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DIMENSION REDUCTION VIA ADAPTIVE SLICING

Tao Wang

Shanghai Jiao Tong University

Abstract: Sufficient dimension reduction often resorts to inverse regression, and

most inverse regression methods rely on slicing a quantitative response. The choice

of a particular slicing scheme is critical, but there are no current methods in the

literature about how to select an optimal slicing scheme. We consider two popular

slicing-based methods, namely, the sliced inverse regression and the sliced average

variance estimation. By recasting the eigen-decomposition problem as a trace-

optimization problem, we propose a penalized criterion for choosing an optimal

slicing scheme. A dynamic programming algorithm is developed for numerical opti-

mization. The theoretical properties are studied under mild conditions. Simulation

examples show that our methods compare favorably with existing methods. An

illustrative data analysis is also presented.

Key words and phrases: Nonlinear least squares, quantile slicing, optimal number

of slices, SAVE, SIR, trace maximization.

1. Introduction

A fundamental concept in regression is dimension reduction, used to reduce

the dimension of the predictor space without losing information on the regression

(Cook (2007)). Many different contexts have been developed to achieve this.

Among these, sufficient dimension reduction has received considerable interest

in the past two decades (Cook (1998)). Consider the regression of a univariate

response Y ∈ R on a p-dimensional predictor vector X = (X1, . . . , Xp)
> ∈ Rp. In

full generality, sufficient dimension reduction seeks a set of linear combinations

of X , such that the conditional distribution of Y given X depends on X only

through these linear combinations. More formally, if Y and X are independent

given β>X , where β is a p× d matrix with d ≤ p, then the column space of β is

called a dimension-reduction subspace. Under mild assumptions, the intersection

of all dimension-reduction subspaces is also a dimension-reduction subspace; in

this case, it is called the central subspace for the regression of Y on X , and is

denoted by SY |X (Cook (1998)).

Methods for estimating SY |X include the sliced inverse regression (Li (1991)),
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sliced average variance estimation (Cook and Weisberg (1991)), minimum average

variance estimation (Xia et al. (2002)), minimum discrepancy estimation (Cook

and Ni (2005)), directional regression (Li and Wang (2007)), likelihood acquired

directions (Cook and Forzani (2009)), and semiparametric estimation (Ma and

Zhu (2012)); see Ma and Zhu (2013) for a review. Among these methods, perhaps

the most widely used are the inverse regression methods, and in particular the

sliced inverse regression (SIR) and sliced average variance estimation (SAVE).

The inverse regression of X on Y , or X | Y for short, is composed of p regressions,

Xj | Y , for j = 1, . . . , p. Because Y is one dimensional, an inverse regression

avoids the curse of dimensionality. In this study, we are concerned only with the

SIR and SAVE, both of which rely on inverse conditional moments. See Section

2 for more details.

To estimate p inverse regressions, we can either use a smooth nonparametric

method, such as a kernel regression (Zhu and Fang (1996)), or fit parametric

curves using a linear regression (Bura and Cook (2001)). However, the usual

routines for computing the SIR and SAVE use a simple nonsmooth nonparametric

procedure introduced by Li (1991): partition the range of Y into a few slices, and

compute the sample moments of X in each slice. We call this procedure slicing.

Similar to the bandwidth in kernel smoothing, the slicing scheme is a tuning

parameter that needs to be determined from the data. When Y is continuous, it

is more convenient to use quantile slicing, that is, to slice the response according

to its quantiles. Then, the choice of the number of slices is critical. To the best

of our knowledge, there are no current methods in the literature for selecting

the number of slices in quantile slicing, or the slicing scheme in general, which

remains an open problem (Zhu et al. (2010)).

The performance of the SIR has been empirically observed to be robust to

the choice of the number of slices. Zhu and Ng (1995) showed theoretically

that the SIR estimator is
√
n-consistent, provided that the number of slices is

between
√
n and n/2, where n is the sample size. This is not true for the SAVE.

Numerically, the SAVE is more sensitive to the number of slices than is the

SIR (Zhu, Ohtaki and Li (2007)). Furthermore, it can be inconsistent when the

number of observations in each slice is fixed and does not depend on n (Li and

Zhu (2007)). As such, methods for adaptively choosing a slicing scheme are highly

demanding.

To address the slicing problem, Zhu, Zhu and Feng (2010) proposed a cumu-

lative slicing estimation. Similarly to the SIR and SAVE, they proposed a cumu-

lative mean estimation and a cumulative variance estimation. The basic idea of

a cumulative slicing estimation is to pool the collection of estimates of SY |X from
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all possible slicing schemes with two slices. Rather than select the optimal num-

ber of slices, their method sidesteps the problem. More recently, Cook and Zhang

(2014) developed a class of fused estimators. Like the cumulative slicing estima-

tion, the general methodology can be applied to all dimension-reduction methods

that rely on slicing a quantitative response. Two special cases are the fused SIR

and the fused SAVE. However, fused estimators are not fully slicing-free, in the

sense that the fusion is over a predefined set of slicing schemes. Consequently, if

we adopt quantile slicing, then the number of slicing schemes has to be specified

for each dimension-reduction method. However, the effect of this hyperparame-

ter has not been studied systematically. Despite these advances, the problem of

choosing an optimal slicing scheme remains.

