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S1 Appendix A: Proof of Theorem 1–2

Here, we denote `′(θ) = ∂`(θ)
∂θ

∣∣
θ=θ

, `′(θ0) = ∂`(θ)
∂θ

∣∣
θ=θ0

, `′′(θ,θ) = ∂2`(θ)
∂θ∂θ>

∣∣
θ=θ

, and

`′′(θ0,θ0) = ∂2`(θ)
∂θ∂θ>

∣∣
θ=θ0

for ease of presentation. For any square A and B, the two

inequalities ‖AB‖F ≤ ‖A‖2‖B‖F and |tr(AB)| ≤ ‖A‖F‖B‖F hold.

Proof of Theorem 1. To prove consistency, it suffices to show that, for any given con-

stant ε > 0, there is a constant C, such that

P

 sup
|uk|=Ct

−1/2
kk,n

`(θ0 + u) < `(θ0)

 ≥ 1− ε (S1.1)

holds for a sufficiently large Nn, where u = (u1, . . . , uq). Through Taylor’s expansion,

`(θ0 + u)− `(θ0) = `′(θ0)>u− 1

2
u>`′′(θ̃, θ̃)u, (S1.2)

where θ̃ is between θ0 and θ0 + u.

First, the mean and variance of `′(θk0) are

E`′(θk0) = 0,

Var{`′(θk0)} = tkk,n.



Therefore, `′(θ0) = Op(t1/2kk,n), and the first term of (S1.2) is `′(θ0)>u = Op(1). Next,

we quantify the second term of (S1.2). First, by (A2) and (A4), we have the following

equations

max
θ∈V(θ0)

‖Σ−Σ0‖2 ≤ max
θ∈V(θ0)

q∑
k=1

‖Σk‖2 |θk − θk0| = o(1), (S1.3a)

max
θ∈V(θ0)

‖Σ−1Σ0‖2 ≤ max
θ∈V(θ0)

‖Σ0 −Σ‖2 ‖Σ−1‖2 + 1 = O(1), (S1.3b)

max
θ∈V(θ0)

‖Σk −Σk0‖F ≤ 2 max
θ∈V(θ0)

q∑
k′=1

‖Σkk′‖F |θk′ − θk′0| = o(t
1/2
kk,n), (S1.3c)

where V(θ0) = {θ : ‖θk − θk0‖2 ≤ Ct
−1/2
kk,n }. Furthermore, for θ ∈ V(θ0), by matrix

calculus,

‖Σ−1
0 (Σ−Σ0)‖2

F ≤
q∑

k=1

max
θ∈V(θ0)

∣∣tr{2Σ−1
0 (Σ−Σ0)Σ−1

0 Σk}
∣∣ |θk − θk0|

≤
q∑

k=1

2 max
θ∈V(θ0)

‖Σ−1
0 (Σ−Σ0)‖F max

θ∈V(θ0)
‖Σ−1

0 Σk‖F |θk − θk0|,

max
θ∈V(θ0)

‖Σ−1
0 Σk‖F ≤ max

θ∈V(θ0)
‖Σ−1

0 Σk0‖F + max
θ∈V(θ0)

‖Σ−1
0 (Σk −Σk0)‖F = O(t

1/2
kk,n).

Combing the above two inequalities, we obtain

max
θ∈V(θ0)

‖Σ−1
0 (Σ−Σ0)‖F = O(1). (S1.4)

Together with (S1.3a)–(S1.3c), it yields

max
θ∈V(θ0)

‖Σ−1Σk‖F ≤ max
θ∈V(θ0)

{
‖Σ−1Σ0‖2 (‖Σ−1

0 (Σk −Σk0)‖F + ‖Σ−1
0 Σk0‖F )

}
= O(t

1/2
kk,n). (S1.5)

The (k, k′)th element of `′′(θ,θ) is `′′(θk, θk′) = 1
2
{tr(Σ−1Σkk′+ΣkΣk′)+y>Σkk′y},

and var{`′′(θk, θk′)} = tr{(Σ0Σ
kk′)2}. Let A1 = Σ−1ΣkΣ

−1Σk′Σ
−1Σ0 and A2 =

Σ−1Σkk′Σ
−1Σ0, we have tr{(Σ0Σ

kk′)2} ≤ 8‖A1‖2
F + 2‖A2‖2

F . For any θ ∈ B(θ0), by
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(A2), (A4), (S1.3b) and (S1.5),

