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THE ONLINE SUPPLEMENTARY MATERIAL CONTAINS ADDITIONAL SIMULATIONS

AND ALL PROOFS.

S1 Additional simulations

Example A1l for SIR. We first generated X from a multivariate Gaussian
distribution with mean vector zero and covariance matrix ¥ = (¥;;) with

¥ = 0.5791. We then generated Y according to the following model:
Y =sin(n' X +¢), (S1-1)

where n = (1,0,...,0)" € RP! and € is standard normal and is indepen-
dent of X. In this example Sy|x = span(n), and the optimal slicing scheme
does not exist.

Example A2 for SAVE. We first generated X from a multivariate

Gaussian distribution with mean vector zero and covariance matrix X =
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(34;) with X;; = 0.5791. We then generated Y according to the following

model:
Y =(n'X)*+e, (S1-2)

where 7 = (1,1,1,0,...,0)T € RP*! and € is standard normal and is
independent of X. In this example Sy|x = span(n), and the optimal slicing
scheme does not exist.

Example A3 for SAVE. We first simulated Y uniformly on the in-

terval [0, 5]. Given Y =y, we then generated X from the model
X =n,Ch(y) + 0.5 + 0.35(y)n.e, (S1-3)

where n; = (1,1,0,...,0)" € R n, = (0,0,1,1,0,...,0)" € R} C =
(2,-2,...,2,-2) € R™G% h(y) € RY%*! is a vector of slice indicator
functions, and (e",¢)" € RP! is multivariate Gaussian with zero mean
and identity covariance matrix and is independent of Y. We set Gy = 10
and constructed h via quantile slicing of observed responses with G slices.
Let S, denote the gth slice. To specify a heteroscedastic error structure,
we define s(y) = g if y € Syy—1 U Sy, for g = 1,...,5. By Proposition 3.2,
Sy|x = span(n;,7n,). In this example, there is an optimal slicing scheme
in location and scale: Gy slices with equal number of observations in each

slice.
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Table S1-1: Means and standard deviations (in parentheses) of the vector correlation
coefficient for SIR-AS and its various competitors, based on 200 data applications, are

reported for Example Al.

SIR FSIR

G=5 G=10 G=20 CUME H=10 H=20 H=30 SIR-AS

0.949 0.948 0.944 0.953 0.951 0.950 0.949 0.945

(0.027) (0.030) (0.033) (0.024) (0.025) (0.026) (0.028)  (0.029)

Table S1-2: Means and standard deviations (in parentheses) of the vector correlation
coefficient for SAVE-AS and its various competitors, based on 200 data applications, are

reported for Examples A2 and A3.

SAVE FSAVE

Model G=5 G=10 G=20 CUVE H=10 H=20 H=30 SAVE-AS

(EI=2)  0.969 0.960 0.947 0.983 0.970 0.960 0.954 0.954

(0.015) (0.021) (0.028) (0.008) (0.016) (0.023) (0.025)  (0.024)

(81=3)  0.030 0.786 0.698 0.036 0.214 0.533 0.507 0.772

(0.024) (0.081) (0.115) (0.026) (0.145) (0.134) (0.151)  (0.086)

S2 Appendix

PrOOF OF LEMMA 3.1. This is a corollary of the Courant—Fischer theorem.
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PROOF OF PROPOSITION 3.1. Consider first the least squares loss
function Lg;r(B, C). For fixed B, the minimizer is C, = B'f1,, and the

minimum is

a
N n “ "
Lsip(B,C) = > s, — BB ul3
g=1
a
n .
- Z ggtrace{(:[p - BBT)ugpgT}
g=1

= trace(ngR) — trace(BTMSIRB).

Thus, minimizing Lg;r(B, C) over B € G,  is equivalent to maximizing
trace(a” Mg rar) over a € G, g.
Consider now Lgay (B, F). For fixed B, the minimizer is F, = BT (I, —

3,), and the minimum is

G
A n ~ ~
Lsave(B,F) = Z ggHVGC(Ip —3) — vee{BB' (I, — ) }[|3
g=1
G
n ~
= ) ﬁtrace{(Ip - BB')(1, - 2,)%}
g=1

= trace(MSAVE) — tI‘aCG(BTMSAVEB).

