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Abstract: A repeatedly measured outcome in longitudinal studies allows researchers

to monitor how the outcome changes over time. When an intervention affects the

outcome and subjects initiate the intervention at different times during the course

of a study, it is essential to account for the varying time to intervention (TTI) in

models of such changes. In this study, we develop a piecewise polynomial regression

model with TTI-varying coefficients that describes the population mean outcome

over time. The TTI-varying coefficients in the model enable us to capture the

population mean outcome trajectory, affected by both the intervention and the

varying TTI. In observational studies, other covariates can confound these effects,

leading to estimation bias if not properly accounted for. To mitigate this, we

propose a double-weighted estimation procedure based on a kernel function and a

generalized propensity score. The proposed estimation procedure effectively corrects

the estimation bias of the TTI-varying coefficients and provides valid statistical

inferences about the coefficients. We apply our approach to assess changes in the

population mean of an inflammation biomarker for HIV-infected adults in Haiti who

initiate antiretroviral therapy following the World Health Organization guideline.

Key words and phrases: Causal inference, generalized propensity score, kernel

smoothing, longitudinal data, piecewise polynomial regression, varying coefficients
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1. Introduction

Modeling changes in an outcome over time is essential for patient assessment

in biomedical studies. An analysis of longitudinal data in which the outcome

is measured repeatedly for a subject can successfully control extraneous, but

unavoidable sources of variability among subjects. However, interventions that

affect the changes in the outcome can occur at different times during the course

of a longitudinal study. When the effect of the intervention depends on the time

to intervention (TTI), it is crucial to adjust for the TTI when modeling the

longitudinal outcome trajectory; see Wu and Tian (2008), Xing and Ying (2012),

Liu et al. (2018), and Cho, Kim and Lee (2020).

For example, an inflammation biomarker is one of the risk factors for adults

infected with human immunodeficiency virus (HIV). Because inflammation is a
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risk factor for other disease progression, monitoring changes of the inflammation

biomarker over time is essential. Antiretroviral therapy (ART) has proved

effective in reducing inflammation, and is recommended for HIV-infected adults

(Kanters et al. (2016)). However, owing to limited resources, HIV-infected adults

in Haiti have initiated ART following the World Health Organization (WHO)

guideline, leading to these adults initiating ART at different times. As a result,

it is important to study how the effect of ART on changes in the inflammation

biomarker is influenced by different ART initiation times.

It is straightforward to evaluate the TTI-varying effect of the intervention

on the outcome by assessing the population mean outcome trajectory if the data

are observed in either of the following circumstances: 1) the TTI is assigned

randomly to subjects, or 2) all subjects undergo the intervention at the same

time. In observational studies in which the intervention is initiated following a

guideline, strategy, or other factors, neither of these circumstances are feasible.

In particular, if factors that affect the TTI exist, estimating the population mean

outcome trajectory is challenging. For instance, suppose we wish to evaluate

the intervention effect on the outcome when the TTI is a specific value s.

One approach is to estimate the mean outcome trajectory using subjects who

intervened at time s or nearby. However, it is likely that the subsample does

not represent the study population well in the presence of potential confounders.

As a result, an estimated mean outcome trajectory would be biased, unless the

confounders are properly controlled.

In this study, we develop a piecewise polynomial regression model with TTI-

varying coefficients that describes the marginal mean outcome over time. The

proposed model smoothly connects the polynomial functions before and after the

intervention. The TTI-varying coefficients allow us to explore the population

mean outcome trajectory with respect to different times to intervention. There-

fore, the proposed marginal mean model captures both dynamic longitudinal

changes in the population mean outcome over time and the varying effect of the

intervention along with the times to intervention. A hypothesis test is proposed

to select the most parsimonious model that correctly specifies the population

mean outcome pattern. If the intervention affects changes on the outcome over

time, the pattern of the repeated outcome is altered after the TTI. Therefore, we

develop another hypothesis test that investigates whether or not the intervention

at a specific time is effective.

We propose a double-weighted estimation procedure to estimate the TTI-

varying coefficients, while accounting for potential confounders that can cause

selection bias under the weighted generalized estimating equations framework

(Robins, Rotnitzky and Zhao (1994); Chen, Yi and Cook (2010); Qu et al. (2011)).

Because the proposed approach contains two weights, that is, a kernel function

and a generalized propensity score (GPS, Hirano and Imbens (2004)), we call it

the double-weighted estimation method. The kernel function up-weights subjects
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who initiate the intervention at a specific time, or nearby. The GPS links the TTI

and the potential confounders. We propose a simple and easy implementation to

predict the GPS using the definition of the probability density function. Using the

predicted GPS, the proposed procedure corrects the estimation bias effectively.

Our simulation studies show that an estimation procedure that does not control

for the confounders yields a biased estimator of the TTI-varying coefficients.

In contrast, the double-weighted procedure successfully corrects the bias, and

provides valid statistical inferences about the TTI-varying coefficients. We prove

that the double-weighted estimator asymptotically follows a multivariate normal

distribution with a mean vector of the true coefficients under regularity conditions

on the GPS and the kernel function.

Repeated measures within each subject are likely to be correlated, and the

degree of correlations can vary with the TTI. The proposed estimation approach

accommodates the within-subject correlations, and improves the estimation

efficiency of the TTI-varying coefficients. In addition, the approach accounts for

heterogeneous correlations across TTIs, without estimating nuisance parameters

associated with the working correlation structure that varies with the TTIs (Kim,

Cho and Zhang (2019)). When the repeated outcome is not continuous, specifying

its full likelihood under a marginal regression framework is challenging. The

proposed estimation approach is readily applied to analyze repeated discrete

outcome, because it requires only the first two moments.

The remainder of the paper proceeds as follows. In Section 2, we develop

the piecewise polynomial regression model with the TTI-varying coefficients. In

Section 3, we propose the double-weighted estimation procedure and present

statistical inferences about the TTI-varying coefficients. In Section 4, we

implement the proposed approach by selecting a parsimonious model and pre-

dicting the GPS. In Section 5, we apply the proposed approach to data from

the aforementioned HIV study, and explore changes in the population mean

inflammation biomarker at two different ART initiation times. Simulation studies

and closing remarks are given in Sections 6 and 7, respectively.

2. Modeling the Population Mean Outcome Trajectory

For a typical framework of longitudinal studies with a varying TTI variable,

we denote by T a real-valued variable of time, T a bounded subset of (0,∞) such

that T ∈ T , YT a real-valued response variable at time T , Z a vector of q real-

valued covariates, and S ∈ T a real-valued TTI variable. Suppose that n subjects

are drawn randomly from a population of interest and YT is measured repeatedly

during the course of the study. The longitudinal random sample of {YT , T, S,Z}
is denoted by {Yij, Tij, Si,Zi : i = 1, . . . , n; j = 1, . . . , ni}, where the TTI Si,

covariate vector Zi, and ni outcomes, Yi1, . . . , Yini
, at time points Ti1, . . . , Tini

,

respectively, are measured for subject i. We call Zi preintervention covariates,
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because it consists of covariates measured prior to an intervention.