‖A1‖2
F ≤ ‖Σ−1Σ0‖2

2 ‖Σ−1Σk‖2‖Σ−1Σk′‖2 t
1/2
kk,nt

1/2
k′k′,n ≤ o(tkk,ntk′k′,n),

‖A2‖F ≤ ‖Σ−1‖2 ‖Σ−1Σ0‖2 ‖Σkk′‖F ≤ o
(
t
1/2
kk,nt

1/2
k′k′,n

)
.

Therefore, (tkk,ntk′k′,n)−1/2[`′′(θk, θk′)− E{`′′(θk, θk′)}]
p−→ 0.

Moreover, the (k, k′)th element of E{`′′(θ,θ)} is E{`′′(θk, θk′)} = 1
2
tr(Σ−1Σkk′ +

ΣkΣk′ + Σkk′Σ0), and the (k, k′)th element of 2 [E{`′′(θk, θk′)} − E{`′′(θk0, θk′0)}] is

= tr{ΣkΣk′ + Σ−1Σkk′ + Σ−1(ΣkΣ
−1Σk′ + Σk′Σ

−1Σk −Σkk′)Σ
−1Σ0}+ tr(Σk′

0 Σk0)

= tr{ΣkΣk′Σ
−1(Σ−Σ0)}+ tr{Σ−1Σkk′Σ

−1(Σ−Σ0)} − tr(Σk′ΣkΣ
−1Σ0 −Σk′

0 Σk0)

= (I1) + (I2) + (I3),

where (I1) = tr{ΣkΣk′Σ
−1(Σ − Σ0)}, (I2) = tr{Σ−1Σkk′Σ

−1(Σ − Σ0)}, (I3) =

−tr(Σk′ΣkΣ
−1Σ0 −Σk′

0 Σk0), and Σk′
0 = Σ−1

0 Σk′0Σ
−1
0 . By (A2), (A4), (S1.3a), (S1.4),

and (S1.5), we have

∣∣(I1)
∣∣ ≤ ‖Σ−1Σk‖F ‖Σ−1Σk′‖F‖Σ−1(Σ−Σ0)‖2 = o

(
t
1/2
kk,nt

1/2
k′k′,n

)
,∣∣(I2)

∣∣ ≤ ‖Σ−1‖2 ‖Σkk′‖F ‖Σ−1(Σ−Σ0)‖F = o
(
t
1/2
kk,nt

1/2
k′k′,n

)
.

For (I3), it can be written as

(I3) = tr(Σ−1Σk′Σ
−1ΣkΣ

−1Σ0 −Σ−1
0 Σk′0Σ

−1
0 Σk0)

= tr{Σ−1Σk′Σ
−1Σk(Σ

−1 −Σ−1
0 )Σ0}+ tr{Σ−1Σk′Σ

−1(Σk −Σk0)}

+ tr{Σ−1Σk′(Σ
−1 −Σ−1

0 )Σk0}+ tr{Σ−1(Σk′ −Σk′0)Σ−1
0 Σk0}

+ tr{(Σ−1 −Σ−1
0 )Σk′0Σ

−1
0 Σk0} ≡ (I3,1) + (I3,2) + (I3,3) + (I3,4) + (I3,5).



Using (A2), (A4), and (S1.3a)–(S1.5), the following results are obtained

∣∣(I3,1)
∣∣ ≤ ‖Σ−1Σk′‖F ‖Σ−1Σk‖F ‖(Σ−1 −Σ−1

0 )Σ0‖2

≤ ‖Σ−1Σk′‖F ‖Σ−1Σk‖F ‖Σ−1‖2 ‖Σ−Σ0‖2 = o
(
t
1/2
kk,nt

1/2
k′k′,n

)
,∣∣(I3,2)

∣∣ ≤ ‖Σ−1Σk′‖F ‖Σ−1(Σk −Σk0)‖F = o
(
t
1/2
kk,nt

1/2
k′k′,n

)
,∣∣(I3,3)

∣∣ ≤ ‖Σ−1Σk′‖F ‖(Σ−Σ0)Σ−1‖2 ‖Σ−1
0 Σk0‖F = o

(
t
1/2
kk,nt

1/2
k′k′,n

)
,∣∣(I3,4)

∣∣ ≤ ‖Σ−1(Σk′ −Σk′0)‖F ‖Σ−1
0 Σk0‖F = o

(
t
1/2
kk,nt

1/2
k′k′,n

)
,∣∣(I3,5)

∣∣ ≤ ‖(Σ−1 −Σ−1
0 )Σk′0‖F ‖Σ−1

0 Σk0‖F = o
(
t
1/2
kk,nt

1/2
k′k′,n

)
.

