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S1 Additional simulations

Example A1 for SIR. We first generated X from a multivariate Gaussian

distribution with mean vector zero and covariance matrix Σ = (Σij) with

Σij = 0.5|i−j|. We then generated Y according to the following model:

Y = sin(η⊤X + ϵ), (S1-1)

where η = (1, 0, . . . , 0)⊤ ∈ Rp×1, and ϵ is standard normal and is indepen-

dent of X . In this example SY |X = span(η), and the optimal slicing scheme

does not exist.

Example A2 for SAVE. We first generated X from a multivariate

Gaussian distribution with mean vector zero and covariance matrix Σ =



TAO WANG

(Σij) with Σij = 0.5|i−j|. We then generated Y according to the following

model:

Y = (η⊤X )2 + ϵ, (S1-2)

where η = (1, 1, 1, 0, . . . , 0)⊤ ∈ Rp×1, and ϵ is standard normal and is

independent of X . In this example SY |X = span(η), and the optimal slicing

scheme does not exist.

Example A3 for SAVE. We first simulated Y uniformly on the in-

terval [0, 5]. Given Y = y, we then generated X from the model

X = η1Ch(y) + 0.5ε+ 0.3s(y)η2ϵ, (S1-3)

where η1 = (1, 1, 0, . . . , 0)⊤ ∈ Rp×1,η2 = (0, 0, 1, 1, 0, . . . , 0)⊤ ∈ Rp×1,C =

(2,−2, . . . , 2,−2) ∈ R1×G0 , h(y) ∈ RG0×1 is a vector of slice indicator

functions, and (ε⊤, ϵ)⊤ ∈ Rp+1 is multivariate Gaussian with zero mean

and identity covariance matrix and is independent of Y . We set G0 = 10

and constructed h via quantile slicing of observed responses with G0 slices.

Let Sg denote the gth slice. To specify a heteroscedastic error structure,

we define s(y) = g if y ∈ S2g−1 ∪ S2g, for g = 1, . . . , 5. By Proposition 3.2,

SY |X = span(η1,η2). In this example, there is an optimal slicing scheme

in location and scale: G0 slices with equal number of observations in each

slice.
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Table S1-1: Means and standard deviations (in parentheses) of the vector correlation

coefficient for SIR-AS and its various competitors, based on 200 data applications, are

reported for Example A1.

SIR FSIR

G = 5 G = 10 G = 20 CUME H = 10 H = 20 H = 30 SIR-AS

0.949 0.948 0.944 0.953 0.951 0.950 0.949 0.945

(0.027) (0.030) (0.033) (0.024) (0.025) (0.026) (0.028) (0.029)

Table S1-2: Means and standard deviations (in parentheses) of the vector correlation

coefficient for SAVE-AS and its various competitors, based on 200 data applications, are

reported for Examples A2 and A3.

SAVE FSAVE

Model G = 5 G = 10 G = 20 CUVE H = 10 H = 20 H = 30 SAVE-AS

(S1-2) 0.969 0.960 0.947 0.983 0.970 0.960 0.954 0.954

(0.015) (0.021) (0.028) (0.008) (0.016) (0.023) (0.025) (0.024)

(S1-3) 0.030 0.786 0.698 0.036 0.214 0.533 0.507 0.772

(0.024) (0.081) (0.115) (0.026) (0.145) (0.134) (0.151) (0.086)

S2 Appendix

Proof of Lemma 3.1. This is a corollary of the Courant–Fischer theorem.
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Proof of Proposition 3.1. Consider first the least squares loss

function LSIR(B,C). For fixed B, the minimizer is Ĉg = B⊤µ̂g, and the

minimum is

LSIR(B, Ĉ) =
G∑

g=1

ng

n
∥µ̂g −BB⊤µ̂g∥22

=
G∑

g=1

ng

n
trace{(Ip −BB⊤)µ̂gµ̂

⊤
g }

= trace(M̂SIR)− trace(B⊤M̂SIRB).