Thus, minimizing Lgay (B, ﬁ‘) over B € G, 4 is equivalent to maximizing

trace(aTMSAVEa) over o € G, 4. The proof is complete.

LEMMA S2.1. Let A be a p x d semi-orthogonal matriz, and let Ay be an
orthogonal complement of A such that (A, Ay) is pxp orthogonal. Then, for

any p X p positive definite matriz B, det(ATBA) = det(B) det(Aj B tAy).
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Proor or LEMMA 8271. Note that

det(B) = det{(A, Ay) B(A, Ay}

= det(ATBA)det{A]BA; - A;BA(ATBA) 'ATBA,}.
It is easy to show that
B=A)(A;B Ay 'A;] + BA(ATBA) 'ATB.
Hence,
(AjB'A)) ' =A;BA, - A;BA(A'BA) 'ATBA,.

Consequently, det(B) = det(ATBA)det{(AjB 'Ay)"'}. The proof is
complete.

PROOF OF PROPOSITION 3.2. By Proposition 2 of Cook and Forzani
(2009), span(n) = Sy|x. If we estimate the unknown parameters by max-
imum likelihood, then Theorem 2 of Cook and Forzani (2009) shows that
the profile log-likelihood function takes the form

G
1 n
) =c—3 Y " nylogdet(n'S,m) + 7 log det(n " Sn),

g=1

where c is an irrelevant constant. Hence, at the population level, n mini-

mizes

a
ng logdet{n Cov(X | Y = ¢g)n} — logdet{n' Cov(X)n}.

g=1
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From Proposition 3 of Cook and Forzani (2009), we know that span(n) =
Ssave. This completes the first part of the proof.
Assume for now that X | (Y = g) ~ N(u,, X). One can show that the

corresponding profile log-likelihood function
n T n T
l(n) = ¢ — 5 logdet(n Swn) + 7 logdet(n Sn),

where Sy = ZgG:1 Y iimg (i — &) (2 — Z4) T /n, and ¢ is an unimportant

constant. Consequently, at the population level, 7 minimizes
log det[n " E{Cov(X | Y)}n] —logdet{n' Cov(X)n}.
By Lemma 5277,

log det[n"E{Cov(X | Y)}n] — logdet{n Cov(X)n}
= logdet[E{Cov(X | Y)}] + logdet(n] [E{Cov(X | Y)}]"'n,)
—log det{Cov(X)} — logdet[ng {Cov(X)} 'n,]

> logdet[E{Cov(X | Y)}] — logdet{Cov(X)},

where the inequality follows from the fact that E{Cov(X | Y)} < Cov(X).
Let a be a basis matrix for Ssrr. It suffices to show that a [E{Cov(X |
Y)}H tao = af {Cov(X)} ey, where ayg is an orthogonal complement of

a such that (o, ) is p X p orthogonal.

Write A = E{Cov(X | Y)} and B = Cov(X). We have A < B.
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Furthermore,
span(B™Y2AY?) = span(B~Y2AB™Y2) = span(Mg;z) = BY*Se/x.
It follows that B~Y/2AB~'/2 = BY/2aCa"B'/?, where C is a d x d positive
definite matrix. Hence,
A = B-(B-A)

_ B_ B1/2(Ip _ B-12AB~2)B1/?

_ B_ Bl/Q(Ip _ B2aCY2CY2aTBY2)BY2,
By the matrix inversion lemma,
(Ip—Bl/zaCVQCl/QaTBl/Z)_1 _ Ip+B1/2aC1/2(Id—Cl/zaTBaCUQ)_1C1/2aTB1/2
and

A—l _ B—l + B—l/?[{(]:p . B1/2acl/2cl/2aTBl/2)}—1 . Ip]B_l/2

_ B—l + acl/Q(Id . Cl/QaTBaCI/Q)_ICImaT.