Therefore, (I3) = o
(
t
1/2
kk,nt

1/2
k′k′,n

)
, and E{`′′(θk, θk′)}−E{`′′(θk0, θk′0)} = o

(
t
1/2
kk,nt

1/2
k′k′,n

)
.

LetD = diag(t
1/2
11,n, . . . , t

1/2
qq,n), and by definition, E{`′′(θ0,θ0)} = DΩnD. By (A3),

we have (DD)−1{`′′(θ,θ) − E`′′(θ,θ)} p−→ 0. Because θ̃ ∈ B(θ0), the second term

of (S1.2) is 1
2
u>`′′(θ̃, θ̃)u = O(1), which dominates the first term for large enough C.

Thus, (S1.1) holds, and the consistency of θ̂n is proved.

Proof of Theorem 2. For θ̂n, it satisfies ∂`(θ)
∂θ

∣∣∣
θ=θ̂n

= 0, which implies

∂`(θ)

∂θ

∣∣∣∣
θ=θ0

+
∂2`(θ)

∂θ∂θ>

∣∣∣∣
θ=θ̄n

(θ̂n − θ0) = 0, (S1.6)

where θ̄n is between θ0 and θ̂n. For the second term of (S1.6), recall that

∂2`(θ)

∂θ∂θ>

∣∣∣∣
θ=θ̄n

= E{`′′(θ0,θ0)}(1 + op(1)) = Jθ0{1 + op(1)}. (S1.7)

Therefore, we obtain

Jθ0(θ̂n − θ0)
p−→ −`′(θ0).
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Next, we use the Cramer-Wold theorem to prove `′(θ0)
p−→ N (0,Jθ0). That is, we

will prove that for any α = (α1, . . . , αq)
> ∈ Rq,

−α>`′(θ0)
D−→ N (0,α>Jθ0α).

Let −α>`′(θ0) =
∑q

k=1 e
>A(α)e− tr{A(α)}, where Bk0 = Σ

1/2
0 Σk

0Σ
1/2
0 and A(α) =

1
2

∑q
k=1 αkBk0.

The term e>A(α)e is known as the generalized quadratic form and various condi-

tions has been imposed to ensure that the generalized quadratic form converges to a

normal distribution (De Jong, 1987; Kelejian and Prucha, 2001, 2010; Shao and Zhang,

2019). One key condition often imposed is that diagonal elements of A(α) are zero,

which does not hold here. However, for Gaussian processes, we have

e>A(α)e− tr{A(α)} =
Nn∑
i=1

λi(Zi − 1),

where λi is the ith largest eigenvalue of A(α), and Zi, . . . , ZNn is a sequence of in-

dependent centered chi-square distributed random variables with 1 degree of freedom.

Following De Jong (1987), a necessary and sufficient condition for the asymptotic nor-

mality is,

λ2
1∑Nn

i=1 λ
2
i

→ 0, (S1.8)

as Nn →∞.

By Cauchy-Schwarz inequality, λ2
1 ≤ (

∑q
k=1 |αk|‖Bk0‖2)2 ≤ ‖α‖2

2 (
∑q

k=1 ‖Bk0‖2
2).



Furthermore,

Nn∑
i=1

λ2
i = tr{A(α)>A(α)} = α>


t11,n . . . t1q,n

...
. . .

...

tq1, n . . . tqq,n

α
≥ α>α λmin(Ωn) min

1≤k≤q
tkk,n,

where λmin(Ωn) is the smallest eigenvalue of Ωn. By (A3) and (A5), equation (S1.8) is

verified, the asymptotic normality of θ̂ is shown.