Thus, minimizing LSIR(B, Ĉ) over B ∈ Gp,d is equivalent to maximizing

trace(α⊤M̂SIRα) over α ∈ Gp,d.

Consider now LSAV E(B,F). For fixedB, the minimizer is F̂g = B⊤(Ip−

Σ̂g), and the minimum is

LSAV E(B, F̂) =
G∑

g=1

ng

n
∥vec(Ip − Σ̂g)− vec{BB⊤(Ip − Σ̂g)}∥22

=
G∑

g=1

ng

n
trace{(Ip −BB⊤)(Ip − Σ̂g)

2}

= trace(M̂SAV E)− trace(B⊤M̂SAV EB).

Thus, minimizing LSAV E(B, F̂) over B ∈ Gp,d is equivalent to maximizing

trace(α⊤M̂SAV Eα) over α ∈ Gp,d. The proof is complete.

Lemma S2.1. Let A be a p × d semi-orthogonal matrix, and let A0 be an

orthogonal complement of A such that (A,A0) is p×p orthogonal. Then, for

any p×p positive definite matrix B, det(A⊤BA) = det(B) det(A⊤
0 B

−1A0).
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Proof of Lemma S2.1. Note that

det(B) = det{(A,A0)
⊤B(A,A0)}

= det(A⊤BA) det{A⊤
0 BA0 −A⊤

0 BA(A⊤BA)−1A⊤BA0}.

It is easy to show that

B = A0(A
⊤
0 B

−1A0)
−1A⊤

0 +BA(A⊤BA)−1A⊤B.

Hence,

(A⊤
0 B

−1A0)
−1 = A⊤

0 BA0 −A⊤
0 BA(A⊤BA)−1A⊤BA0.

Consequently, det(B) = det(A⊤BA) det{(A⊤
0 B

−1A0)
−1}. The proof is

complete.

Proof of Proposition 3.2. By Proposition 2 of Cook and Forzani

(2009), span(η) = SY |X . If we estimate the unknown parameters by max-

imum likelihood, then Theorem 2 of Cook and Forzani (2009) shows that

the profile log-likelihood function takes the form

l(η) = c− 1

2

G∑
g=1

ng log det(η
⊤Sgη) +

n

2
log det(η⊤Sη),

where c is an irrelevant constant. Hence, at the population level, η mini-

mizes

G∑
g=1

πg log det{η⊤Cov(X | Y = g)η} − log det{η⊤Cov(X )η}.
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From Proposition 3 of Cook and Forzani (2009), we know that span(η) =

SSAV E. This completes the first part of the proof.

Assume for now that X | (Y = g) ∼ N(µg,Σ). One can show that the

corresponding profile log-likelihood function

l(η) = c− n

2
log det(η⊤SWη) +

n

2
log det(η⊤Sη),

where SW =
∑G

g=1

∑
i:yi=g(x i − x̄ g)(x i − x̄ g)

⊤/n, and c is an unimportant

constant. Consequently, at the population level, η minimizes

log det[η⊤E{Cov(X | Y )}η]− log det{η⊤Cov(X )η}.

By Lemma S2.1,

log det[η⊤E{Cov(X | Y )}η]− log det{η⊤Cov(X )η}

= log det[E{Cov(X | Y )}] + log det(η⊤
0 [E{Cov(X | Y )}]−1η0)

− log det{Cov(X )} − log det[η⊤
0 {Cov(X )}−1η0]

≥ log det[E{Cov(X | Y )}]− log det{Cov(X )},

where the inequality follows from the fact that E{Cov(X | Y )} ≤ Cov(X ).

Let α be a basis matrix for SSIR. It suffices to show that α⊤
0 [E{Cov(X |

Y )}]−1α0 = α⊤
0 {Cov(X )}−1α0, where α0 is an orthogonal complement of

α such that (α,α0) is p× p orthogonal.

