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S1 Appendix A: Proof of Theorem 1-2

Here, we denote ¢'(0) = 94(6) (6y) = %‘9:90’ 06,0) = g;g% and

00 10=6’ |9:0’

g//(eo’gl]) _ 0%4(0)

W‘ 9—6, for ease of presentation. For any square A and B, the two

inequalities ||AB||r < ||Al|2]|B]|r and |tr(AB)| < ||A||r|B||r hold.

Proof of Theorem[1. To prove consistency, it suffices to show that, for any given con-

stant € > 0, there is a constant C', such that

P sup  L(Op+u) <l(By) p >1—¢ (S1.1)
fuk|=Cty )
holds for a sufficiently large N,,, where w = (uy, ..., u,). Through Taylor’s expansion,
1 -~
0(0y +u) —£(6) = (6 u — §uT€”(0, 0)u, (51.2)

where 0 is between 0y and 6y + u.

First, the mean and variance of ¢'(6xg) are

E£/<9k0) — 0,

Var{ﬁ'(@kg)} = tk:k,n-



Therefore, ¢'(6y) = Op(tllcgn), and the first term of (S1.2) is ¢/(6y)"u = O,(1). Next,

we quantify the second term of (S1.2). First, by and |(A4)| we have the following

equations

q
3 — 32 < X 0 — Oro| = o(1 S1.3
Jmax | oll2 < max 2H kll2 10k — kol = o(1), (S1.3a)
max || 271 %, < pax ||EO Slo 1272 +1=0(1), (S1.3b)
0eV(6) eVv(o
1/2
eg%gmh—&wF<2n%biwzwwwm—@ﬂ—dmg» (S1.3¢)

where V(6y) = {6 : ||0x — Oroll2 < C’t_l/z} Furthermore, for 8 € V(6,), by matrix

calculus,

1512 =)l < Z max [tr{23;1 (2 — o)X, ' Sx}| [0k — kol

£ 0cV(60)
q
< 2 max ||2 U -2 |lr max [|Z;'Sklr |0k — Orol,
0cV (6 0V (o)

max [|5'%)r < max [|Z; zk0||F+ ma Hz LS — Seo)llr = O12).
ISCD) eV (0y) '

Combing the above two inequalities, we obtain

a5 (5 = o)l = 0(1), (S1.4)

Together with (S1.3a))—(S1.3d)), it yields

6cV (0o 6cV (6

— O(t}fn). (S1.5)

max 327 llr < max {H2 ol (120 (B — Zeo)llF + 130" Zhollr) }

The (k, k')th element of £/(6, 6) is (" (0, ) = 2{tr(E' Sy +ZF Sy ) +y T =y},
and var{¢”(0y,0p)} = tr{(ZeT*)?}. Let A; = LI, X182, and Ay =

21821, we have tr{(ZoXF)?2)} < 8||AL||% + 2||Az||%. For any 8 € B(6y), by
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[(A2)] [(AD), (ST.30) and (SL.),

A% < 1Z7 02 17 Sl 1= 7 Sw o ticatirn < 0(trentivn ),

_ _ 1/2 ,1/2
|Aallp < 157 127 Solls [Zellr < 0 (B2t ) -

Therefore, (tkk,ntk/k/’n)_lm [6”((9]“ Gk/) — E{E”(Qk, Qk/)}] L 0.
Moreover, the (k, k')th element of E{¢"(6,0)} is E{("(0y,0r)} = 5tr(Z "y +

SFY + TR S0), and the (k, k')th element of 2 [E{¢"(0k, 0} — E{l" (0o, Or0)}] is

= tr{Z'S TS + DTS E TS + SR TIE - D) T S0} 4 (S )
= {2 N E - )} + tr{ZT TN (E - 2} — tr(ZF D TIE) — T E)

= (L) + (L) + (I3),

where (I}) = tr{SFSLS4E — 20)}, (L) = {S 'S S 1(E — S0}, (L) =

—tr(ZF B8 — 2K E), and BF = 27180251 By |(A2)] [(A4)] (S1.3al), (S1.4),

and (S1.5)), we have

()] < 1= Selle 157 Sl 1278 - o)l = o (400 )

_ _ 1/2 ,1/2
()] < 1= e ISwelle 15748 = So)lr = o (60, t100) -
For (I3), it can be written as

() = tr(S'Zp S IS8 — 25 w02, o)
= tr{E_lEk/E_IEk(E_l — 251)20} + tT{Z_IEk/E_I(Ek — EkO)}
+ tr{ZTE(ET =Sy} Fr{E TN (B — Zr0) B ' ko

+ tr{(Z7 = S k0T Bho} = (L) + (Is2) + (Is3) + (Isa) + (I35).