Last, we show J −1
θ0
Jθ̂

p−→ Iq. The (k, k′)th element of t̂kk′,n − tkk′,n is

(II) = tr(Σ̂−1Σ̂kΣ̂
−1Σ̂k′)− tr(Σ−1

0 Σk′0Σ
−1
0 Σk0)

= tr{Σ̂−1Σ̂kΣ̂
−1(Σ̂k′ −Σk′0)}+ tr{Σ̂−1Σ̂k(Σ̂

−1 −Σ−1
0 )Σk′0}

+ tr{Σ̂−1(Σ̂k′ −Σk′0)Σ−1
0 Σk′0}+ tr{(Σ̂−1 −Σ−1

0 )Σk0Σ
−1
0 Σk′0}

≡ (II1) + (II2) + (II3) + (II4).

Following the similar arguments as (I3,2)–(I3,5) in the proof of Theorem 1, it can be

shown that (II) = op

(
t
1/2
kk,nt

1/2
k′k′,n

)
. Recall that Jθ0 = DΩnD, we obtain

‖J −1
θ0
Jθ̂

p
− Iq‖2 = ‖Ωn‖2‖D−1(Jθ̂ − Jθ0)D

−1‖2 = op(1).
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S2 Appendix B: Proof of Theorem 3–Theorem 5

Proof of Theorem 3. First, we show that there exists a constant c2 > 0, such that for

any θ ∈ B(θ0),

max
k,k′=1,...,q

{
‖Σ‖2, ‖Σk‖2, ‖Σkk′‖2

}
≤ c2N

1−αl
n (S2.1)

holds for sufficiently large Nn.

Let dii′ = ‖si−si′‖2, and Bm = {i′ : mδ < dii′ ≤ (m+1)δ}, where δ is independent

of n. For large enough Nn, by Assumption (S1), the sampling density of any subset of

Rn is bounded by ρN1−αl
n , where ρ > 0 is a constant. Thus, the number of elements

in Bm is at the rate of N1−αl
n ml−1δl. Consequently, we have

max
1≤i≤Nn

Nn∑
i′=1

γ(dii′ ,θ) = max
1≤i≤Nn

∞∑
m=0

∑
i′∈Bm

γ(dii′ ,θ)

≤ max
1≤i≤Nn

∞∑
m=0

{
O(N1−αl

n )ml−1δl max
mδ<d≤(m+1)δ

γ(d,θ)

}
. (S2.2)

Let δ → 0, by the definition of Riemann integral, we have

∞∑
m=0

ml−1δl max
mδ<d≤(m+1)δ

γ(d,θ)→
∫ ∞

0

ul−1γ(u;θ)du.

By (C1), we have max
θ∈B(θ0)

‖Σ‖∞ = O(N1−αl
n ), and thus, max

θ∈B(θ0)
‖Σ‖2 = O(N1−αl

n ). Sim-

ilarly, we can show that max
θ∈B(θ0)

‖Σk‖2 = O(N1−αl
n ), max

θ∈B(θ0)
‖Σkk′‖2 = O(N1−αl

n ) and

max
θ∈B(θ0)

‖Σkk′‖2
F = O(N

1+(1−αl)
n ).

Next, we show that as Nn → ∞, the rate of tkk,n is larger or equal to N
1−(1−αl)
n .

In Section 3, we have shown t22,n is at the rate of Nn. Here, we show that for k 6= 2,

the rate of tkk,n is larger or equal to N
1−(1−αl)
n , as Nn → ∞. Following the inequality

tkk,n = tr(Σ−1
0 Σk0Σ

−1
0 Σk0) ≥ ‖Σ0‖−2

2 ‖Σk0‖2
F and (S2.1), it suffices to show that



‖Σk0‖2
F has the rate of N1+(1−αl).

By (S1), for sufficiently large Nn, the number of elements in Bm is larger than

ρ2N
1−αl
n ml−1δl, as Nn →∞, where ρ2 > 0 is a constant. For each i, we have

Nn∑
i′=1

{γk(dii′ ,θ0)}2 =
∞∑
m=0

∑
i′∈Bm

{γk(dii′ ,θ0)}2

≥
∞∑
m=0

ρ2N
1−αl
n ml−1δl min

mδ<d≤(m+1)δ
{γk(d,θ0)}2. (S2.3)

Let δ → 0, by the definition of Riemann integral, we have

∞∑
m=0

ml−1δl min
mδ<dδ≤(m+1)δ

{γk(dii′ ,θ0)}2 →
∫ ∞

0

ul−1{γk(u;θ0)}2du > 0.