Write A = E{Cov(X | Y )} and B = Cov(X ). We have A ≤ B.
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Furthermore,

span(B−1/2A1/2) = span(B−1/2AB−1/2) = span(MSIR) = B1/2SSIR.

It follows that B−1/2AB−1/2 = B1/2αCα⊤B1/2, where C is a d×d positive

definite matrix. Hence,

A = B− (B−A)

= B−B1/2(Ip −B−1/2AB−1/2)B1/2

= B−B1/2(Ip −B1/2αC1/2C1/2α⊤B1/2)B1/2.

By the matrix inversion lemma,

(Ip−B1/2αC1/2C1/2α⊤B1/2)−1 = Ip+B1/2αC1/2(Id−C1/2α⊤BαC1/2)−1C1/2α⊤B1/2

and

A−1 = B−1 +B−1/2[{(Ip −B1/2αC1/2C1/2α⊤B1/2)}−1 − Ip]B
−1/2

= B−1 +αC1/2(Id −C1/2α⊤BαC1/2)−1C1/2α⊤.

Consequently, α⊤
0 A

−1α0 = α⊤
0 B

−1α0. The proof is complete.

Proof of Theorem 4.1. It suffices to show that, as n → ∞,

P

{
max

S∈S+∪S−
BIC1(S; α̃) < BIC1(S0; α̃)

}
→ 1.

We first consider the case of an over-slicing scheme S ∈ S+. For sim-

plicity, assume that S = {B11,B12,B02, . . . ,B0G0}, where B11 and B12 are
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two sub-slices formed from B01. We have

BIC1(S; α̃)− BIC1(S0; α̃) = fB11trace(α̃
⊤µ̂B11

µ̂⊤
B11

α̃) + fB12trace(α̃
⊤µ̂B12

µ̂⊤
B12

α̃)

−fB01trace(α̃
⊤µ̂B01

µ̂⊤
B01

α̃)− log(n)

n
d.

It is easy to show that

fB01µ̂B01
µ̂⊤

B01
= fB11µ̂B11

µ̂⊤
B11

+fB12µ̂B12
µ̂⊤

B12
−fB11fB12

fB01

(µ̂B11
−µ̂B12

)(µ̂B11
−µ̂B12

)⊤.

Consequently,

BIC1(S; α̃)− BIC1(S0; α̃)

=
fB11fB12

fB01

trace{α̃⊤(µ̂B11
− µ̂B12

)(µ̂B11
− µ̂B12

)⊤α̃} − log(n)

n
d.

Since µ̂B1s
= µB01

+OP (n
−1/2), s = 1, 2, we obtain

BIC1(S; α̃)− BIC1(S0; α̃) = OP

(
1

n

)
− log(n)

n
d.

Similarly, we can show that this result holds for any S ∈ S+. Therefore, as

n → ∞,

P

{
max
S∈S+

BIC1(S; α̃) < BIC1(S0; α̃)

}
→ 1. (S2-4)

Now consider the case where S is under-slicing, that is, S ∈ S−. For

simplicity, assume that S = {B0∗,B03, . . . ,B0G0}. Here B0∗ is a new slice

constructed by merging B01 and B02. We have

BIC1(S; α̃)− BIC1(S0; α̃) = fB0∗trace(α̃
⊤µ̂B0∗µ̂

⊤
B0∗α̃)− fB01trace(α̃

⊤µ̂B01
µ̂⊤

B01
α̃)

−fB02trace(α̃
⊤µ̂B02

µ̂⊤
B02

α̃) +
log(n)

n
d.
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Again, it is easy to see that

fB0∗µ̂B0∗µ̂
⊤
B0∗ = fB01µ̂B01

µ̂⊤
B01

+fB02µ̂B02
µ̂⊤

B02
−fB01fB02

fB0∗

(µ̂B01
−µ̂B02

)(µ̂B01
−µ̂B02

)⊤.