In this study, we focus directly on the slicing problem and propose a prac-

tically useful solution. In Section 2, we review the SIR and SAVE in the usual

dimension-reduction framework. In Section 3, we re-derive the SIR and SAVE

estimates using a trace maximization principle. In Section 4.1, we propose a pe-

nalized criterion for selecting an optimal slicing scheme. An efficient algorithm

is developed for numerical optimization in Section 4.2, and the theoretical prop-

erties of our methods are studied in Section 4.3. In Section 5, we compare the

performance of our methods with that of existing methods by simulation. An

illustrative data analysis is presented in Sections 6. We include a concluding

discussion in Section 7. All proofs are given in the Supplementary Material.

For a matrix M, span(M) denotes the subspace spanned by the columns of

M, and vec(M) is the operator that constructs a vector from M by stacking

its columns. If M is a square matrix, trace(M) denotes the trace of M. An

identity matrix is denoted by I or Ip, when it is necessary to indicate the order.

A semi-orthogonal matrix A ∈ Rp×q, for q < p, has orthogonal columns; that is,

A>A = Iq.

2. Review of the SIR and SAVE

In keeping with the usual dimension-reduction protocol, we assume for now

that the response Y has been discretized by constructing G slices. We continue

to use Y to denote the sliced version with support {1, . . . , G}. We also assume

that an independent and identically distributed sample {(x i, yi), i = 1, . . . , n}
from the joint distribution of (X , Y ) is available.

The following two assumptions are common in sufficient dimension reduction:

(C1) E(X | β>X ) is a linear function of β>X , and (C2) Cov(X | β>X ) is

constant, where the columns of the matrix β ∈ Rp×d form a basis for SY |X . Both
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conditions apply to the marginal distribution of X , and not to the conditional

distribution of Y given X , and are widely regarded as mild. See Li and Wang

(2007) for a discussion.

For ease of exposition, we often work in terms of the standardized predictor

Z = {Cov(X )}−1/2{X − E(X )},

with the sample version given by z i = S−1/2(x i− x̄ ), where x̄ =
∑n

i=1 x i/n is the

sample mean of x i, and S =
∑n

i=1(x i − x̄ )(x i − x̄ )>/n is the sample covariance

matrix. This involves no loss of generality, because SY |X = {Cov(X )}−1/2SY |Z
(Cook (1998)).

The SIR, SAVE, and many other methods for estimating SY |Z are based on

the following general procedure. Suppose M ∈ Rp×p is a kernel matrix with

the property that span(M) ⊆ SY |Z , and M̂ is a consistent estimate of M. Let

λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p be the eigenvalues of M̂, and let η̂1, η̂2, . . . , η̂p be the

corresponding eigenvectors. We use span(η̂1, . . . , η̂d) to estimate SY |Z . We then

use span{S−1/2(η̂1, . . . , η̂d)} to estimate SY |X .

The SIR is based on a fundamental result by Li (1991): if condition (C1)

holds, then the conditional mean E(Z | Y ) ∈ SY |Z . Then, span(MSIR) ⊆ SY |Z ,

where MSIR = Cov{E(Z | Y )} is the SIR kernel matrix.

The SAVE uses the conditional variance Cov(Z | Y ). Define the SAVE kernel

matrix as MSAV E = E[{Ip − Cov(Z | Y )}2]. Given conditions (C1) and (C2),

the column space of MSAV E is contained in SY |Z (Cook and Weisberg (1991)).

It is well known that span(MSIR) ⊆ span(MSAV E). Specifically, let µg =

E(Z | Y = g) and Σg = Cov(Z | Y = g). Then, span(MSIR) = span(µ1, . . . ,µG),

and by Proposition 6 of Cook and Critchley (2000),

span(MSAV E) = span(µ1, . . . ,µG,Σ2 −Σ1, . . . ,ΣG −ΣG−1).

Let ng =
∑n

i=1 I(yi = g), where I(·) is the indicator function. Let µ̂g =∑
i:yi=g z i/ng and Σ̂g =

∑
i:yi=g(z i− µ̂g)(z i− µ̂g)>/ng. We estimate MSIR and

MSAV E by

M̂SIR =

G∑
g=1

ng
n
µ̂gµ̂

>
g

and

M̂SAV E =

G∑
g=1

ng
n

(Ip − Σ̂g)2,

respectively.
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3. The Trace-Maximization Principle

Instead of computing the eigen decomposition of a kernel matrix, we can

solve a trace-optimization problem (Chen, Zou and Cook (2010)).