Consequently, aj A~ ey = o B~' . The proof is complete.

ProOOF OF THEOREM 4.1. It suffices to show that, as n — oo,

P {séélf‘fs BIC,(S; &) < BIC;(So; a)} — 1.

We first consider the case of an over-slicing scheme & € &,. For sim-

plicity, assume that S = {Bi1, Bia, Bog, - - -, Boc, }, where By and By are
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two sub-slices formed from By;. We have

BIC,(S; &) — BIC,(Sp; &) = fBHtrace(&TﬂBuﬂgud) + fgmtrace(dT/leﬂgmd)

T log(n)
—fBOltrace(aTuBmu;ma) - d.
It is easy to show that

LT LT 1 JBuSBi, - X N N NT
fBOluBOlu301 = fBlll’l’BnuBn_'_fBHl'l’BmuBu_ ch; = (NBH_H’BQ)(NBH_MBM) :
01

Consequently,

[, 5 A Ton R R R - log(n)
= ftraee{aT(uBu—ugu)(usn—MBH)Ta}— ——d.
01

Since fig, = pg,, + Op(n~'%),s = 1,2, we obtain

BIC, (S &) — BIC, (So: &) = Op (1> _ los(m)

n n

Similarly, we can show that this result holds for any S € &, . Therefore, as

n — oo,

P {max BIC,(S; &) < BIC;(Sp; &)} — 1. (S2-4)

Se6y

Now consider the case where S is under-slicing, that is, S € G_. For
simplicity, assume that S = {Bo., Bos, - . ., Bog, }- Here By, is a new slice
constructed by merging By; and Byy. We have

BIC:(S; &) — BICi(Sp; &) = fa,,trace(& ' fug,, fui, &) — fotrace(&’ fug,, fup,, &)

T R 5 log(n
—fBOQtrace(aTuBmu;ma) + ( )d.
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Again, it is easy to see that

T LT T IBoSfBes - . . N N\T
fBO* IJ’BO* I’I’BO* - fBOl I‘I’B()l l“l’Bol +f802l‘1’802”l’802_ }; = (MBOl_l’l’B()Q)(I“l’BOl_I"l’Boz) .
0%

It follows that

. fBOI fBoz

T . . . . log(n)
= i trace{a " (fg,, — fpy,) Bz, — fsy,) O + d
[OF3

n

TBy TR T T 1
= —ﬁtraee{ao (#301 - MBOQ)(MBOI - NBOQ) ao} +Op (%) )

where for a slice B, mp = Y, .5 . By the definition of Sy, pg,, # mg,,-
Hence, there exists a constant ¢ < 0 such that BIC;(S; &)—BIC;(Sp; &) < ¢,
with probability tending to 1 as n — oo. Together with the strategy from
the first part, we can show that this result holds for any & € &_. Thus, as

n — 0o,

P {éngx BIC,(S; &) < BIC;(So; 64)} — 1. (S2-5)
c6_

Combining (82=4) and (82=3), the proof is complete.

PrOOF OF THEOREM 4.2. It suffices to show that, as n — oo,

P{ max_ BICy(S; &) < BICZ(SO;d)} — 1.
SeG UG

We first consider the case of an over-slicing scheme & € &,. For sim-

plicity, assume that S = {Bi1, Bia, Bog, - - -, Boc, }, where By and By are
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two sub-slices formed from By;. Let dfy = d + d(d + 1)/2. We have

= antrace{dT(Ip - ZAJBH)Q()‘} + f312trace{dT(Ip - ZAJZ312)26‘}

log(n)

—flgmtrace{dT(Ip — 2501)261} — df,

= _Qtrace{&T(anﬁ]Bu + fB12ﬁ]B12 - mezA)BOl)&}

. -2 -2 02 . log(n
+tra‘ce{a—r(f8112811 + f812 2812 - fBOI 2801)a} - g?’f )dfO
1
S e WRTS
n

