

CL ratio test. Furthermore, we presented an example in which a CL based on

the marginal density of the components, such as the independence and pairwise

CLs, may not be consistent with a unique multivariate distribution Yi (2017). In

contrast, for a CL constructed from a conditional distribution, the Hammersley–

Clifford theorem ensures there is a unique joint distribution compatible with these

conditional components (Besag (1975)).
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Supplementary Material

The online Supplementary Material includes two figures for Examples 1 and

3, and detailed calculations for Example 3.
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