Lemma 1. Let A ∈ Rp×p be a symmetric matrix, and B be a p × d semi-

orthogonal matrix. Denote by η1(A), . . . ,ηp(A) the eigenvectors of A, ordered

from the largest to the smallest eigenvalue λj(A). We have trace(B>AB) ≤∑d
j=1 λj(A), with equality if and only if B = [η1(A), . . . ,ηd(A)]U, where U is

any d× d orthogonal matrix.

From this lemma, the SIR is equivalent to the criterion

max
α:α>α=Id

trace(α>M̂SIRα) = max
α:α>α=Id

G∑
g=1

ng
n

trace(α>µ̂gµ̂
>
g α),

and the SAVE is equivalent to the criterion

max
α:α>α=Id

trace(α>M̂SAV Eα) = max
α:α>α=Id

G∑
g=1

ng
n

trace{α>(Ip − Σ̂g)2α}.

We can also obtain the SIR or SAVE estimate as the solution to a nonlinear

least squares problem (Cook and Ni (2005)). For any B ∈ Rp×d, define

LSIR(B,C) =

G∑
g=1

ng
n
‖µ̂g −BCg‖22,

where Cg ∈ Rd×1 and C = (C1, . . . ,CG). In addition, define

LSAV E(B,F) =

G∑
g=1

ng
n
‖vec(Ip − Σ̂g)− vec(BFg)‖22,

where Fg ∈ Rd×p and F = (F1, . . . ,FG).

For fixed B, let ĈB be the value of C that minimizes LSIR(B,C), and let

F̂B be the value of F that minimizes LSAV E(B,F). Let Gp,d = {B ∈ Rp×d :

B>B = Id}. The following proposition gives the connection between the least

squares formulation and the trace optimization problem.

Proposition 1. Minimizing LSIR(B, ĈB) over B ∈ Gp,d is equivalent to maxi-

mizing trace(α>M̂SIRα) over α ∈ Gp,d. Furthermore, minimizing LSAV E(B, F̂B)

over B ∈ Gp,d is equivalent to maximizing trace(α>M̂SAV Eα) over α ∈ Gp,d.
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Remarkably, the results in this section hold even when conditions (C1) and

(C2) fail. Nevertheless, they may be of little practical importance if there is no

useful connection between the subspace estimated by the SIR or the SAVE and

the subspace we would like to estimate, namely, SY |X .

Under the normal model, we can check whether a subspace is a dimension-

reduction subspace (Cook and Forzani (2009)). Let SSIR = {Cov(X )}−1/2span(

MSIR) be the SIR subspace in the X -scale. Similarly, let SSAV E = {Cov(X )}−1/2

span(MSAV E).

Proposition 2. Let η ∈ Rp×d be a semi-orthogonal matrix, and let η0 be an

orthogonal complement of η, such that (η,η0) is p × p orthogonal. Assume that

X | (Y = g) ∼ N(µg,Σg). Let θ = E(X) and ∆ = E{Cov(X | Y )}. If

(i) η>X | (Y = g) ∼ N(η>θ + η>∆ηvg,η
>Σgη), for some vg ∈ Rd, and

(ii) η>0 X | (η>X = η>x, Y = g) ∼ N{η>0 θ + η>0 ∆η(η>∆η)−1η>(x − θ),

(η>0 ∆−1η0)
−1},

for all g ∈ {1, . . . , G}, then, span(η) = SY |X = SSAV E. If, in addition, Σ1 =

· · · = ΣG, then span(η) = SY |X = SSIR = SSAV E.

4. Dimension Reduction via Adaptive Slicing

The developments so far have been based on a fixed slicing scheme: the range

of the response Y has been partitioned into G slices, indexed by g = 1, . . . , G. In

practice, the slicing scheme is an important tuning parameter, and the optimal

slicing scheme should be chosen adaptively from the data.

For ease of discourse, in this section, we assume that the response Y has

a finite support Y = {1, . . . ,K}. There is no loss of generality implied by this

restriction, because when Y is continuous, we can construct a discrete version Ỹ

by dividing its range into K intervals, and it is known that SỸ |X ⊆ SY |X with

equality when K is sufficiently large.

Denote S as a generic slicing scheme and |S| as the cardinality of S. Math-

ematically, we can write S = {Bg ⊆ Y, g = 1, . . . , |S|}, where the subsets Bg
satisfy ∪Gg=1Bg = Y and Bg ∩ Bg′ = ∅, for all g 6= g′. Without loss of generality,

we assume that the slices in S are sorted: if g < g′, then y < y′, for any y ∈ Bg
and y′ ∈ Bg′ . We call Bg the gth slice of S.

For each k ∈ Y, let nk =
∑n

i=1 I(yi = k) and fk = nk/n. For a generic

slice B ⊆ Y, let fB =
∑

k∈B fk, µ̂B =
∑

k∈B
∑

i:yi=k z i/
∑

k∈B nk, and Σ̂B =∑
k∈B

∑
i:yi=k(z i − µ̂B)(z i − µ̂B)>/

∑
k∈B nk. To emphasize the dependence of

a kernel matrix on the slicing scheme, we write M̂ = M̂(S). Then, the criteria
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become

max
α:α>α=Id

trace{α>M̂SIR(S)α} = max
α:α>α=Id

|S|∑
g=1

fBg
trace(α>µ̂Bg

µ̂>Bg
α)

and

max
α:α>α=Id

trace{α>M̂SAV E(S)α} = max
α:α>α=Id

|S|∑
g=1

fBg
trace{α>(Ip − Σ̂Bg

)2α}.