Using [(A2)} [(A4)l and (S1.3a))—(S1.5)), the following results are obtained

()] < 1B Swllr 157kl (37 = 357 oll2

IN

1570l 1= Sl 1127 I = Soll = o (G205

[(I52)] < 1= Swlle =71 (S — So)llr = o (Bt )

()] < I Zellr IS = D)=k 155 Seollr = 0 (Bt

()] < I=7(Se = Swo)llr 150" Swollr =0 (L2007

()] < IS =2 Swolle 155" Seolle = 0 (Bl tde ) -

Therefore, (]3) =0 (t,lﬂé?ntllf,/;,m>, and E{f/l(gk’ Qk’)} _ E{E”(@ko, 919’0)} — 0 (t

Let D = diag(ty) s, . -, tym), and by definition, E{¢"(6y, 8y)} = DS, D. By|(A3)

kk,n k’k’,n) )

).

1/2 41/2
kknUk'k/n )

U

we have (DD)~1{("(0,0) — E{"(6,0)} -2 0. Because 6 € B(6;), the second term

of (S1.2) is %uTE”(é, 6)u = O(1), which dominates the first term for large

Thus, 1' holds, and the consistency of 0, is proved.

Proof of Theorem[3. For 0,,, it satisfies %‘ =0, which implies
0=0,

00
a1(0) O
oY) 0 —0,) =
90 |,_, o607, , OO =0

where 0,, is between 8, and én For the second term of 1) recall that

= E{l"(60,60)}(1 + 0,(1)) = Tao {1 + 0,(1)}.

Therefore, we obtain

j@g(én - 00) L) _5,(00)

enough C.

(S1.6)

(S1.7)
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Next, we use the Cramer-Wold theorem to prove /(6y) —= N (0, Ja,). That is, we

will prove that for any e = (g, ..., q,)" € RY,
—a'l'(6y) b, N0, a" Jg,cx).

Let —a 0(0)) = Y7 e A(a)e — tr{A(a)}, where By = $/°SEx) and A(a) =
3 21 @ Bio.

The term e A(a)e is known as the generalized quadratic form and various condi-
tions has been imposed to ensure that the generalized quadratic form converges to a
normal distribution (De Jong, |1987; Kelejian and Pruchal 2001} [2010; |Shao and Zhang;,
2019). Ome key condition often imposed is that diagonal elements of A(a) are zero,

which does not hold here. However, for Gaussian processes, we have
Nn
e Ala)e — tr{A(a)} = Z Xi(Z; — 1),
i=1

where )\; is the ith largest eigenvalue of A(a), and Z;,...,Zy, is a sequence of in-
dependent centered chi-square distributed random variables with 1 degree of freedom.
Following De Jong (1987)), a necessary and sufficient condition for the asymptotic nor-
mality is,

At
YA

— 0, (S1.8)

as IV,, — oo.

By Cauchy-Schwarz inequality, A < (3°7_, |aw|l|Broll2)* < llell3 O t_, | Broll3)-



Furthermore,

tll,n cee th,n
Nn
Y N = w{A(@TAl@}=a"| i |a
i=1

tgl,n ... Tggn

T .
2 a « /\min(ﬂn) min tkk,na
1<k<q

where Apin(€2,,) is the smallest eigenvalue of €2,,. By [(A3)|and [(A5)] equation (S1.8)) is

verified, the asymptotic normality of 6 is shown.

Last, we show je_oljé NN I,. The (k, k')th element of ekt — ks n 18

~

(_[]) = tr(g_likx_lik/) — tT(ZJIEk/OEEIEkO)
- tr{ﬁilgkﬁil(ﬁk/ — Ek/(])} + tr{2712k<271 — Eal)zk/o}

+ tr{S NS — Z0) By Bt + tr{(Z7 = B ) Sk S0}

(IL)+ (IL) + (I113) + (I1).