When a longitudinal study is designed, the same visit or assessment schedule

is normally planned for all individuals. In this regard, we assume that there exist

no potential factors that confound the associations between the measurement

time T and the outcome YT . In practice, the assessment times are likely not the

same across all individuals for various reasons, including missed visits or simply

visit times falling outside the predefined windows. This results in different values

of ni and Ti1, . . . , Tini
across individuals. In addition, the intervention can be

initiated at any time during the follow-up period; that is, there exist individuals

such that Tij ̸= Si, for all j.

Under the stable unit treatment value assumption (SUTVA, Imbens and

Rubin (2015)) that only one version of the intervention is used and no interference

between subjects exists, we define a potential outcome measured at time T if an

intervention is initiated at time S since the baseline, and denote it by Y (T, S).

This follows from the unconfoundedness assumption between the measurement

and the outcome, and the consistency assumption that a potential outcome

for subject i at time Tij is observed as Yij = Y (Tij, Si). We are interested

in estimating the average outcome trajectory of individuals who intervened at

S ∈ T , denoted by µ(T, S) = E{Y (T, S)}. Therefore, we develop a marginal

mean regression model that assesses changes in the population mean outcome

based on generalized linear models for longitudinal data (Liang and Zeger (1986)).

Suppose that µ(T, S) depends on T and S through a known link function of

ȷ(·) (e.g., the logit link function for Bernoulli random response variables, or the

log link function for count response variables). Assuming that the transformed

mean response changes linearly over time T , but that the rate of the change is

altered by the intervention at time S, we formulate the following marginal mean

regression model with TTI-varying coefficients for the potential outcome Y (T, S):

ȷ{µ(T, S)} =

{
β0(S) + β1(S)T, T ≤ S

α0(S) + α1(S)T, T > S
, (2.1)

where β0(S), β1(S), α0(S), and α1(S) are unknown smooth functions of the

TTI S. Because β1(S) and α1(S) are the rates of the change before and after the

intervention, respectively, the difference between β1(S) and α1(S) is the expected

rate of the change due to the intervention at time S. As a result, the TTI-

varying effects of the intervention on the changes in ȷ{µ(T, S)} can be obtained

by accessing β1(S) and α1(S) with respect to the TTI S.

Under the continuity assumption of µ(T, S) in time T , we combine two

segments in (2.1), and propose the following TTI-varying coefficient piecewise

linear model:

ȷ{µ(T, S)} = β0(S) + β1(S)T + β2(S)(T − S)+, (2.2)
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where β2(S) = α1(S) − β1(S), and (T − S)+ = (T − S)I(T > S) is a truncated

term with a fixed knot of S and an indicator function I(T > S) being one if T > S

and zero otherwise. As a result, the change of the population mean outcome due

to the intervention at time S is reflected in the last term in model (2.2). For

example, β2(S) = 0 indicates that the intervention at time S does not alter the

rate of the change in the outcome, because the linear pattern of the time-varying

outcome remains the same before and after the intervention. If β2(S) is a nonzero

constant over S ∈ T , the effect of the intervention remains the same, regardless

of the TTIs.

The piecewise linearity assumption between the time and the transformed

mean response can be relaxed by developing a piecewise polynomial regression

model with TTI-varying coefficients, as follows:

ȷ{µ(T, S)} = β0(S) + β1(S)T + · · ·+ βps
(S)T ps + βps+1(S)(T − S)ps

+ , (2.3)

where (T −S)ps

+ = (T −S)psI(T > S) is the ps degree truncated polynomial term,

and the degree of nonlinearity ps can vary with S. Note that model (2.3) smoothly

connects two different polynomial curves with a ps degree of the polynomial, under

the restriction that their first ps−1 derivatives are continuous in time T (Gallant

and Fuller (1973)).

3. Statistical Inference

In this section, we propose estimation procedures and discuss statistical

inferences about the TTI-varying coefficients in model (2.3) in observational

studies in which the preintervention covariates confound the associations between

the TTI and the repeated outcomes.

3.1. Double-weighted estimation procedure

In order to control for covariates that could cause an estimation bias in

µ(T, S), we propose a double-weighted estimation procedure based on the inverse

probability weighting scheme (Horvitz and Thompson (1952)). Following Hirano

and Imbens (2004) on propensity score analysis, we assume that the TTI is

independent of the potential outcome, conditional on the covariates, denoted

by Y (T, s) ⊥ S|Z, for s ∈ T . This assumption rules out any systematic selection

into the TTI based on unobservable covariates, and is called the “no hidden bias

assumption.” The assumption is a natural extension of the unconfoundedness

assumption commonly used for binary treatments (Rosenbaum and Rubin (1983);

Heckman et al. (1998); Imbens (2000)).

Rosenbaum and Rubin (1983) show that adjusting for differences in the

propensity score (i.e., the probability of receiving the treatment conditioning

on the preintervention covariates) removes the selection bias between treated and

untreated individuals under the unconfoundedness assumption. We define a GPS,
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denoted by f(s|Z), that is the conditional density of the TTI variable given the

covariates. We assume that every individual has a nonzero density of intervening

at any time point in T ; that is, f(s|Z) > 0, for s ∈ T . Hirano and Imbens (2004)

show that the GPS exhibits the following properties: 1) within strata with the

same value of f(s|Z), the occurrence of the event S = s does not depend on the

value of Z, that is, Z ⊥ I{S = s}|f(s|Z); and 2) the TTI is unconfounded, given

the GPS and the aforementioned unconfoundedness assumption. The second

property enables us to remove selection bias by using the GPS on the estimation of

µ(T, s). In particular, we can identify the causal parameter E{Y (T, s)} from the

observed data as µ(T, s) = E[E{Y (T, s)|f(s|Z) = c}] = E[E{YT |S = s, f(s|Z) =
c}].

For the estimation of β0(S), . . . , βps+1(S) in model (2.3) at given values of TTI

s and f(s|Zi), we propose the following double-weighted generalized estimating

equations:

n∑
i=1

µ̇⊤
i A

−1/2
i Ri{ρ(s)}−1A

−1/2
i {Yi − µi(s)}

Ki(s)

f(s|Zi)
= 0, (3.1)

where µ̇i = ∂µi(s)/∂β(s),µi(s) = {µ(Ti1, s), . . . , µ(Tini
, s)}⊤, µ(Tij, s) =

ȷ−1{Xijβ(s)},Xij =
(
1, Tij, . . . , T

ps

ij , (Tij−s)ps

+

)⊤
,β(s) = {β0(s), β1(s), . . . , βps

(s),

βps+1(s)}⊤, Ai is a diagonal variance matrix of Yi = (Yi1, . . . , Yini
)⊤, Ri{ρ(s)} is

a working correlation structure of Yi with a nuisance smoothing function vector

of ρ(s), and Ki(s) = K{(Si−s)/b(s)} is a kernel function with a local bandwidth

b(s). The kernel function up-weights subjects whose TTI is closer to the given

value of s for a consistent estimation of β(s). The GPS f(s|Zi) is used as an

inverse weight to eliminate the disparity between the study population and the

sampling population (i.e., the group of subjects who intervened at s). Within-

subject correlations are considered, while allowing the degree of the correlations

ρ(s) to vary with the TTIs. When the working correlation structure is specified

correctly, the efficient estimator can be obtained by solving (3.1), but this requires

estimating the unknown nuisance parameter vector ρ(s).