4.1. Penalized trace maximization

A key ingredient of a slicing scheme, S, is the number of slices, |S|. If |S| is

smaller than d, the dimension of SY |Z , then all methods will miss some directions.

On the other hand, if we partition the range of the response into too many slices,

the accuracy of the intra-slice estimates can suffer. To select an optimal slicing

scheme, we consider the penalized trace optimization problem

max
(α,S):α>α=Id

[
trace{α>M̂(S)α} − log(n)

n
× df0 × |S|

]
, (4.1)

where df0, to be specified, is a complexity factor for introducing an additional

slice. Given α, this amounts to using the Bayesian information criterion (BIC)

to choose a slicing scheme (Schwarz (1978)).

We motivate the penalty term as follows. In addition to the number of slices,

a slicing scheme must consider the arrangement of the slices. Following Jiang,

Ye and Liu (2015), we assign a prior on the slicing scheme, and then penalize

the trace using this prior. Specifically, we assume that |S| − 1 follows a Poisson

distribution, with rate parameter exp(−τn), and that given the partition size

|S|, the conditional distribution on the slice widths (normalized to sum to one)

is Dirichlet(1, . . . , 1). Then, a maximum a posteriori estimation results in the

penalty term τn×(|S|−1), and setting τn = log(n)×df0 gives the BIC. Penalized

test statistics of this form have been studied recently in the K-sample problem

and in the independence problem; see Jiang, Ye and Liu (2015) and Heller et al.

(2016) for details.

4.2. Algorithms

We can solve (4.1) using an alternating optimization procedure: fix S and

estimate α, then fix α and estimate S, and iterate between these two steps until

the algorithm converges.
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We start by specifying the complexity factor df0. Assume, for the moment,

that S is given and B is a slice in S. From Section 2, we know the SIR uses

slice means µB = E(Z | Y ∈ B), and the SAVE uses slice means and slice

covariances ΣB = Cov(Z | Y ∈ B). Under condition (C1), we have µB ∈ SY |Z ,

or equivalently, µB = ηvB, for some vB ∈ Rd. Here, η is a basis matrix for SY |Z .

On the other hand, if both conditions (C1) and (C2) hold, then Ip −ΣB ∈ SY |Z ,

or equivalently, Ip−ΣB = ηABη
>, where AB is a d× d symmetric matrix. Now,

if the number of slices is incremented by one, then the number of free parameters

is incremented by df0 = d for the SIR, and by df0 = d+d(d+ 1)/2 for the SAVE.

We treat the SIR and SAVE separately. For the SIR, the corresponding

problem is

max
(α,S):α>α=Id


|S|∑
g=1

fBg
trace(α>µ̂Bg

µ̂>Bg
α)− log(n)

n
d|S|

 . (4.2)

The optimization procedure is outlined in Algorithm 1. For the SAVE, the prob-

lem becomes

max
(α,S):α>α=Id

 |S|∑
g=1

fBg
trace{α>(Ip − Σ̂Bg

)2α} − log(n)

n

d(d+ 3)

2
|S|

 . (4.3)

The optimization procedure is outlined in Algorithm 2.

Algorithm 1 SIR with Adaptive Slicing (SIR-AS).

1: Take an initial guess for α, for example, a SIR with a quantile slicing scheme.
2: Adaptive slicing. Given α, compute the optimal slicing scheme {Bg} using the adap-

tive slicing algorithm (Algorithm 3).
3: Given {Bg}, compute the SIR estimate of α.
4: Iterate steps 2 and 3 until convergence.

Algorithm 2 SAVE with Adaptive Slicing (SAVE-AS).

1: Take an initial guess for α, for example, a SAVE with a quantile slicing scheme.
2: Adaptive slicing. Given α, compute the optimal slicing scheme {Bg} using the adap-

tive slicing algorithm (Algorithm 4).
3: Given {Bg}, compute the SAVE estimate of α.
4: Iterate steps 2 and 3 until convergence.

In both algorithms, the first step conducts dimension reduction (SIR or

SAVE) on a fixed slicing scheme S, and the second step uses a dynamic pro-

gramming algorithm called adaptive slicing to find an optimal slicing scheme
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(see Algorithms 3 and 4). Note that adaptive slicing is a variant of the Viterbi

algorithm, and is similar to the procedure of Jiang, Ye and Liu (2015), who inves-

tigated nonparametric K-sample testing from the perspective of inverse modeling.