Following the similar arguments as (I32)—(I35) in the proof of Theorem , it can be

shown that (/1) = o, (t,lfnt,lﬁ,/,f/» Recall that Jy, = DS, D, we obtain

170" T5 = Tylls = €212 D7 (Tg = Tas) D" [l> = 0,(1).
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S2 Appendix B: Proof of Theorem 3—Theorem 5

Proof of Theorem[3. First, we show that there exists a constant ¢ > 0, such that for
any 6 € B(6,),

ma {8, o, [l f < oV}~ (s2.1)

kk/=1,...,
holds for sufficiently large N,,.

Let d;iy = ||si — sir||2, and B, = {i’ : md < d;»v < (m+1)d}, where 0 is independent
of n. For large enough N,,, by Assumption , the sampling density of any subset of
R, is bounded by pN!=@! where p > 0 is a constant. Thus, the number of elements
in B, is at the rate of N1=®m!=1§!. Consequently, we have

Np,
13%27%/,9) = Wax Z > (i, 6)

=1 m=04'EB,

< max {O(N}L_O‘Z)ml_lél max )67(d,0)}. (52.2)

mé<d<(m+1

Let 0 — 0, by the definition of Riemann integral, we have

g m'~'6" max  (d,0) — / du.
s mé<d<(m+1)d
By |(C1)| we have max [|X| s = O(N}~), and thus, max [|X|, = O(N!7!). Sim-
6cB(6o) 0eB(6o)

ilarly, we can show that max ||Zilz = O(N}=), max ||Zuw|z = O(N}) and
0€B(6o) 0cB(6o)

.. -0 1+(1 al) '

o2 {12 Iz = O(Nn )

Next, we show that as N, — oo, the rate of ty, is larger or equal to Ny "

In Section , we have shown f95,, is at the rate of V,,. Here, we show that for k # 2,

—(1—-ad)

the rate of t,, is larger or equal to N, , as IN,, — oo. Following the inequality

teken = (20 Zho0 ' ko) > 1 Zoll2? | Zkol|2 and (S2.1), it suffices to show that



||Ek0||% has the rate of N1+(1-ab),
By [(S1), for sufficiently large N,,, the number of elements in B, is larger than

poNI=ml=15! as N,, — oo, where py > 0 is a constant. For each i, we have

Nn 0o

>_{mldi, 60 =3 3 {ldi, 80)}

=1 o S
> 1-al, I-15l . 2 |
> 7;)/)2]\7” mo m5<£%g+1)5{%(d’ 0o)} (52.3)

Let 0 — 0, by the definition of Riemann integral, we have

> me min (i 60)} = / u = e (u; 0p) 2 elu > 0.
m=0 0

mé<dd<(m—+1

By |[(C3)] we have

N, Nnpn 00
1ol =YY {(din, 00)}* > poNiH1—eD / u ™ {7y (u; 60) Y du,
i=1 i'=1 0

which is at the rate of N1+(1-ad),

Based on the above results, we discuss the sufficient conditions for |(A4)| and |(A5)]

For [(A4

~

| since r%z(xx) 1242 is at the rate of N7 and t;;,, is at the rate larger or
0eB(6¢

equal to Ny~ "~ a sufficient condition for 91%%43() 12k]|2 = o(tllgézn) is (1 —al) < 1/3.
€B(0o ’

Similarly, the sufficient condition for orrllgé(x;() | Xk || F = o(t}fnt,ﬁ,/,f, L) is (1 —al) < 1/3,
€B(6o ’ ’

and the sufficient condition for |(A5)[is (1 —ad) < 1/3.

Lemma 1. Covariance functions (2.3)-(2.4) satisfy conditions[(C1) and [(C3),

Proof of Lemma(1 For the Matérn class in (2.2)), straightforward calculation shows
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that
o(d;0) 2 [(6d\"
90, = QSm <7) K,i_l(@ld)d,
O(d;0) 1, if d=0,
5 =
00 0, if d>0,
Ov(d;0) 2 [(6d\"
803 - F(I{) <7> Kn(eld)7
Osris (40)" Kuoa(Ord)d?,  if k=K =1,
2, (1.
aekaek/ I'(k) \ 2 k—1\Y1 ) s = 1, , = (3,1),
0 otherwise.