An alternative is to approximate Ri{ρ(s)}−1 in (3.1) as Ri{ρ(s)}−1 =∑D
d=1 ηd(s)Bid, where Bi1, . . . ,BiD are basis matrices and η1(s), . . . , ηD(s) are

unknown varying coefficients. The choice of a set of the basis matrices depends

on the type of working correlation structure. For example, if the compound

symmetry structured is assumed, then Ri{ρ(s)}−1 = η1(s)Bi1 + η2(s)Bi2, where

Bi1 is an identity matrix, and Bi2 is a matrix with zero on the diagonal, and

one elsewhere. If the first-order autoregressive, denoted by AR(1), structure

is assumed, then Ri{ρ(s)}−1 ≈ η1(s)Bi1 + η2(s)Bi2, where Bi1 is an identity

matrix, and Bi2 is a matrix with one on the sub-diagonals, and zero elsewhere

(Qu, Lindsay and Li (2000)). If Ri{ρ(s)} is unstructured, a set of basis matrices

can be obtained using an eigenvector decomposition method; see Zhou and Qu
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(2012) and Cho and Qu (2015).

After extending (3.1) to a score vector of gi{β(s)} = hi{β(s)}Ki(s)/f(s|Zi),

with

hi{β(s)} =


µ̇⊤

i A
−1/2
i Bi1A

−1/2
i {Yi − µi(s)}
...

µ̇⊤
i A

−1/2
i BiDA

−1/2
i {Yi − µi(s)}

 , (3.2)

an estimator of β(s) is obtained by minimizing the quadratic inference function

(QIF, Qu, Lindsay and Li (2000))

Q{β(s)} = nb(s) G{β(s)}⊤V{β(s)}−1G{β(s)}, (3.3)

whereG{β(s)} =
∑n

i=1 gi{β(s)}/{nb(s)} andV{β(s)} =
∑n

i=1 gi{β(s)}gi{β(s)}⊤
/{nb(s)}. This accounts for within-subject correlations, without needing to

estimate the varying nuisance parameter vector ρ(s) in Ri{ρ(s)}. As a result,

the estimator is more efficient than the one obtained under the working

independent correlation structure. In addition, it is the most efficient of

the estimators obtained from the same set of estimating equations in (3.2),

because Q{β(s)} optimally combines the extended scores by taking the inverse

of their variability. With β̂(s) = argminβ(s)
Q{β(s)}, the mean outcome

trajectory for the study population intervened at time s is estimated as

µ̂(T, s) = ȷ−1{β̂0(s) + β̂1(s)T + · · ·+ β̂ps
(s)T ps + β̂ps+1(s)(T − s)ps

+ }.
Note that when extreme propensity scores are present, a stabilized weight

ℓ(s) can be used as gi{β(s)} = hi{β(s)}Ki(s)ℓ(s)/f(s|Zi), where ℓ(s) is an

arbitrary function of S evaluated at the TTI s, although a marginal density of

the TTI is commonly used. The stabilized inverse probability avoids obtaining

an estimator of µ(T, s) that is dominated by repeated outcomes of individuals

with an extremely small value of f(s|Zi).

For statistical inferences about β̂(s), we demonstrate asymptotic properties

of β̂(s). Note that with undersmoothing, nb(s)5 → 0, Wilks’ phenomenon holds

for the QIF. Therefore, we use the QIF with undersmoothing to build a goodness-

of-fit statistic to select the best degree of polynomial in model (2.3), and to build

a hypothesis test statistic to check whether or not the intervention at time s is

effective.

Theorem 1. Let s be a fixed interior point in T and β0(s) be a true parameter

vector. Under the causal inference conditions discussed in Section 3.1, the

regularity conditions in the Appendix, nb(s) → ∞, and nb(s)5 → 0, we have:

(i)
√
nb(s)(β̂(s) − β0(s))

d→ N (0, φK

∫
(fZ(z)/f(s|z))dz{Φ(s)⊤Σ(s)Φ(s)}−1),

where
d→ denotes convergence in distribution, φK =

∫
K2(u)du, fZ(·) is the

density function of Z, Φ(s) = E[∂hi{β(Si)}/∂β(Si)|Si = s], and Σ(s) =

E[hi{β(Si)}hi{β(Si)}⊤|Si = s];
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(ii) Q{β̂(s)} d→χ2
(ps+2)(D−1) if model (2.3) is specified correctly, where χ2

(ps+2)(D−1)

is a chi-squared distribution with (ps + 2)(D − 1) degrees of freedom.

It is well known that the kernel-based estimator is consistent, but biased (Li

and Racine (2007)), and that the bias term is O(b(s)2); see the proof of Lemma

1 in the Appendix for details. Because the bias term contains first- and second-

order derivatives, which are not easy to estimate in practice, it is common practice

to either ignore it or to undersmooth it with a slightly smaller bandwidth than

the optimal bandwidth satisfying nb(s)5 → 0, as shown in Theorem 1. Given

the optimal local bandwidth O(n−1/5), Theorem 1 (i) shows that the resultant

estimator asymptotically follows a multivariate normal distribution with a mean

vector of the true coefficients at the specific value of the TTI s.

3.2. Inference about the TTI-varying coefficients

It is of particular interest to perform a statistical inference about the last term

βps+1(s) in model (2.3), because βps+1(s) quantifies the effect of the intervention

at time s on the change of the mean outcome pattern. Given that Q{β0(s)} is an

analog to the negative twice loglikelihood, a hypothesis test for H0 : βps+1(s) = 0

against Ha : βps+1(s) ̸= 0 is conducted by comparing Q{β̃(s)} with Q{β̂(s)},
where β̃(s) and β̂(s) are estimators obtained under H0 and Ha, respectively.

Theorem 2. Let s be a fixed interior point in T . Under the causal inference

conditions in Section 3.1, the regularity conditions in the Appendix, nb(s) → ∞,

and nb(s)5 → 0, if the null hypothesis is true, Q{β̃(s)} is as small as Q{β̂(s)},
and the test statistic W(s) = Q{β̃(s)} − Q{β̂(s)} asymptotically follows a chi-

squared distribution with one degree of freedom.

Theorem 2 indicates that the intervention at time s is effective if the test

statisticW(s) is larger than the (1−α)th percentile of the chi-squared distribution

with one degree of freedom at a significance level of α. The hypothesis test is an

analog to the traditional likelihood ratio test that compares two nested models,

because the null model is nested within the alternative model. The test is useful

and easy to implement, because estimating the limiting variance of βps+1(s) in

Theorem 1 (i) is difficult in practice, but not required in the proposed test.