Viewing the K-sample testing problem as a test of independence between a con-

tinuous random variable and a categorical random variable, Jiang, Ye and Liu

(2015) proposed a test statistic by slicing the continuous variable, deriving the

likelihood ratio, and then including a term regularizing the number of slices; see

Heller et al. (2016) for more on this idea. The computational complexity of the

adaptive slicing algorithm is O(n2p) for the SIR, and O(n2p2) for the SAVE. One

way to speed up the algorithm is to pre-allocate observations into bins, and then

to restrict the slicing to these bins.

Algorithm 3 Adaptive Slicing for SIR in the Z -scale.

1: Rank the observed responses, and re-express the data as (y(i), z (i)), i = 1, . . . , n. To
ease notation, assume that the observations have been sorted; that is, y(i) = yi and
z (i) = z i.

2: For i = 1, . . . , n and s = 1, . . . , i, compute

µ̂(s:i) =
1

i− s+ 1

i∑
i′=s

z i′ .

3: Set v0 = 0. Fill in entries of two vectors (v1, . . . , vn)> and (s1, . . . , sn)> recursively
as follows:

vi = max
s∈{1,...,i}

{
vs−1 +

i− s+ 1

n
trace(α>µ̂(s:i)µ̂(s:i)>α)− log(n)

n
d

}
,

si = argmax
s∈{1,...,i}

{
vs−1 +

i− s+ 1

n
trace(α>µ̂(s:i)µ̂(s:i)>α)− log(n)

n
d

}
.

4: Trace back the vector (s1, . . . , sn)> as follows. Let e0 = n. Compute eg = seg−1 − 1
recursively for g ≥ 1 until eG = 0, for some integer G. Then, the slicing scheme is
given by yi ∈ BG−g+1, for eg + 1 ≤ i ≤ eg−1 and 1 ≤ g ≤ G, with G the number of
slices.

4.3. Theoretical properties

Before we can get started, we need a few definitions. We restrict our dis-

cussion to the inverse regression. Here, S is called an optimal slicing scheme in

location if E(Z | Y ) takes |S| values and is constant within each slice. Further-

more, S is called an optimal slicing scheme in scale if E(Z | Y ) is constant, and

Cov(Z | Y ) takes |S| values and is constant within each slice.

Throughout this section, we assume that the optimal slicing scheme, either
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Algorithm 4 Adaptive Slicing for SAVE in the Z -scale.

1: Rank the observed responses, and re-express the data as (y(i), z (i)), i = 1, . . . , n. To
ease notation, assume that the observations have been sorted; that is, y(i) = yi and
z (i) = z i.

2: For i = 1, . . . , n and s = 1, . . . , i, compute

µ̂(s:i) =
1

i− s+ 1

i∑
i′=s

z i′ ,

and

Σ̂
(s:i)

=
1

i− s+ 1

i∑
i′=s

(z i′ − µ̂(s:i))(z i′ − µ̂(s:i))>.

3: Set df0 = d(d + 3)/2 and v0 = 0. Fill in entries of two vectors (v1, . . . , vn)> and
(s1, . . . , sn)> recursively as follows:

vi = max
s∈{1,...,i}

[
vs−1 +

i− s+ 1

n
trace{α>(Ip − Σ̂

(s:i)
)2α} − log(n)

n
df0

]
,

si = argmax
s∈{1,...,i}

[
vs−1 +

i− s+ 1

n
trace{α>(Ip − Σ̂

(s:i)
)2α} − log(n)

n
df0

]
.

4: Trace back the vector (s1, . . . , sn)> as follows. Let e0 = n. Compute eg = seg−1
− 1

recursively for g ≥ 1 until eG = 0, for some integer G. Then, the slicing scheme is
given by yi ∈ BG−g+1, for eg + 1 ≤ i ≤ eg−1 and 1 ≤ g ≤ G, with G the number of
slices.

in location or in scale, exists, and is denoted by S0. For a continuous response,

if Z depends on Y only through some latent slices of Y , then the optimal slic-

ing scheme coincides with that latent structure (Cook and Zhang (2014)). As

in the previous section, we assume that Y is discrete and has a finite support

Y = {1, . . . ,K}. In this case, the existence is guaranteed. Note that the above

definition is not well defined for a forward regression. The adaptive slicing algo-

rithm, however, is not restricted to an inverse regression.

Let G0 = |S0| and write S0 = {B0g, g = 1, . . . , G0}. Here, S is said to be over-

slicing if it divides one or more slices in S0 into sub-slices; that is, S0 \S 6= ∅, and

for each B0 ∈ S0 \ S, there is a nontrivial partition B0 = ∪lBl0, such that Bl0 ∈ S,

for all l. In addition, S is under-slicing if one slice contains elements from two or

more slices in S0; that is, there exists a slice B ∈ S and some 1 ≤ g ≤ G0, such that

B∩B0g 6= ∅ and B∩B0(g+1) 6= ∅. According to whether S is over-slicing or under-

slicing, we set S+ = {S : S is over-slicing} and S− = {S : S is under-slicing}.
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Define

BIC1(S;α) =

|S|∑
g=1

fBg
trace(α>µ̂Bg

µ̂>Bg
α)− log(n)

n
× d× |S|

and

BIC2(S;α) =

|S|∑
g=1

fBg
trace{α>(Ip − Σ̂Bg

)2α} − log(n)

n
× d(d+ 3)

2
× |S|.