By (C3), we have

‖Σk0‖2
F =

Nn∑
i=1

Nn∑
i′=1

{γk(dii′ ,θ0)}2 ≥ ρ2N
1+(1−αl)
n

∫ ∞
0

ul−1{γk(u;θ0)}2du,

which is at the rate of N1+(1−αl).

Based on the above results, we discuss the sufficient conditions for (A4) and (A5).

For (A4), since max
θ∈B(θ0)

‖Σk‖2 is at the rate of N1−αl and tkk,n is at the rate larger or

equal to N
1−(1−αl)
n , a sufficient condition for max

θ∈B(θ0)
‖Σk‖2 = o(t

1/2
kk,n) is (1− αl) < 1/3.

Similarly, the sufficient condition for max
θ∈B(θ0)

‖Σkk′‖F = o(t
1/2
kk,nt

1/2
k′k′,n) is (1− αl) < 1/3,

and the sufficient condition for (A5) is (1− αl) < 1/3.

Lemma 1. Covariance functions (2.2)–(2.4) satisfy conditions (C1) and (C3).

Proof of Lemma 1. For the Matérn class in (2.2), straightforward calculation shows
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that

∂γ(d;θ)

∂θ1

= −θ3
2

Γ(κ)

(
θ1d

2

)κ
Kκ−1(θ1d)d,

∂γ(d;θ)

∂θ2

=


1, if d = 0,

0, if d > 0,

∂γ(d;θ)

∂θ3

=
2

Γ(κ)

(
θ1d

2

)κ
Kκ(θ1d),

∂2γ(d;θ)

∂θk∂θk′
=


θ3

2
Γ(κ)

(
θ1d
2

)κ
Kκ−2(θ1d)d2, if k = k′ = 1,

− 2
Γ(κ)

(
θ1d
2

)κ
Kκ−1(θ1d)d, if (k, k′) = (1, 3) or (k, k′) = (3, 1),

0 otherwise.

It is easy to see that
∫∞

0
ul−1|γ2(u;θ)|du = 0 and

∫∞
0
ul−1|γ2k′(u;θ)|du = 0. Moreover,

sinceKν(d) ∝ e−dd−1/2{1+O(1/d)} when d→∞,
∫∞

0
ul−1|γ(u;θ)|du,

∫∞
0
ul−1|γk(u;θ)|du

and
∫∞

0
ul−1|γkk′(u;θ)|du are finite and continuous with respect to θ, for k, k′ 6= 2.

Therefore, (C1) is satisfied. Moreover, for k 6= 2,
∫∞

0
ul−1{γk(u;θ0)}2du > 0, and (C3)

is satisfied.

For the Gaussian covariance function in (2.3), we have

∂γ(d;θ)

∂θ1

= 2θ3
d2

θ3
1

exp

{
−
(
d

θ1

)2
}

∂γ(d;θ)

∂θ2

=


1, if d = 0,

0, if d > 0,

∂γ(d;θ)

∂θ3

= exp

{
−
(
d

θ1

)2
}
.



For the powered exponential covariance function in (2.4), we have

∂γ(d;θ)

∂θ1

= θ3 exp

{
−
(
d

θ1

)θ4}
(θ4d

θ4θ−θ4−1
1 )

∂γ(d;θ)

∂θ2

=


1, if d = 0,

0, if d > 0,

∂γ(d;θ)

∂θ3

= exp

{
−
(
d

θ1

)θ4}
,

∂γ(d;θ)

∂θ4

=


θ3 exp

{
−
(
d
θ1

)θ4}
(−dθ4θ−θ41 log(d/θ1)), if d = 0,

0, if d > 0.

Moreover, for both the Gaussian and the powered exponential covariance functions,

it is easy to see that the second derivatives of γ(d;θ) will be either zero or decay

at exponentially rate. Thus, by the similar argument as covariance function (2.2),

covariance functions (2.3)–(2.4) also satisfy (C1) and (C3).