3.3. Kernel-weighted estimation procedure

When no confounders exist (e.g., the TTI is randomized to subjects in a

population), the following kernel-weighted GEE and QIF can be used to estimate

β(s):
n∑

i=1

µ̇⊤
i A

−1/2
i Ri{ρ(s)}−1A

−1/2
i {Yi − µi(s)}Ki(s) = 0 (3.4)

and

QK{β(s)} = nb(s) GK{β(s)}⊤VK{β(s)}−1GK{β(s)}, (3.5)
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whereGK{β(s)}=
∑n

i=1 gK,i{β(s)}/nb(s), gK,i{β(s)}=hi{β(s)}Ki(s), hi{β(s)}
is defined in (3.2), and VK{β(s)} =

∑n
i=1 gK,i{β(s)}gK,i{β(s)}⊤/{nb(s)}. An

estimator of β(s) can be obtained by minimizing QK{β(s)}, denoted by β̂K(s) =

argminβ(s)
QK{β(s)}. Note that (3.4) is a special case of (3.1) with a constant

value of f(s|Zi). Thus, none of the preintervention covariates are related to

the link between the TTI variable and the potential outcome. As a result, the

asymptotic properties in Theorems 1 and 2 can be used to perform a statistical

inference about β(s) based on QK{β(s)}. In Section 6, we show that the kernel-

weighted estimation procedure leads to a valid statistical inference about β(s),

when no confounders exist.

4. Implementation

4.1. Selection of a parsimonious model

Choosing the best degree of polynomial ps in model (2.3) is essential to select

a parsimonious model that specifies the time-varying population mean outcome

correctly. At the given value of the TTI s, we provide an iterative two-step

procedure that selects the local bandwidth b(s) and polynomial degree ps in

model (2.3).

1. Given a predetermined value of ps, we modify a leave-one-subject-out

cross-validation method (Rice and Silverman (1991)) and select the local

bandwidth b′(s) by minimizing the kernel-weighted least squares

b′(s) = argmin
b(s)>0

∑n
i=1

∑ni

j=1

{
Yij − µ̂(−i)(Tij, Si)

}2
K {(Si − s)/b(s)}∑n

i=1

∑ni

j=1 K {(Si − s)/b(s)}
, (4.1)

where µ̂(−i)(Tij, Si) is an estimate of the population mean at time Tij

intervened at time Si, with the bandwidth b(s) obtained from all data except

the ith subject. The cross-validation obtains a local bandwidth effectively by

using the kernel-based weights accounting for the distance between the data

Si and the TTI of interest s. To hold the asymptotic properties in Theorem

1, we obtain the optimal bandwidth b∗(s) by undersmoothing b′(s) in (4.1)

as b∗(s) = b′(s)n−1/20. Because b′(s) and b∗(s) are O(n−1/5) and O(n−1/4),

respectively, the condition for undersmoothing nb∗(s)5 → 0 in Theorem 1 is

fulfilled.

2. Given the selected local bandwidth b∗(s), β̂(s) is obtained by minimizing

Q{β(s)}. Following Theorem 1 (ii), we select ps as the best polynomial

degree if Q{β̂(s)} is no greater than the (1 − α)th percentile of the chi-

squared distribution with (ps+2)(D−1) degrees of freedom at a significance

level α.

In practice, we let the initial value of ps be one, which is the piecewise linear model
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(2.2), and repeat Steps 1 and 2 by increasing ps by one until the criterion in Step

2 is met. This iterative procedure enables us to choose the most parsimonious

model, based on Theorem 1 (ii) that Q{β̂(s)} converges in distribution to

χ2
(ps+2)(D−1) under the correctly specified model.

4.2. Prediction of the GPS

Modeling the GPS f(s|Zi) plays an important role in providing an accurate

estimator of β(s). We need to predict the GPS prior to minimizing Q{β(s)} when
estimating β(s). We propose a simple and easy implementation for predicting

f(s|Zi) based on the definition of the probability density function that f(s|Zi) =

limd→0{F (s+ d|Zi)− F (s− d|Zi)}/2d = limd→0 E{I(s− d < S ≤ s+ d)|Zi}/2d,
where F (s|Zi) = P (S ≤ s|Zi) is the conditional distribution function of s given

Zi. Given a small positive value of d∗, the GPS for subject i can be approximated

as

f(s|Zi) ≈
E{Mi(s)|Zi}

2d∗
, (4.2)

where Mi(s) = I(s − d∗ < Si ≤ s + d∗) is a Bernoulli random variable that

indicates whether or not subject i initiates the intervention at time s, or nearby.

To avoid the curse of dimensionality due to the multivariate covariate Zi, we

model E{Mi(s)|Zi} in (4.2) under the following generalized linear model with

the logit link function:

E{Mi(s)|Zi} = P{Mi(s) = 1|Zi} =
exp{γ0(s) +

∑q
j=1 γj(s)Zij}

1 + exp{γ0(s) +
∑q

j=1 γj(s)Zij}
, (4.3)

where Zi = (Zi1, . . . , Ziq)
⊤ and γ0(s), . . . , γq(s) are unknown TTI-varying coeffi-

cients. If the logistic regression model in (4.3) is specified correctly, Fan, Yao and

Tong (1996) show that as d → 0, E{Mi(s)|Zi}/2d
p→ f(s|Zi), under Condition

(C4) in the Appendix.

We need to choose an optimal value of d∗ to predict f(s|Zi). We propose

a cross-validation approach based on an integrated squared error (ISE, Fan and

Yim (2004))

ISE =

∫
{f̂d(s|z)− f(s|z)}2fZ(z)dzds

=

∫
f̂2
d (s|z)fZ(z)dzds− 2

∫
f̂d(s|z)f(s|z)fZ(z)dzds+

∫
f2(s|z)fZ(z)dzds

=

∫
fZ(z)

{∫
f̂2
d (s|z)ds

}
dz− 2

∫
f̂d(s|z)f(s, z)dzds+

∫
f2(s|z)fZ(z)dzds,

where f̂d(s|z) estimates f(s|z) by conducting a logistic regression in (4.3) with a

bandwidth d. Because the last term of the quadratic expansion does not depend

on d, a cross-validation is driven by the first two terms in ISE as
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CV (d) =
1

n

n∑
i=1

∫
f̂2
d,−i(s|Zi)ds−

2

n

n∑
i=1

f̂d,−i(Si|Zi), (4.4)

where f̂2
d,−i(s|Zi) is obtained from all data, except subject i, using the approx-

imation in (4.2). The optimal bandwidth is selected by minimizing CV (d)

as d∗ = argmind>0CV (d), and is O(n−1/5), like the bandwidth b′(s0) in (4.1)

(Fan, Yao and Tong (1996)). However, undersmoothing is not required for

this bandwidth, because undersmoothing uses a smaller bandwidth in order

to eliminate the bias asymptotically more quickly, while losing some efficiency.

Because this results in a slower convergence rate, the bandwidth d∗ with the order

O(n−1/5) is fast enough to achieve the consistency of the estimator of f(s|Zi) and

the asymptotic results in Theorems 1 and 2.

5. Analysis of a Guideline-Based Intervention Study

In HIV-infected subjects, inflammations often result in other disease progres-

sion, such as cardiovascular disease and chronic anemia. Because ART is effective

for reducing inflammations (Kanters et al. (2016)), it is often recommended for

HIV-infected adults. However, owing to limited resources, such adults in Haiti

have initiated ART following the WHO guideline of the early 2010s, that is, ART

is initiated when the CD4 cell count is below 200 or AIDS has developed. This

leads to different times of ART initiation, without knowing how these differing

times would affect their level of inflammation over time.