It is easy to see that [;° u' |y (u; @)|du = 0 and [ u'|yaw (u; 0)|du = 0. Moreover,
since K, (d) o< e4d~/?{14+O(1/d)} when d — oo, [ u!~*|y(u; 0)|du, [5° u!~ vk (u; 8)|du
and [ 4!~ yue (u; 0)|du are finite and continuous with respect to @, for k, k" # 2.

Therefore, [(C1)|is satisfied. Moreover, for k # 2, [ u" {7y (u; 6)}?*du > 0, and |(C3)

is satisfied.
For the Gaussian covariance function in (2.3)), we have

dv(d; 0) @2 d\>
20, 29303 exp i — 0

dv(d; 0) 1, if d=0,
00,




For the powered exponential covariance function in (2.4), we have

97(d; 0) _ d\" 04 n—04—1
2, 93exp{ <91> (04d74077477)

d~(d; 0) 1, if d=0,
00,

0, if d>0,

e _ I (4 "
005 0,) [
04
9v(d; 9) Ggexp‘{—-(éé) }(—«W49{%10g(d/90), it d=0,
06,4

0, if d>0.

Moreover, for both the Gaussian and the powered exponential covariance functions,
it is easy to see that the second derivatives of 7(d;0) will be either zero or decay

at exponentially rate. Thus, by the similar argument as covariance function (2.2)),

covariance functions ([2.3)—(2.4) also satisfy and |(C3)|

Proof of Theorem[]]. First, we show that under the fixed sampling design [(ST)] if co-
variance functions satisfy [(C2)|, then there exists a constant c¢3 > 0, such that for any

0 € B(6,),

mas {[/8o, |l [Swllaf < o}~ (524

holds for sufficiently large N,,.

Recall that d;; = ||s; — si||2 and B, = {i' : mdé < d;y < (m+ 1)d}. Similar to the
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proof of Theorem [3| we have

Ny, [An/20]
1ggg§aljij'v(dﬁ/,9) = max. >N A(din.0)
=1 m=0 +€Bm,
An/26]
_ 1—al -1l
T LiEN, mZ:O {O<N" Jm =0 m5<gi%n)§+l)67(d’0)}’ (52.5)

where [-] is the ceiling function.

Let 6 — 0, by the definition of Riemann integral, we have

[An/20] MAn /21
Z m~6" max  v(d,0) —>/ v(u; @)du = O(N2U=9),

m5<d§(m+1)5

The last equation holds since the A, is at the rate of N¢. By|(C2)| we have er%z%;() |20 =
€5(6o

O(N}!7¢), and thus, max [|X| = O(N!72¢). Similarly, we can show that max || 2], =
0cB(6o) 0cB(60)

O(N%*Oé() and max ||[Zgw |2 = O(NL729).

0cB(6,)
For max HEkk/HF, we have
0cB(6¢
Np,
max E v(dir,0) = max E g *(dy, 0)
1<i<N, 1<i<N,
i'=1 m=04¢'€B,,

oo

_ 1-aly, 115l 2
T igin, — {O(N” Jm0 mb<d%(m+1)5 | (dﬂ)}, (52.6)

Therefore, by [(C2)l we have max ||[Zyw % = O(Né+(lfal)).
0<B(8o)

Under , we can show that as IV, — oo, the rate of ¢, is larger or equal to
fo(%_l). It is suffice to show that for k # 2, the rate of tx,, is larger or equal to
Ny~ as N, — o0o. The proof is the same as that of Theorem |3} and we omit the

proof here. Based on the above results, it can be calculate that (4¢ — l)a > 2 is a

sufficient condition for [(A4)|and [(A5)| O

Lemma 2. [f1/4 < k < 1/2, Covariance function satisfies conditions (C3),



Proof of Lemma[g. The first-order and second-order derivatives of Cauchy covariance

function are,

2
931+(ﬂ i d>0,
" (S2.7)
05 + 0, if d=0,

straightforward calculation shows that

01(d:0) _ 2wbs [ (dY’ -
20, o o ’

0v(d;0) 1, it d=0,
o0,

0, if d>0,

(2 03> { (2r—1)d26; 23} 2) "2
R K— 1~ d . - -
- {H{E)} it k=k =1,
0%~(d; 0) 20 7!
00,00, 2?{H{%)} : if (k,k)=(1,3) or (k, k) = (3,1),
0 otherwise.