Let Ŝ1(α) = argmaxSBIC1(S;α) and Ŝ2(α) = argmaxSBIC2(S;α). For each

k ∈ Y, let πk = P (Y = k). We have the following theorems.

Theorem 1. Assume that ( 1) πk > 0, for all k ∈ Y, and ( 2) α̃α̃> = α0α
>
0 +

Op(n
−1/2), where α0 is a basis matrix for span(MSIR) and α̃ is an initial esti-

mator of α0. Then, as n→∞, Ŝ1(α̃) converges in probability to S0, the optimal

slicing scheme in location.

Theorem 2. Assume that ( 1) πk > 0, for all k ∈ Y, and ( 2) α̃α̃> = α0α
>
0 +

Op(n
−1/2), where α0 is a basis matrix for span(MSAV E) and α̃ is an initial

estimator of α0. Then, as n → ∞, Ŝ2(α̃) converges in probability to S0, the

optimal slicing scheme in location or in scale.

The SAVE and SIR are very different. At the population level, the SAVE is

exhaustive under mild conditions (i.e., SSAV E = SY |X ), but the SIR is not (Li

and Wang (2007)). For a fixed slicing scheme, the asymptotic behavior of the

SAVE differs from that of the SIR (Li and Zhu (2007)). For adaptive slicing, the

difference remains. It is evident from the proof that the theory for the SAVE is

more challenging, because it requires the optimal slicing scheme S0 be in location

or in scale. In practice, S0 could be in both location and scale, that is, the col-

lection of E(Z | Y ) and Cov(Z | Y ) takes |S| values and is constant within each

slice. Although the SAVE is more comprehensive than the SIR, we are not able

to give the general theory for the SAVE. A bias correction might be useful (Li

and Zhu (2007)), but this is beyond the scope of this study. Finally, note that

the consistency of the subspace estimation is guaranteed by the slicing consis-

tency (Wang and Zhu (2015)). However, as noted by a referee, this consistency is

quite different from that of a conventional estimation, because the selected slic-

ing scheme is random rather than fixed. Nevertheless, our experience suggests

that this randomness introduces some uncertainty into the estimates. It would

be interesting to investigate the impact of adaptive slicing on the asymptotic

distribution of the subspace estimator.
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5. Simulation Results

We conducted simulation studies to evaluate the performance of the SIR-

AS and SAVE-AS. We considered both inverse-regression and forward-regression

models. To measure the closeness between SY |X and its estimate, we used the

vector correlation coefficient (Ye and Weiss (2003)). Let B and B̂ be basis ma-

trices for the true and estimated subspaces, respectively. The vector correlation

coefficient is defined as the positive square root of the product of the eigenvalues

of B̂>BB>B̂. For each simulation example, we took n = 400 and p = 10, and

tabulated the results over 200 replications. We treated the SIR-AS and SAVE-AS

separately.

5.1. SIR-AS

Example 1. Inverse regression. We first simulated Y uniformly on the inter-

val [0, 5]. Given Y = y, we then generated X from the model

X = βCh(y) + 0.5ε+ 0.3βε, (5.1)

where β = (1, 1, 0, . . . , 0)> ∈ Rp×1,C = (2,−2, . . . , 2,−2) ∈ R1×G0 , h(y) ∈
RG0×1 is a vector of slice indicator functions, and (ε>, ε)> ∈ Rp+1 is multivariate

Gaussian with zero mean and an identity covariance matrix and is independent

of Y . We set G0 = 10 and constructed h using quantile slicing of the observed

responses with G0 slices. By Proposition 2, SY |X = SSIR = span(β). In this

example, there is an optimal slicing scheme in location: G0 slices, with an equal

number of observations in each slice.

Example 2. Forward regression. We first generated X from a multivariate

Gaussian distribution with mean vector zero and covariance matrix Σ = (Σij),

with Σij = 0.5|i−j|. We then generated Y according to the following model:

Y = β>1 X (β>2 X + 0.5) + 0.3ε, (5.2)

where β1 = (1, 0, . . . , 0)> ∈ Rp×1,β2 = (0, 1, 0, . . . , 0)> ∈ Rp×1, and ε is standard

normal and is independent of X . In this example, SY |X = SSIR = span(β1,β2).

The optimal slicing scheme is not well defined.

In addition to the SIR-AS, we examined the performance of the original SIR

of Li (1991), cumulative mean estimation (CUME) of Zhu, Zhu and Feng (2010),

and fused sliced inverse regression (FSIR) of Cook and Zhang (2014). Whereas

the SIR uses a single slicing scheme, the CUME and the FSIR extract information

from multiple slicing schemes. The kernel matrix for the CUME is the sum of



DIMENSION REDUCTION VIA ADAPTIVE SLICING 511

Table 1. Means and standard deviations (in parentheses) of the vector correlation coef-
ficient for the SIR-AS and its various competitors, based on 200 data applications, for
Examples 1 and 2.