As part of a clinical trial of an HIV study conducted in 2010 (Severe et

al. (2010)), 816 HIV-infected adults in Haiti who meet the following baseline

criteria are enrolled: older than 18; CD4 counts between 200 and 350; AIDS-

free; and no prior ART. A clinician meets all participants monthly and starts

the intervention when the WHO guideline is met. Interleukin 6 (IL-6) is an

inflammation biomarker of interest, and is collected approximately every six

months over a three-year period. Note that the value of IL-6 correlates positively

with clinical severity in HIV-infected adults. We apply the double-weighted

estimating procedure and assess the TTI-varying coefficients in model (2.3) with

the identity link function at a specific value of the TTI s = 0.75 (i.e., ART is

initiated 9 months since the baseline) and 1.5 (i.e., ART is initiated 18 months

since the baseline). Note that five covariates at the baseline are observed prior

to ART initiation. In Table 1, we provide the kernel-weighted average of the

observed baseline covariates, including gender, CD4 cell counts, hemoglobin,

BMI, and age at s = 0.75 and 1.5. The results show that some covariates,

particularly on gender and CD4 cell counts, are not balanced between the two

TTIs.

In order to adjust for differences in the covariates, we predict the GPS

using the logistic regression analysis at each value of s, conditioning on the
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Table 1. Kernel-weighted average and double-weighted average of five baseline covariates
at s = 0.75 and 1.5, respectively.

Kernel weight Double weight

Covariate s = 0.75 s = 1.5 s = 0.75 s = 1.5

Female (%) 56.6 73.9 58.1 61.1

CD4 262.9 268.1 265.3 265.1

Hemoglobin 11.30 11.42 11.38 11.34

BMI 22.08 21.33 21.71 21.46

Age 37.79 37.34 38.10 37.64

preintervention covariates as log [P{Mi(s) = 1|Zi}/P{Mi(s) = 0|Zi}] = γ0(s) +

γ1(s)genderi+γ2(s)CD4i+γ3(s)hemoglobini+γ4(s)BMIi+γ5(s)agei, whereMi(s)

is one if |Si − s| < d∗, and is zero otherwise. The optimal value of d∗ = 0.30 is

selected using the cross-validation in (4.4). Based on the predicted GPS, the

double-weighted average of the baseline covariates is reported in Table 1. We

confirm that the differences in the covariates of gender and CD4 cell counts are

reduced substantially using the GPS analysis.

Given the predicted GPS, we apply the iterative two-step procedure in

Section 4.1 using the Epanechnikov kernel function, and select b∗(s) = 0.46

and ps = 2 at s = 0.75 (i.e., Q{β̂(0.75)} = 2.248 < χ2
0.95,4 = 9.49), and

b∗(s) = 0.31 and ps = 2 at s = 1.5 (i.e., Q{β̂(1.5)} = 3.09 < χ2
0.95,4). For ps = 1,

Q{β̂(0.75)} = 12.08 and Q{β̂(1.5)} = 10.42 are both greater than χ2
0.95,3 = 7.81.

We estimate β(s) = (β0(s), β1(s), β2(s), β3(s))
⊤ in

µ(T, s) = β0(s) + β1(s)T + β2(s)T
2 + β3(s)(T − s)2+, (5.1)

and provide the fitted mean IL-6 trajectories, µ̂(T, s) at s = 0.75 and 1.5 in

Figure 1.

Figure 1 shows that µ̂(T, 0.75) and µ̂(T, 1.5) remain the same at the baseline,

and increase with a very similar rate of the change before ART initiation. These

results indicate that the sample selection biases in the two subsamples at s = 0.75

and 1.5 are corrected properly and thus, the two fitted mean trajectories are

very comparable before ART initiation. After ART is initiated, µ̂(T, 0.75) and

µ̂(T, 1.5) decrease, but the rate of the decrease lessens over time during the post-

treatment period. The fitted population mean no longer decreases at the end of

the follow-up. As a result, the greater the delay before initiating ART, the higher

is the mean of IL-6. Of note is that the population mean pattern appears to be

comparable. Nevertheless, faster initiation of ART in the study population had a

more positive effect on reducing IL-6. We also check whether ART is effective at

s = 0.75 and 1.5 by testing H0 : β3(s) = 0 against Ha : β3(s) ̸= 0 in model (5.1).

The test statistic W(s) in Theorem 2 is 9.49, with a p-value of 0.002, at s = 0.75,

and 7.21, with a p-value of 0.007, at s = 1.5. These results confirm that ART is
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Figure 1. Fitted mean IL-6 trajectories using Q{β(s)} (left) and QK{β(s)} (right) at
s = 0.75 (dashed curves) and s = 1.5 (solid curves), respectively, under the AR(1)
working correlation structure.

significantly effective in reducing the population mean of IL-6 in both cases at a

significance level of 0.05.

To demonstrate the importance of adjusting for confounders in the analysis

of the guideline-based intervention study, we fit model (5.1) at s = 0.75 and 1.5

using the kernel-weighted estimation procedure in Section 3.3, and denote the

fitted mean outcome trajectory by µ̂K(T, s). The right panel of Figure 1 shows

that during the pre-treatment period, µ̂K(T, 0.75) increases more rapidly than

µ̂K(T, 1.5). Although the initiation of ART is delayed in HIV-infected adults,

the fitted mean IL-6 of the population is lower during most of the follow-up

period. Comparing the two estimation procedures, µ̂K(T, 0.75) obtains using the

kernel-weighted approach is larger than that of the double-weighted approach

in the smaller delay population over the follow-up period. This phenomenon

reverses in the greater delay population. The different fitted mean outcome

trajectories can be explained by the fact that the distribution of the baseline

covariates is not balanced across times to ART initiation, as shown in Table 1.

Therefore, the distribution of participants initiated at time s deviates from that

of all participants drawn randomly from the study population. As a result, it

is likely that the kernel-weighted estimation procedure yields a biased estimate

of µ(T, s), whereas the double-weighted estimation procedure corrects the bias

successfully.

6. Simulation Studies

In this section, we use simulation studies to determine whether the double-

weighted estimation procedure effectively removes estimation bias problems when
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confounding factors exist. We also show that the proposed method performs

valid statistical inferences, including the parsimonious model selection and the

hypothesis test for the last term β2(S) in the piecewise linear regression model,

µ(T, S) = β0(S) + β1(S)T + β2(S)(T − S)+, where β0(S) = exp(0.1S − 0.15),

β1(S) = cos(πS)/25− 1, and β2(S) = 0.03− 0.02S.