Proof of Theorem 4. First, we show that under the fixed sampling design (S1), if co-

variance functions satisfy (C2), then there exists a constant c3 > 0, such that for any

θ ∈ B(θ0),

max
k,k′=1,...,q

{
‖Σ‖2, ‖Σk‖2, ‖Σkk′‖2

}
≤ c3N

1−αζ
n (S2.4)

holds for sufficiently large Nn.

Recall that dii′ = ‖si − si′‖2 and Bm = {i′ : mδ < dii′ ≤ (m+ 1)δ}. Similar to the
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proof of Theorem 3, we have

max
1≤i≤Nn

Nn∑
i′=1

γ(dii′ ,θ) = max
1≤i≤Nn

dλn/2δe∑
m=0

∑
i′∈Bm

γ(dii′ ,θ)

= max
1≤i≤Nn

dλn/2δe∑
m=0

{
O(N1−αl

n )ml−1δl max
mδ<d≤(m+1)δ

γ(d,θ)

}
, (S2.5)

where d·e is the ceiling function.

Let δ → 0, by the definition of Riemann integral, we have

dλn/2δe∑
m=0

ml−1δl max
mδ<d≤(m+1)δ

γ(d,θ)→
∫ dλn/2e

0

ul−1γ(u;θ)du = O(Nα(l−ζ)
n ).

The last equation holds since the λn is at the rate ofNα
n . By (C2), we have max

θ∈B(θ0)
‖Σ‖∞ =

O(N1−αζ
n ), and thus, max

θ∈B(θ0)
‖Σ‖2 = O(N1−αζ

n ). Similarly, we can show that max
θ∈B(θ0)

‖Σk‖2 =

O(N1−αζ
n ) and max

θ∈B(θ0)
‖Σkk′‖2 = O(N1−αζ

n ).

For max
θ∈B(θ0)

‖Σkk′‖2
F , we have

max
1≤i≤Nn

Nn∑
i′=1

γ(dii′ ,θ) = max
1≤i≤Nn

∞∑
m=0

∑
i′∈Bm

γ2(dii′ ,θ)

= max
1≤i≤Nn

∞∑
m=0

{
O(N1−αl

n )ml−1δl max
mδ<d≤(m+1)δ

γ2(d,θ)

}
, (S2.6)

Therefore, by (C2), we have max
θ∈B(θ0)

‖Σkk′‖2
F = O(N

1+(1−αl)
n ).

Under (C3), we can show that as Nn → ∞, the rate of tkk,n is larger or equal to

N
α(2ζ−l)
n . It is suffice to show that for k 6= 2, the rate of tkk,n is larger or equal to

N
1−(1−αl)
n , as Nn →∞. The proof is the same as that of Theorem 3, and we omit the

proof here. Based on the above results, it can be calculate that (4ζ − l)α > 2 is a

sufficient condition for (A4) and (A5).

Lemma 2. If l/4 ≤ κ ≤ l/2, Covariance function (2.5) satisfies conditions (C2)–(C3).



Proof of Lemma 2. The first-order and second-order derivatives of Cauchy covariance

function are,

γ(d,θ) =


θ3

{
1 +

(
d
θ1

)2
}−κ

, if d > 0,

θ3 + θ2, if d = 0,

(S2.7)

straightforward calculation shows that

∂γ(d;θ)

∂θ1

=
2κθ3d

2

θ3
1

{
1 +

(
d

θ1

)2
}−κ−1

,

∂γ(d;θ)

∂θ2

=


1, if d = 0,

0, if d > 0,

∂γ(d;θ)

∂θ3

=

{
1 +

(
d

θ1

)2
}−κ

,

∂2γ(d;θ)

∂θk∂θk′
=



2κθ3d2{(2κ−1)d2θ−2
1 −3}

θ41

{
1 +

(
d
θ1

)2
}−κ−2

, if k = k′ = 1,

2κd2

θ31

{
1 +

(
d
θ1

)2
}−κ−1

, if (k, k′) = (1, 3) or (k, k′) = (3, 1),

0 otherwise.

It is easy to see that
∫∞

0
ul−1|γ2(u;θ)|du = 0 and

∫∞
0
ul−1|γ2k′(u;θ)|du = 0. Moreover,

for other terms, it decays at the rate of d−2κ. Setting ζ = 2κ, (C1) is satisfied.