It follows that

BIC1(S; α̃)− BIC1(S0; α̃)

= −fB01fB02

fB0∗

trace{α̃⊤(µ̂B01
− µ̂B02

)(µ̂B01
− µ̂B02

)⊤α̃}+ log(n)

n
d

= −πB01πB02

πB0∗

trace{α0
⊤(µB01

− µB02
)(µB01

− µB02
)⊤α0}+OP

(
1√
n

)
,

where for a slice B, πB =
∑

k∈B πk. By the definition of S0, µB01
̸= µB02

.

Hence, there exists a constant c < 0 such that BIC1(S; α̃)−BIC1(S0; α̃) < c,

with probability tending to 1 as n → ∞. Together with the strategy from

the first part, we can show that this result holds for any S ∈ S−. Thus, as

n → ∞,

P

{
max
S∈S−

BIC1(S; α̃) < BIC1(S0; α̃)

}
→ 1. (S2-5)

Combining (S2-4) and (S2-5), the proof is complete.

Proof of Theorem 4.2. It suffices to show that, as n → ∞,

P

{
max

S∈S+∪S−
BIC2(S; α̃) < BIC2(S0; α̃)

}
→ 1.

We first consider the case of an over-slicing scheme S ∈ S+. For sim-

plicity, assume that S = {B11,B12,B02, . . . ,B0G0}, where B11 and B12 are
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two sub-slices formed from B01. Let df0 = d+ d(d+ 1)/2. We have

BIC2(S; α̃)− BIC2(S0; α̃)

= fB11trace{α̃⊤(Ip − Σ̂B11)
2α̃}+ fB12trace{α̃⊤(Ip − Σ̂B12)

2α̃}

−fB01trace{α̃⊤(Ip − Σ̂B01)
2α̃} − log(n)

n
df0

= −2trace{α̃⊤(fB11Σ̂B11 + fB12Σ̂B12 − fB01Σ̂B01)α̃}

+trace{α̃⊤(fB11Σ̂
2

B11
+ fB12Σ̂

2

B12
− fB01Σ̂

2

B01
)α̃} − log(n)

n
df0

= T1 + T2 −
log(n)

n
df0.

It is easy to show that

fB01Σ̂B01 = fB11Σ̂B11 + fB12Σ̂B12 +
fB11fB12

fB01

(µ̂B11
− µ̂B12

)(µ̂B11
− µ̂B12

)⊤.(S2-6)

Since µ̂B1s
= µB01

+OP (n
−1/2), s = 1, 2, we obtain

T1 = 2
fB11fB12

fB01

trace{α̃⊤(µ̂B11
− µ̂B12

)(µ̂B11
− µ̂B12

)⊤α̃} = OP

(
1

n

)
.

A simple calculation shows that

T2 = 2trace{α̃⊤(fB11Σ̂B11 + fB12Σ̂B12 − fB01Σ̂B01)ΣB01α̃}

+trace[α̃⊤{fB11(Σ̂B11 −ΣB01)
2 + fB12(Σ̂B12 −ΣB01)

2 − fB01(Σ̂B01 −ΣB01)
2}α̃]

= T21 + T22.

By (S2-6),

T21 = −2
fB11fB12

fB01

trace{α̃⊤(µ̂B11
− µ̂B12

)(µ̂B11
− µ̂B12

)⊤ΣB01α̃} = OP

(
1

n

)
.
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Note that Σ̂B01 = ΣB01 +OP (n
−1/2) and Σ̂B1s = ΣB01 +OP (n

−1/2), s = 1, 2.

It follows that

T22 = OP

(
1

n

)
.

Consequently,

BIC2(S; α̃)− BIC2(S0; α̃) = OP

(
1

n

)
− log(n)

n
df0.