To simulate a longitudinal sample, we first generate the ith subject’s TTI Si,

for i = 1, . . . , 1000, independently from a uniform distribution U(0.5, 2.5). Given

the value of Si, we generate five repeated outcomes for the subject i as

Yij = µ(Tij, Si) + ϵij = β0(Si) + β1(Si)Tij + β2(Si)(Tij − Si)+ + ϵij, (6.1)

where Ti1 = 0 indicates the time at the baseline, Tij = j + U(−2,−1), for j =

2, . . . , 5, resulting in unequally spaced measurement time points between zero

and four across subjects. The random error is modeled with three confounders,

denoted by Zi1, Zi2, and Zi3, as

ϵij = Zi1 + Zi2Tij + Zi3(Tij − Si)+ + eij, (6.2)

where Zi1, Zi2, Zi3, and eij are generated independently from a normal distribu-

tion with mean zero and standard deviation 0.5, where E(ϵij) = 0 still holds. We

then drop Yij if an indicator is zero. This indicator is generated independently

at visits j = 2, . . . , 5 for subject i from a Bernoulli distribution with the success

probability of 0.8. This results in a different number of repeated outcomes across

subjects.

To examine the performance of the double-weighted estimation approach,

an indicator variable of Mi(Si) is generated independently from a Bernoulli

distribution with success probability P{Mi(Si) = 1|Zi1, Zi2, Zi3} = exp(0.2Zi1 +

0.3Zi2 − 0.5Zi3)/{1 + exp(0.2Zi1 + 0.3Zi2 − 0.5Zi3)}. From the 1,000 subjects in

the simulated sample, we drop subjects with Mi(Si) = 0 from the sample, and

consider the subsample in our analysis. Subjects in the subsample are likely to

have a higher value of Zi1 or Zi2 or a smaller value of Zi3, resulting in the sample

selection problems. As a result, Zi1, Zi2, and Zi3 are confounders that affect the

TTI and the population mean outcome.

At a given TTI value of s = 1.5, we assess β(1.5) = (β0(1.5), β1(1.5), β2(1.5))

in (6.1) from 1,000 simulated subsamples using Q{β(s)} and QK{β(s)} under the

independence, AR(1), and compound symmetry working correlation structures.

Table 2 shows the average bias and mean squared error (MSE) of the estimates.

The results show that the kernel-weighted approach using QK{β(s)} yields biased
estimates, and that the direction and amount of the bias depends on the level

of confounder. Specifically, the average bias of β̂2(1.5) is negative and largest,

because the random error depends on Zi3, and Zi3 has the largest effect on

the indicator Mi(Si) and the formation of the subset. In contrast, the double-

weighted approach using Q{β(s)} decreases the average bias substantially.
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Table 2. Averages of bias and mean squared error (MSE) of estimates under the AR(1),
compound symmetry (CS), and independent (IN) working correlation structures when
confounders exist (top) and do not (bottom).

Confounders BIAS MSE

Exist Q{β(s)} QK{β(s)} Q{β(s)} QK{β(s)}
β0(s) -0.0016 0.0208 0.0028 0.0038

AR(1) β1(s) 0.0052 0.0419 0.0041 0.0060

β2(s) -0.0051 -0.0661 0.0089 0.0145

β0(s) -0.0005 0.0207 0.0031 0.0039

CS β1(s) 0.0064 0.0451 0.0047 0.0069

β2(s) -0.0085 -0.0719 0.0111 0.0161

β0(s) -0.0080 0.0130 0.0034 0.0039

IN β1(s) 0.0198 0.0652 0.0081 0.0116

β2(s) -0.0388 -0.1020 0.0235 0.0310

Confounders BIAS MSE

Not exist Q{β(s)} QK{β(s)} Q{β(s)} QK{β(s)}
β0(s) -0.0052 -0.0051 0.0031 0.0033

AR(1) β1(s) 0.0072 0.0078 0.0039 0.0040

β2(s) -0.0067 -0.0075 0.0088 0.0090

β0(s) -0.0054 -0.0053 0.0031 0.0033

CS β1(s) 0.0074 0.0078 0.0048 0.0050

β2(s) -0.0089 -0.0092 0.0108 0.0110

β0(s) -0.0118 -0.0117 0.0035 0.0038

IN β1(s) 0.0231 0.0238 0.0069 0.0072

β2(s) -0.0399 -0.0401 0.0218 0.0220

We check the performance of the parsimonious model selection, and confirm

that at a significance level of 0.05, the proportion of rejecting the piecewise linear

model is 0.057 and 0.056 under the AR(1) and compound symmetry structures,

respectively. We also conduct a statistical inference about β2(1.5) in (6.1).

Because the true value of β2(s) is zero at s = 1.5, we test H0 : β2(1.5) = 0

against Ha : β2(1.5) ̸= 0 using the test statistic W(s) in Theorem 2 when

the null hypothesis is true. At a significance level of 0.05, the proportion of

rejection is 0.047 and 0.054 under the AR(1) and compound symmetry structures,

respectively. According to Q-Q plots for the chi-squared distribution with one

degree of freedom versus W(1.5) in Figure 2, the Q-Q plots follow the identity

line sufficiently well, because the null hypothesis is true. We conduct a similar

test based upon QK{β(s)}, but the rejection rate increases to 0.119 and 0.124

under the AR(1) and compound symmetry structures, respectively. Moreover,

the test statistic no longer follows the chi-squared distribution.

The repeated outcomes, Yi1, . . . , Yi5, are correlated, and Table 2 shows

that the estimation efficiency of β(s) improves by accommodating the within-

subject correlations (i.e., the AR(1) and compound symmetry) as compared
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Figure 2. Quantile–quantile plots for the chi-squared distribution with one degree of
freedom versus the test statistic based on Q{β(s)} (top) and QK{β(s)} (bottom), when
the null hypothesis is true under the AR(1) (left) and compound symmetry (right)
structures.

with ignoring the correlations (i.e., the independence structure). In particular,

the true covariance matrix of Yi = (Yi1, . . . , Yi5)
⊤ is 0.25(XiX

⊤
i + I5), where

Xi = (Xi1, . . . ,Xi5)
⊤ with Xij =

(
1, Tij, (Tij − 2)+

)⊤
, and I5 is the 5× 5 identity

matrix. The AR(1) approximates the true correlation structure better than the

compound symmetry does. This is aligned with the smallest MSE under the

AR(1) structure in all cases under consideration.

We also compare the performance of the two estimation approaches in cases

where Zi1, Zi2, and Zi3 are no longer confounding factors. We generate Mi(Si)

independently from a Bernoulli distribution with P{Mi(Si) = 1|Zi1, Zi2, Zi3} =

0.5, and include subjects with Mi(Si) = 1 in a subsample. From the 1,000

subsamples, we assess β(1.5) in (6.1) using QK{β(s)} and Q{β(s)} under the

three working correlation structures. Table 2 confirms that both the kernel-

weighted and double-weighted estimation procedures perform well in terms of

both small biases and MSEs. In sum, our simulation studies confirm that the

proposed procedure performs well, regardless of the presence of confounding

factors.
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7. Conclusion

An intervention can occur at different times across individuals in studies

where the effect of the TTI on the repeated outcome remains uncertain. Wu

and Tian (2008), Xing and Ying (2012), Liu et al. (2018), and Cho, Kim and

Lee (2020) have proposed longitudinal models that account for the varying TTI

effect on the repeated outcome when no confounders exist. In observational

studies, the intervention is rather initiated based on other factors that confound

the TTI effect. Controlling for plausible confounders is a crucial, but challenging

part of observational data analysis. This becomes more critical and inevitable

in longitudinal observational studies when the entire set of repeatedly measured

outcomes and the TTI are confounded as a whole.