It is easy to show that

; c S fButB - o A
fBOl 2601 - fBll 2311 + f812 2812 + }; 12 (HBII - HBIQ)(“Bll - M812>(r82-6)
01

Since fig,, = pg, + Op(n~/?),s = 1,2, we obtain

B R R R . B 1
Toutbi ocefa (g, — s, ) its.. — fts,) &} = Op ( ) .

n
A simple calculation shows that
I = Qtrace{d—r(fﬁuﬁll?u + f312ﬁ3512 - me XA]BOI)EBOId}
+trace[6‘—r{f311 (2311 - 21301)2 + f312(2312 - E301>2 - fB(n (2301 - 2301)2}d]
= Ty + 1.

By (8Z5),

[, /B “Tn A A - ~ 1
15 = —Z%trace{aT(uBn - HBH)(”BH - NBlz)TEBma} =Op nl’
01
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Note that 3z, = X, +Op(n~/2) and Sy, = B, + Op(n~12),s = 1,2.

1
T22 = Op (5) .

It follows that

Consequently,

BIC(S; &) — BICy(Sy: &) = Op (1> - logn(”) dfy.

n
Similarly, we can show that this result holds for any & € &,. Therefore, as

n — oo,

P {max BIC,(S; &) < BICy(Sy; &)} — 1. (S2-7)

Se6

Consider now the case where S is under-slicing, that is, S € &_. For
simplicity, assume that S = {Bo., Bos, - - -, Bog, }- Here By, is a new slice

constructed by merging By; and By,. We have

= fBO*trace{dT(Ip - 230*)2(1} - metrace{dT(Ip - zA]l’j’ol)Q[)f}

. 1
~ fa trace{a’ (I, — Sy, )26} + og(n)

dfy

= Qtrace{dT(me 2301 + f3022302 - fBO* 280*)d}

log(n)

N -2 o2 &2 -
_tra’ce{aT(fBOI 2601 + fBOQ 2802 - fBO* EBO*)a} _I_ df()

If the optimal slicing scheme Sy is in location, then 35, = g, +Op(n1/?)
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and g, = g, + Op(n~"2),s = 1,2. Hence

i . . . 1
= Qtrace{aT(meZBm + f3022502 - fBO*EBO*)a} + OP (%) .

Again, it is easy to see that

me fBoz

fB (I‘A‘I’Bm - ﬂBog)(ﬂBgl - I‘AI’BOQ)(FS2_8)
0%

fBo* 2Bo* = me 2301 + fBOQ 21302 +
It follows that

JB0: /5 T R R T 1

= _2ﬁtrace{a (I"I’Bm - ,‘LB()2>(/’LB()1 - IJ’B()Q) a} + OP %
TBy TR 1

= -2 trace{a (kg,, — Kpy,) (s, — Hiy,) 0} + Op (%) :

7'('[50*

Since pg,, # Mg, there exists a constant ¢; < 0 such that BICy(S; &) —
BICy(Sp; &) < ¢, with probability tending to 1 as n — oc.
If the optimal slicing scheme is in scale, then fiz = pg, +Op(n='?%), s =

1,2. By (82=8),

n

. ~ A 1
fBo* 230* - f301 E501 + f5022302 + OP ( )

and

. . . 1
[OF3 0%
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Consequently,

~ &2 2 7 O 1
_ —traCe{OéT(me 2801 —+ f8022802 - fBO* 280*)a} + OP (%)

2
B B B B
= —mp,, trace [aT { D35, + 235 — | =2 8p, + —2%p, «
ﬂ—BQ* ’/TBO* 7TBO* ™ [OF3

cor (L)

Since Xp,, # Xpg,,, by Jensen’s inequality, there exists a constant c; < 0
such that BICy(S; &) — BICy(Sp; &) < ¢a, with probability tending to 1 as
n — 00.

Together with the strategy from the first part, we can show that the

above results holds for any S € &_. Thus, as n — oo,
P {gnzéx BICy(S; &) < BICy(Sp; d)} — 1. (52-9)
€6_

Combining (82=1) and (82=9), the proof is complete.
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