Similarly, we can show that this result holds for any S ∈ S+. Therefore, as

n → ∞,

P

{
max
S∈S+

BIC2(S; α̃) < BIC2(S0; α̃)

}
→ 1. (S2-7)

Consider now the case where S is under-slicing, that is, S ∈ S−. For

simplicity, assume that S = {B0∗,B03, . . . ,B0G0}. Here B0∗ is a new slice

constructed by merging B01 and B02. We have

BIC2(S; α̃)− BIC2(S0; α̃)

= fB0∗trace{α̃⊤(Ip − Σ̂B0∗)
2α̃} − fB01trace{α̃⊤(Ip − Σ̂B01)

2α̃}

−fB02trace{α̃⊤(Ip − Σ̂B02)
2α̃}+ log(n)

n
df0

= 2trace{α̃⊤(fB01Σ̂B01 + fB02Σ̂B02 − fB0∗Σ̂B0∗)α̃}

−trace{α̃⊤(fB01Σ̂
2

B01
+ fB02Σ̂

2

B02
− fB0∗Σ̂

2

B0∗)α̃}+ log(n)

n
df0.

If the optimal slicing scheme S0 is in location, then Σ̂B01 = ΣB01+OP (n
−1/2)
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and Σ̂B1s = ΣB01 +OP (n
−1/2), s = 1, 2. Hence

BIC2(S; α̃)− BIC2(S0; α̃)

= 2trace{α̃⊤(fB01Σ̂B01 + fB02Σ̂B02 − fB0∗Σ̂B0∗)α̃}+OP

(
1√
n

)
.

Again, it is easy to see that

fB0∗Σ̂B0∗ = fB01Σ̂B01 + fB02Σ̂B02 +
fB01fB02

fB0∗

(µ̂B01
− µ̂B02

)(µ̂B01
− µ̂B02

)⊤.(S2-8)

It follows that

BIC2(S; α̃)− BIC2(S0; α̃)

= −2
fB01fB02

fB0∗

trace{α̃⊤(µ̂B01
− µ̂B02

)(µ̂B01
− µ̂B02

)⊤α̃}+OP

(
1√
n

)
= −2

πB01πB02

πB0∗

trace{α⊤(µB01
− µB02

)(µB01
− µB02

)⊤α}+OP

(
1√
n

)
.

Since µB01
̸= µB02

, there exists a constant c1 < 0 such that BIC2(S; α̃) −

BIC2(S0; α̃) < c1, with probability tending to 1 as n → ∞.

If the optimal slicing scheme is in scale, then µ̂B0s
= µB0∗+OP (n

−1/2), s =

1, 2. By (S2-8),

fB0∗Σ̂B0∗ = fB01Σ̂B01 + fB02Σ̂B02 +OP

(
1

n

)

and

Σ̂B0∗ =
fB01

fB0∗

Σ̂B01 +
fB02

fB0∗

Σ̂B02 +OP

(
1

n

)
.
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Consequently,

BIC2(S; α̃)− BIC2(S0; α̃)

= −trace{α̃⊤(fB01Σ̂
2

B01
+ fB02Σ̂

2

B02
− fB0∗Σ̂

2

B0∗)α̃}+OP

(
1√
n

)
= −πB0∗trace

[
α⊤

{
πB01

πB0∗

Σ2
B01

+
πB02

πB0∗

Σ2
B02

−
(
πB01

πB0∗

ΣB01 +
πB02

πB0∗

ΣB02

)2
}
α

]
+OP

(
1√
n

)
.

Since ΣB01 ̸= ΣB02 , by Jensen’s inequality, there exists a constant c2 < 0

such that BIC2(S; α̃)− BIC2(S0; α̃) < c2, with probability tending to 1 as

n → ∞.

Together with the strategy from the first part, we can show that the

above results holds for any S ∈ S−. Thus, as n → ∞,

P

{
max
S∈S−

BIC2(S; α̃) < BIC2(S0; α̃)

}
→ 1. (S2-9)

Combining (S2-7) and (S2-9), the proof is complete.
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