As an example, the two fitted time-varying mean outcomes show discernibly

different patterns in the analysis of repeated IL-6 outcomes in Section 5. This

shows that confounding factors can occur in the WHO guideline-based interven-

tion study, and the fitted mean without controlling for the confounding factors

deviates substantially from the population mean over time. In contrast, the pro-

posed double-weighted estimation procedure reduces the risk of estimation bias

and achieves a consistent estimator of the population mean outcome trajectory

from samples in observational studies.

The piecewise polynomial regression model with the TTI-varying coefficients

and double-weighted estimation procedure can also be applied to other types

of longitudinal observational studies with an event for which the timing is not

controllable, such as physiological phenomena or natural phenomena. The event

would occur to subjects at different times during the follow-up period, and could

have a significant and different effect on the outcome. The proposed methodology

provides a way to assess the population mean outcome trajectory accurately and

to examine the effect of times to event on the outcome time-varying population

mean outcome effectively.

Supplementary Material

Supplementary materials available online include an implementation algo-

rithm and R codes of simulation studies.
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Appendix

The following conditions are imposed to study the asymptotic properties of

the estimator β̂(s) = argminβ(s)
Q{β(s)}.

(C1) There exists a β0(s) such that E[hi{β(s)}Ki(s)/f(s|Zi)] → 0 for all i if and

only if β(s) = β0(s).

(C2) The matrix Σ(s) is positive definite, and Φ(s) is of full rank. Σ(·) and Φ(·)
are twice continuously differentiable in a neighborhood of s.

(C3) β(·) is third continuous differentiable in a neighborhood of s. The inverse

link function ȷ−1(·) is strictly monotone and has a continuous third deriva-

tive. Thus, µ(T, ·) is third continuous differentiable in a neighborhood of

s.

(C4) The density functions fS,Z(·, ·) and fZ(·) are bounded, positive and third

continuous differentiable.

Lemma 1. Under the regularity conditions (C1)-(C4), the causal inference

conditions in Section 3.1, nb(s)5 → 0, and n → ∞, we have

1√
nb(s)

n∑
i=1

gi{β0(s)}
d→ N

(
0,Σ(s)φK

∫
fZ(z)

f(s|z)
dz

)
.

Proof of Lemma 1. Recall gi{β(s)} = hi{β(s)}Ki(s)/f(s|Zi), Ki(s) =

K{(Si−s)/b(s)}, µ(T, S) = E{Y (T, S)} and µi(Si) = (µ(Ti1, Si), . . . , µ(Tini
, Si))

⊤.

We define ϵi(Si) = (ϵ(Ti1, Si), . . . , ϵ(Tini
, Si))

⊤ where ϵ(T, S) = Y (T, S) −
E{Y (T, S)}. We can decompose gi{β0(s)} = hi{β0(Si)}Ki(s)/f(s|Zi) + ℓi,

where

hi{β(s)} =


µ̇⊤

i A
−1/2
i Bi1A

−1/2
i {Yi − µi(Si)}
...

µ̇⊤
i A

−1/2
i BiDA

−1/2
i {Yi − µi(Si)}

 =


µ̇⊤

i A
−1/2
i Bi1A

−1/2
i ϵi(Si)

...

µ̇⊤
i A

−1/2
i BiDA

−1/2
i ϵi(Si)


and

ℓi =


µ̇⊤

i A
−1/2
i Bi1A

−1/2
i {µi(Si)− µi(s)}

Ki(s)

f(s|Zi)
...

µ̇⊤
i A

−1/2
i BiDA

−1/2
i {µi(Si)− µi(s)}

Ki(s)

f(s|Zi)

 .

Consider the second term ℓi above first. Since K(·) has bound support, it is

sufficient to consider v such that |v − s| = O{b(s)}. Define µ̇(s) = ∂µ(T, s)/∂s,

µ̈(s) = ∂2µ(T, s)/∂s2 and ḟS(s, z) = ∂fS,Z(s, z)/∂s. By Taylor’s expansion and



MODELING THE POPULATION MEAN TRAJECTORY 2319

the symmetry of kernel
∫
uγK(u)du = 0 for γ = 1, 3, 5, . . . , we have, for any

t ∈ T ,

E

[
{µ(t, Si)− µ(t, s)}Ki(s)

f(s|Zi)

]
=

∫ ∫
[(v − s)µ̇(s) + (v − s)2µ̈(s)/2 +O{(v − s)3}]K{(v − s)/b(s)}

f(s|z)

f(s|z)fS,Z(v, z)dvdz by u =
(v − s)

b(s)

=

∫ ∫
[ub(s)µ̇(s) + {ub(s)}2µ̈(s)/2 + u3O{b(s)3}]K(u)

f(s|z)
fS,Z{s+ ub(s), z}b(s)dudz

=

∫ ∫
[ub(s)µ̇(s) + {ub(s)}2µ̈(s)/2]K(u)

f(s|z)
{fS,Z(s, z) + ub(s)ḟS(s, z)}b(s)dudz

+O{b(s)5}

=

∫ ∫
u2b(s)3µ̇(s)ḟS(s, z)K(u)

f(s|z)
dudz

+

∫ ∫
u2b(s)3µ̈(s)fS,Z(s, z)K(u)

2f(s|z)
dudz+O{b(s)5}

= b(s)3µK

{
µ̇(s)

∫
ḟS(s, z)

f(s|z)
dz+

µ̈(s)

2

∫
fS,Z(s, z)

f(s|z)
dz

}
+O{b(s)5}

= b(s)3µK

{
µ̇(s)

∫
ḟS(s, z)

f(s|z)
dz+

µ̈(s)

2

}
+O{b(s)5}. (A.1)

and thus E[{nb(s)}−1/2
∑n

i=1 ℓi] = O{
√
nb(s)5}. Note that

∫
fS,Z(s, z)/f(s|z)dz =∫

{f(s|z)fZ(z)}/f(s|z)dz =
∫
fZ(z)dz = 1. Since ℓi, i = 1, . . . , n, are indep-

endent, it is easy to show that V ar[{nb(s)}−1/2
∑n

i=1 ℓi] → 0 as nb(s) → ∞.

Therefore, {nb(s)}−1/2
∑n

i=1 ℓi = op(1) can be shown under the assumption of

undersmoothing (i.e., nb(s)5 → 0).