\

It is easy to see that [ u'~"!|y2(u; @)|du = 0 and [~ u'~"|yaw (u; @)|du = 0. Moreover,
for other terms, it decays at the rate of d=2¢. Setting ( = 2k, is satisfied.

Moreover, for k # 2, [ u'"{y(u; 69)}*du > 0, and |(C3)|is satisfied.
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S3 Appendix C: The relationship with increasing domain asymp-

totics

Here, we discuss the relationship between Theorems and increasing domain asymp-

totics in Mardia and Marshall (1984). Under the increasing domain framework, it is

well-known that |Mardia and Marshall| (]1984[) established asymptotic normality of 6,.

Similar to Theorem are also assumed in [Mardia and Marshall (1984)).

However, instead of |[(A4)H(A5)l the following conditions (B2)| are assumed by

Mardia and Marshall (1984)) for the increasing domain framework.

(B1) There exists a constant ¢ > 0, such that for any 6 € B(8,),
max { S, [ Sl [Swllo | < co
holds for sufficiently large N,.

(B2) As N,, — oo, we have S |Z4]| 22 = O(NY27), for some 7 > 0 and k =
€5(fo

1,...,q.

The main result of 6, in Mardia and Marshall| (]1984[) can be restated in the fol-

lowing Theorem [A]

Theorem A. Under|(A1)H(A3) and|(B1)H(B2), 6, has asymptotically normal distri-

bution, that is,

j910/2(én - 90) i> N(Oa Iq) :

In the following Corollary [A] it is shown that under the same conditions as Theo-

rem [A] Theorems hold for the increasing domain framework. Thus, Theorems



are consistent with previous studies in the increasing domain framework by Mardia
and Marshall (1984), and hold for both the mixed domain asymptotic framework and

the increasing domain asymptotic framework.

Corollary A. Under[(A1)}{(A3) and[(BIJ{(B2), Theorems[1{] hold.

Proof of Corollary[A].. By|(A2),|(B1){and inequality t4.. > [|X572||2 [ Zol|%, the rate of

N1/2+T

tikn 18 at least . Since max || Zkllz = O(1) and max |Spwllr < max No/2(|Spwls =
0B () 0B(80)

~ 0cB(6y)

O(an/ %), Assumptions hold, and Corollary |A|is proved. O

Assumption is closely related to asymptotic framework, and it holds for Type-
I covariance function under the increasing domain framework, as shown in of
Appendix B. However, Assumptiondoes not hold for Type-II covariance functions,
due to stronger spatial dependence, as shown in (S2.4) of Appendix B. Therefore,
Theorem [A] holds for Type-I covariance function under increasing domain asymptotics,
while Theorems here hold for both types of covariance functions under increasing

or mixed domain asymptotics.

S4 Appendix D: Additional Simulation Results

Here, we present the additional simulation results. Similarly to|Zhang and Zimmerman
(2005), we plot the 0.05+ 0.1(i — 1) quantiles for each parameter. For the exponential

covariance function, the plot is also drawn for ¢ = 05/6;.
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Figure A: Quantiles of 6 for the Gaussian covariance function with a = 0.4
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Figure C: Quantiles of 6 and (;AS for the exponential covariance function with a = 0.4
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Figure D: Quantiles of 0 and (ﬁ for the exponential covariance function with o = 0.3



S4. APPENDIX D: ADDITIONAL SIMULATION RESULTS

25 35 45 55

5.0

4.0

3.0

35 40 45

34 38 42 48

By, n=200
o
T T T T T T 1
2.5 3.5 4.5 8.5
iy = 400
o

1

I T T T T
3.0 35 40 45 50

B, , n= 800

3.4 3.8

4.6

0.50 0.60

0.40

0.56
I [

0.50

0.44

050 054

0.45

0.50 053

0.47

Bz, n=200

T T T
040 045 050 055

fz ., n =400

T T T T T T 1
044 048 052 056

Hg_. HZS‘UG

047 049 051 053

15 25 35

0.5

3.0

2.0

1.0

210 3.0

1.0

20 25

1.5

f3 ., n=400

Figure E: Quantiles of 0 for the Cauchy covariance function with a = 0.4
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Figure F: Quantiles of 0 and g% for the exponential covariance function with a =0
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