Moreover, for k 6= 2,
∫∞

0
ul−1{γk(u;θ0)}2du > 0, and (C3) is satisfied.



S3. APPENDIX C: THE RELATIONSHIP WITH INCREASING DOMAIN ASYMPTOTICS

S3 Appendix C: The relationship with increasing domain asymp-

totics

Here, we discuss the relationship between Theorems 1–2 and increasing domain asymp-

totics in Mardia and Marshall (1984). Under the increasing domain framework, it is

well-known that Mardia and Marshall (1984) established asymptotic normality of θ̂n.

Similar to Theorem 2, (A1)–(A3) are also assumed in Mardia and Marshall (1984).

However, instead of (A4)–(A5), the following conditions (B1)–(B2) are assumed by

Mardia and Marshall (1984) for the increasing domain framework.

(B1) There exists a constant c2 > 0, such that for any θ ∈ B(θ0),

max
k,k′=1,...,q

{
‖Σ‖2, ‖Σk‖2, ‖Σkk′‖2

}
≤ c2

holds for sufficiently large Nn.

(B2) As Nn → ∞, we have max
θ∈B(θ0)

‖Σk‖−2
F = O(N−1/2−τ ), for some τ > 0 and k =

1, . . . , q.

The main result of θ̂n in Mardia and Marshall (1984) can be restated in the fol-

lowing Theorem A.

Theorem A. Under (A1)–(A3) and (B1)–(B2), θ̂n has asymptotically normal distri-

bution, that is,

J 1/2
θ0

(θ̂n − θ0)
D−→ N (0, Iq) .

In the following Corollary A, it is shown that under the same conditions as Theo-

rem A, Theorems 1–2 hold for the increasing domain framework. Thus, Theorems 1–2



are consistent with previous studies in the increasing domain framework by Mardia

and Marshall (1984), and hold for both the mixed domain asymptotic framework and

the increasing domain asymptotic framework.

Corollary A. Under (A1)–(A3) and (B1)–(B2), Theorems 1–2 hold.

Proof of Corollary A.. By (A2), (B1) and inequality tkk,n ≥ ‖Σ−2
0 ‖2 ‖Σk0‖2

F , the rate of

tkk,n is at leastN
1/2+τ
n . Since max

θ∈B(θ0)
‖Σk‖2 = O(1) and max

θ∈B(θ0)
‖Σkk′‖F ≤ max

θ∈B(θ0)
N

1/2
n ‖Σkk′‖2 =

O(N
1/2
n ), Assumptions (A4)–(A5) hold, and Corollary A is proved.

Assumption (B1) is closely related to asymptotic framework, and it holds for Type-

I covariance function under the increasing domain framework, as shown in (S2.1) of

Appendix B. However, Assumption (B1) does not hold for Type-II covariance functions,

due to stronger spatial dependence, as shown in (S2.4) of Appendix B. Therefore,

Theorem A holds for Type-I covariance function under increasing domain asymptotics,

while Theorems 1–2 here hold for both types of covariance functions under increasing

or mixed domain asymptotics.

S4 Appendix D: Additional Simulation Results

Here, we present the additional simulation results. Similarly to Zhang and Zimmerman

(2005), we plot the 0.05 + 0.1(i− 1) quantiles for each parameter. For the exponential

covariance function, the plot is also drawn for φ = θ3/θ1.



S4. APPENDIX D: ADDITIONAL SIMULATION RESULTS

Figure A: Quantiles of θ̂ for the Gaussian covariance function with α = 0.4



Figure B: Quantiles of θ̂ for the Gaussian covariance function with α = 0.3



S4. APPENDIX D: ADDITIONAL SIMULATION RESULTS

Figure C: Quantiles of θ̂ and φ̂ for the exponential covariance function with α = 0.4



Figure D: Quantiles of θ̂ and φ̂ for the exponential covariance function with α = 0.3



S4. APPENDIX D: ADDITIONAL SIMULATION RESULTS

Figure E: Quantiles of θ̂ for the Cauchy covariance function with α = 0.4



Figure F: Quantiles of θ̂ and φ̂ for the exponential covariance function with α = 0
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