Now consider the first term hi{β0(Si)}Ki(s)/f(s|Zi). By the fact that

E{K(s)|Z = z} = f(s|z) + o{b(s)} (Fan, Yao and Tong (1996)) and ϵ(Si) and

(Zi,Ki(s)) are independent, we have

E

{
ϵi(Si)Ki(s)

f(s|Zi)

}
= E

[
E

{
ϵi(Si)Ki(s)

f(s|Zi)

∣∣∣ϵi(Si),Zi

}]
= E

[
ϵi(Si)

f(s|Zi)
E{Ki(s)|ϵi(Si),Zi}

]
= E

[
ϵi(Si)

f(s|Zi)
E{Ki(s)|Zi}

]
=

∫ ∫
u

f(s|z)
[f(s|z) + o{b(s)}]fϵ,Z(u, z)dudz = 0,
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and thus E[hi{β0(Si)}Ki(s)/f(s|Zi)] = 0. In addition, by a similar manner in

(A.1) and the independence of hi{β0(Si)}, i = 1, . . . , n, we can show

V ar

[
1√
nb(s)

n∑
i=1

hi{β0(Si)}
Ki(s)

f(s|Zi)

]

= E

[
1

nb(s)

n∑
i=1

hi{β0(Si)}hi{β0(Si)}⊤
K2

i (s)

f2(s|Zi)

]

= Σ(s)φK

∫
fZ(z)

f(s|z)
dz+O{b(s)}. (A.2)

Then, the following result is obtained by the central limit theorem and Slutsky’s

theorem, as nb(s)5 → 0 and n → ∞, we have

1√
nb(s)

n∑
i=1

gi{β0(s)}
d→ N

(
0,Σ(s)φK

∫
fZ(z)

f(s|z)
dz

)
.

Lemma 2. Under the regularity conditions (C1)-(C4), the causal inference

conditions in Section 3.1, and 1/nb(s) + b(s) → 0, we have:

1

nb(s)

n∑
i=1

∂gi{β0(s)}
∂β(s)

p→ Φ(s);

1

nb(s)

n∑
i=1

gi{β0(s)}gi{β0(s)}⊤
p→ Σ(s)φK

∫
fZ(z)

f(s|z)
dz.

Proof. By the symmetry of the kernel function K(·) and Taylor’s expansion, we

have

E

[
1

nb(s)

n∑
i=1

∂gi{β0(s)}
∂β(s)

]

= E

[
1

nb(s)

n∑
i=1

∂hi{β0(s)}
∂β(s)

Ki(s)

f(s|Zi)

]

=
1

b(s)
E

{
Φ(s)K(s)

f(s|Z)

}
=

Φ(s)

b(s)

∫ ∫
K

(
v − s

b(s)

)
fS,Z(v, z)

f(s|z)
dvdz

u=(v−s)/b(s)
=

Φ(s)

b(s)

∫ ∫
K(u)

fS,Z{s+ ub(s), z}b(s)
f(s|z)

dudz

= Φ(s)

∫ ∫
K(u)

fS,Z(s, z) + uO{b(s)}
f(s|z)

dudz

= Φ(s)

∫
K(u)fS,Z(s, z)

f(s|z)
dudz+O{b(s)2}

= Φ(s)

∫
K(u)du

∫
f(s|z)fZ(z)

f(s|z)
dz+O{b(s)2} = Φ(s) +O{b(s)2}
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and it can be shown that variance of each element in {nb(s)}−1
∑n

i=1 ∂gi{β0(s)}
/∂β(s) and {nb(s)}−1

∑n
i=1 gi{β0(s)}gi{β0(s)}⊤ is of order {nb(s)}−1. Then by

the result in (A.2), the desired results are proven.

Proof of Theorem 1. By Taylor’s expansion, we have

G{β̂(s)} = G{β0(s)}+ Ġ{β̆(s)}{β̂(s)− β0(s)},

where G{β(s)} =
∑n

i=1 gi{β(s)}/nb(s), Ġ{β(s)} = ∂G{β(s)}/∂β(s), and β̆(s)

lies between β̂(s) and β0(s). Since Ġ{β̂(s)}⊤V{β̂(s)}−1G{β̂(s)} = 0, we have

Ġ{β̂(s)}⊤V{β̂(s)}−1G{β0(s)}+Ġ{β̂(s)}⊤V{β̂(s)}−1Ġ{β̆(s)}{β̂(s)−β0(s)}=0.

It is rewritten as
√
nb(s){β̂(s)− β0(s)} =

−
[
Ġ{β̂(s)}⊤V{β̂(s)}−1Ġ{β̆(s)}

]−1

Ġ{β̂(s)}⊤V{β̂(s)}−1
√
nb(s)G{β0(s)}.

It follows from Lemmas 1 and 2 and Slutsky’s theorem that√
nb(s)

{
β̂(s)− β0(s)

}
d→ N

(
0, φK

∫
fZ(z)

f(s|z)
dz{Φ(s)⊤Σ(s)Φ(s)}−1

)
.

Now, we show that Q{β̂(s)} converges to the chi-squared distribution with

(ps+2)(D−1) degrees of freedom. By Taylor’s expansion and Lemma 2, we have

G{β̂(s)} = G{β0(s)}+ Ġ{β0(s)}
{
β̂(s)− β0(s)

}
+ op(1)

= [I(ps+2)D −Φ(s){Φ(s)⊤Σ(s)Φ(s)}−1Φ(s)⊤Σ(s)−1]G{β0(s)}+ op(1). (A.3)

By plugging (A.3) in Q{β̂(s)} = nb(s)G{β̂(s)}⊤V{β̂(s)}−1G{β̂(s)} and Lemma

2, Q{β̂(s)} is rewritten as Q{β̂(s)} = H{β0(s)}⊤S1(s)H{β0(s)} + op(1),

where S1(s) = I(ps+2)D −Σ(s)−1/2Φ(s){Φ(s)⊤Σ(s)−1Φ(s)}−1Φ(s)⊤Σ(s)−1/2 and

H{β(s)}=
√
nb(s)Σ(s)−1/2G{β0(s)}. Following Lemma 1, Hn{β0(s)} converges

to the standard multivariate normal distribution and S1(s) is an idempotent and

symmetric matrix with trace equal to (ps + 2)(D − 1). Consequently, Q{β̂(s)}
converges to the chi-squared distribution with (ps+2)(D−1) degrees of freedom.

Proof of Theorem 2. We let β(s) = (β0, . . . , βps
, βps+1)

⊤ = (β∗(s)⊤, βps+1)
⊤.

Under H0 : βps+1 = 0, the true parameter vector of β(s) is β0(s) = (β∗
0(s)

⊤, 0)⊤.

By a similar manner in (A.1), the test statistic W(s) = Q{(β̃
∗
0(s)

⊤, 0)} −
Q{(β̂

∗
(s)⊤, β̂ps

)} is written as

W(s) = H{β0(s)}⊤Σ(s)−1/2{S2(s)− S3(s)}Σ(s)−1/2H{β0(s)}+ op(1),

where S2(s) = Φ(s){Φ(s)⊤Σ(s)−1Φ(s)}−1Φ(s)⊤ and S3(s) = Φ∗(s){Φ∗(s)⊤

Σ(s)−1Φ∗(s)}−1Φ∗(s)⊤ with Φ∗(s) = E[∂hi{β∗
0(s)}/∂β

∗(s)}]. Since S2(s) and
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S3(s) are idempotent and symmetric matrices with trace equal to (ps + 2)

and (ps + 1), respectively. As consequence, W(s) converges to the chi-squared

distribution with one degree of freedom.
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