SIR FSIR

Model G = 5 G = 10 G = 20 CUME H = 10 H = 20 H = 30 SIR-AS

(5.1) 0.010 0.979 0.978 0.226 0.794 0.906 0.916 0.979

(0.008) (0.008) (0.009) (0.075) (0.078) (0.038) (0.032) (0.008)

(5.2) 0.679 0.706 0.652 0.747 0.740 0.750 0.734 0.786

(0.159) (0.156) (0.209) (0.110) (0.130) (0.136) (0.149) (0.128)

the SIR kernel matrices from all slicing schemes with two slices. In this sense,

the CUME is slicing-free. The kernel matrix for the FSIR is the sum of the SIR

kernel matrices for a set of predefined slicing schemes. We used quantile slicing

for the SIR and FSIR. To explore the sensitivity of the SIR to the number of

slices G, and of the FSIR to the set of slice numbers H, we took G ∈ {5, 10, 20}
and H = {2, . . . ,H}, with H ∈ {10, 20, 30}.

The simulation results for these two examples are summarized in Table 1.

Overall, the SIR-AS performed best, followed by the FSIR. Consider first the

inverse regression model (5.1). We see that the CUME performed poorly, and

that the FSIR is sensitive to the choice of H. Furthermore, the SIR with G = 10

and the SIR-AS performed best. For the SIR, over-slicing (G = 20) did not

affect the performance, but under-slicing (G = 5) deteriorated the performance

dramatically. The success of the SIR with G = 10 is expected, because for this

model, the quantile slicing scheme with 10 slices is optimal. To understand the

reason for the success of the SIR-AS, we calculated the percentage of choosing

the optimal slicing scheme. It turns out that the SIR-AS always made the correct

decision. However, this is expected from Theorem 1. Our conclusion is that when

there is an optimal slicing scheme, the SIR and CUME can fail, and the FSIR

can be unstable. We now turn to the forward regression model (5.2). Here, the

SIR-AS outperformed its competitors. The user-specified parameter, G for the

SIR and H for the FSIR, had only minor effects on the results.

5.2. SAVE-AS

Example 3. Inverse regression. The setup is the same as in Example 2.

Example 4. Forward regression. We first generated X from a multivariate

Gaussian distribution with mean vector zero and identity covariance matrix. We

then generated Y according to the following model:
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Y = (β>1 X )2 + 3 sin

(
β>2 X

4

)
+ 0.2ε, (5.3)

where β1 = (1, 1, 1, 0, . . . , 0)> ∈ Rp×1,β2 = (1, 0, 0, 0, 1, 3, 0, . . . , 0)> ∈ Rp×1, and

ε is standard normal and is independent of X . In this example, SY |X = SSAV E =

span(β1,β2). The optimal slicing scheme is not well defined.

We compared the SAVE-AS with the original SAVE of Cook and Weisberg

(1991), cumulative variance estimation (CUVE) of Zhu, Zhu and Feng (2010),

and fused sliced average variance estimation (FSAVE) of Cook and Zhang (2014).

The kernel matrix of the CUVE is the sum of the SAVE kernel matrices from

all slicing schemes with two slices, and the kernel matrix for the FSAVE is the

sum of the SAVE kernel matrices for a predefined set of slicing schemes. We

used quantile slicing for the SAVE and FSAVE. For the SAVE, we considered

the number of slices G ∈ {5, 10, 20}, and for the FSAVE, we took the set of slice

numbers H = {2, . . . ,H} with H ∈ {10, 20, 30}.
The simulation results for these two examples are summarized in Table 2.

Overall, the SAVE-AS performed well. In the inverse regression model (5.1), the

CUVE and FSAVE performed poorly. The SAVE with G = 10 and the SAVE-

AS performed best, followed by the SAVE with G = 20. For this model, the

quantile slicing scheme with 10 slices is optimal. This explains the success of the

SAVE with G = 10. To understand the reason for the success of the SAVE-AS, we

calculated the percentage of choosing the optimal slicing scheme. It turns out that

the SAVE-AS made the correct decision every time. However, this is expected

from Theorem 2. We also see that for the SAVE, under-slicing (G = 5) degraded

the performance severely. We thus conclude that when there is an optimal slicing

scheme, the SAVE, CUVE, and FSAVE can all fail. We now consider the forward

regression model (5.3). We see that the SAVE-AS outperformed the CUVE, and

the FSAVE is sensitive to the choice of H. Furthermore, the SAVE was strongly

affected by the number of slices. This is in consistent with the theoretical behavior

of the SAVE (Li and Zhu (2007)).

6. An Illustration

In this section, we illustrate the proposed methodology using a real-data

example.

Example 5. The concrete compressive strength data (Yeh (1998)). Con-

crete is one of the most important materials in civil engineering. This data

set records the compressive strength of 1030 concrete mixtures, together with
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Table 2. Means and standard deviations (in parentheses) of the vector correlation coef-
ficient for the SAVE-AS and its various competitors, based on 200 data applications, for
Examples 3 and 4.

SAVE FSAVE

Model G = 5 G = 10 G = 20 CUVE H = 10 H = 20 H = 30 SAVE-AS

(5.1) 0.209 0.677 0.643 0.213 0.252 0.411 0.385 0.677

(0.138) (0.061) (0.095) (0.140) (0.180) (0.215) (0.214) (0.061)

(5.3) 0.936 0.851 0.466 0.721 0.941 0.855 0.689 0.793

(0.082) (0.173) (0.263) (0.248) (0.071) (0.152) (0.236) (0.220)

their age and seven ingredients. These ingredients include cement, blast furnace

slag, fly ash, water, superplasticizer, coarse aggregate, and fine aggregate. The

data set is available at http://archive.ics.uci.edu/ml/datasets/Concrete+

Compressive+Strength. Here, we regress the concrete compressive strength on

the other variables.

Dimension-reduction analyses of this data set are largely based on first con-

ditional moments (Zhou and He (2008); Cook and Zhang (2014)). As such,

we restrict our attention to the SIR-AS and its competitors: the SIR with

G ∈ {5, 10, 20}, CUME, and FSIR with H = {2, . . . ,H} and H ∈ {10, 20, 30}.
Previous results suggest that we can take d = 2 as the dimension of SSIR. An

accurate estimation of d is important and interesting, but is beyond the scope of

this study.

In real-data problems, we do not know the true dimension-reduction sub-

space. This makes a comparison of different methods difficult. Because all meth-

ods considered here are unbiased for estimating SSIR, we can pick the one with

the minimum variance (Ye and Weiss (2003)). To assess the variability, we used

the resampling technique. Specifically, we generated 400 subsamples randomly

from the observed data, with sample size 800. For each method, we calculated

the vector correlation coefficient between the full sample estimate B̂ and the

subsample estimate B̂(s), for s = 1, . . . , 400. The results are summarized in Ta-

ble 3. The results show that the SIR-AS outperformed all other methods. The

comparison of the SIR-AS and the SIR with a fixed slicing scheme and that of

the SIR-AS and the FSIR with a predefined set of slicing schemes are not com-

pletely fair, because adaptive slicing introduces additional uncertainty into the

estimates. Nevertheless, the results suggest that for this data set the SIR-AS is

very competitive.

http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength


514 WANG

Table 3. Means of the vector correlation coefficient between the full sample estimate B̂
and the subsample estimate B̂(s) for the SIR-AS and its various competitors, based on
400 random subsamples, for the concrete compressive strength data.

SIR (G = 5) 0.757
SIR (G = 10) 0.709
SIR (G = 20) 0.599
CUME 0.775
FSIR (H = 10) 0.734
FSIR (H = 20) 0.739
FSIR (H = 30) 0.738
SIR-AS 0.845

7. Discussion

We have considered the long-standing problem of how to choose a good slic-

ing scheme for the SIR and SAVE. We re-derived the SIR and SAVE using the

trace maximization principle, and then proposed two procedures, the SIR with

adaptive slicing and the SAVE with adaptive slicing, by penalizing the respective

traces. We developed a dynamic programming algorithm for numerical optimiza-

tion. Our simulation results show that, on average, adaptive slicing outperforms

cumulative slicing and fusion, both of which indirectly address the slicing prob-

lem. We have implemented the procedures in R, and the computer program can

be requested from the authors directly. The general methodology of adaptive

slicing can be applied to other dimension-reduction methods that involve slicing

a quantitative response, such as a directional regression and linear combinations

of these methods (Ye and Weiss (2003)).

Almost all traditional dimension-reduction methods rely on the traditional

asymptotic reasoning for support, letting the sample size n→∞ with the number

of predictors p fixed. When n is not sufficiently large, they encounter estimation

problems. Proposals such as screening and selection have been proposed to carry

out sufficient dimension reduction in high-dimensional regressions. Investigations

of adaptive slicing in high-dimensional settings are interesting and important.

This is left to future work.

The structural dimension is assumed to be known throughout the paper.

In practice, it is unknown. To learn the dimension from the data, sequential

tests (Cook and Weisberg (1991)) and information criteria (Zhu, Miao and Peng

(2006)) are commonly used in the dimension-reduction literature. One advantage

of information criteria is that the selection consistency follows from the estima-

tion consistency. Because adaptive slicing explicitly accounts for the structural

dimension, addressing slicing and dimension selection simultaneously deserves
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further investigation. A simple approach, as employed in the real-data example,

is to choose the dimension based on a rough slicing scheme, and then to base

adaptive slicing on the chosen dimension.

Supplementary Material

The online Supplementary Material contains additional simulations and all

proofs.
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