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Abstract: A repeatedly measured outcome in longitudinal studies allows researchers
to monitor how the outcome changes over time. When an intervention affects the
outcome and subjects initiate the intervention at different times during the course
of a study, it is essential to account for the varying time to intervention (TTI) in
models of such changes. In this study, we develop a piecewise polynomial regression
model with TTI-varying coefficients that describes the population mean outcome
over time. The TTI-varying coefficients in the model enable us to capture the
population mean outcome trajectory, affected by both the intervention and the
varying TTI. In observational studies, other covariates can confound these effects,
leading to estimation bias if not properly accounted for. To mitigate this, we
propose a double-weighted estimation procedure based on a kernel function and a
generalized propensity score. The proposed estimation procedure effectively corrects
the estimation bias of the TTI-varying coefficients and provides valid statistical
inferences about the coefficients. We apply our approach to assess changes in the
population mean of an inflammation biomarker for HIV-infected adults in Haiti who
initiate antiretroviral therapy following the World Health Organization guideline.

Key words and phrases: Causal inference, generalized propensity score, kernel
smoothing, longitudinal data, piecewise polynomial regression, varying coefficients
model.

1. Introduction

Modeling changes in an outcome over time is essential for patient assessment
in biomedical studies. An analysis of longitudinal data in which the outcome
is measured repeatedly for a subject can successfully control extraneous, but
unavoidable sources of variability among subjects. However, interventions that
affect the changes in the outcome can occur at different times during the course
of a longitudinal study. When the effect of the intervention depends on the time
to intervention (TTI), it is crucial to adjust for the TTI when modeling the
longitudinal outcome trajectory; see Wu and Tian! (2008), Xing and Ying (2012),
Liu et al. (2018), and |Cho, Kim and Lee| (2020)).

For example, an inflammation biomarker is one of the risk factors for adults
infected with human immunodeficiency virus (HIV). Because inflammation is a
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risk factor for other disease progression, monitoring changes of the inflammation
biomarker over time is essential. Antiretroviral therapy (ART) has proved
effective in reducing inflammation, and is recommended for HIV-infected adults
(Kanters et al.|(2016])). However, owing to limited resources, HIV-infected adults
in Haiti have initiated ART following the World Health Organization (WHO)
guideline, leading to these adults initiating ART at different times. As a result,
it is important to study how the effect of ART on changes in the inflammation
biomarker is influenced by different ART initiation times.

It is straightforward to evaluate the TTI-varying effect of the intervention
on the outcome by assessing the population mean outcome trajectory if the data
are observed in either of the following circumstances: 1) the TTI is assigned
randomly to subjects, or 2) all subjects undergo the intervention at the same
time. In observational studies in which the intervention is initiated following a
guideline, strategy, or other factors, neither of these circumstances are feasible.
In particular, if factors that affect the TTI exist, estimating the population mean
outcome trajectory is challenging. For instance, suppose we wish to evaluate
the intervention effect on the outcome when the TTI is a specific value s.
One approach is to estimate the mean outcome trajectory using subjects who
intervened at time s or nearby. However, it is likely that the subsample does
not represent the study population well in the presence of potential confounders.
As a result, an estimated mean outcome trajectory would be biased, unless the
confounders are properly controlled.

In this study, we develop a piecewise polynomial regression model with TTI-
varying coefficients that describes the marginal mean outcome over time. The
proposed model smoothly connects the polynomial functions before and after the
intervention. The TTI-varying coefficients allow us to explore the population
mean outcome trajectory with respect to different times to intervention. There-
fore, the proposed marginal mean model captures both dynamic longitudinal
changes in the population mean outcome over time and the varying effect of the
intervention along with the times to intervention. A hypothesis test is proposed
to select the most parsimonious model that correctly specifies the population
mean outcome pattern. If the intervention affects changes on the outcome over
time, the pattern of the repeated outcome is altered after the TTI. Therefore, we
develop another hypothesis test that investigates whether or not the intervention
at a specific time is effective.

We propose a double-weighted estimation procedure to estimate the TTI-
varying coefficients, while accounting for potential confounders that can cause
selection bias under the weighted generalized estimating equations framework
(Robins, Rotnitzky and Zhao| (1994);|Chen, Yi and Cook! (2010);|Qu et al.[(2011)).
Because the proposed approach contains two weights, that is, a kernel function
and a generalized propensity score (GPS, [Hirano and Imbens (2004)), we call it
the double-weighted estimation method. The kernel function up-weights subjects
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who initiate the intervention at a specific time, or nearby. The GPS links the TTI
and the potential confounders. We propose a simple and easy implementation to
predict the GPS using the definition of the probability density function. Using the
predicted GPS, the proposed procedure corrects the estimation bias effectively.
Our simulation studies show that an estimation procedure that does not control
for the confounders yields a biased estimator of the TTI-varying coeflicients.
In contrast, the double-weighted procedure successfully corrects the bias, and
provides valid statistical inferences about the TTI-varying coefficients. We prove
that the double-weighted estimator asymptotically follows a multivariate normal
distribution with a mean vector of the true coefficients under regularity conditions
on the GPS and the kernel function.

Repeated measures within each subject are likely to be correlated, and the
degree of correlations can vary with the TTI. The proposed estimation approach
accommodates the within-subject correlations, and improves the estimation
efficiency of the TTI-varying coefficients. In addition, the approach accounts for
heterogeneous correlations across TTIs, without estimating nuisance parameters
associated with the working correlation structure that varies with the TTIs (Kim,
Cho and Zhang|(2019)). When the repeated outcome is not continuous, specifying
its full likelihood under a marginal regression framework is challenging. The
proposed estimation approach is readily applied to analyze repeated discrete
outcome, because it requires only the first two moments.

The remainder of the paper proceeds as follows. In Section 2, we develop
the piecewise polynomial regression model with the TTI-varying coefficients. In
Section 3, we propose the double-weighted estimation procedure and present
statistical inferences about the TTI-varying coefficients. In Section 4, we
implement the proposed approach by selecting a parsimonious model and pre-
dicting the GPS. In Section 5, we apply the proposed approach to data from
the aforementioned HIV study, and explore changes in the population mean
inflammation biomarker at two different ART initiation times. Simulation studies
and closing remarks are given in Sections 6 and 7, respectively.

2. Modeling the Population Mean Outcome Trajectory

For a typical framework of longitudinal studies with a varying TTT variable,
we denote by T' a real-valued variable of time, 7 a bounded subset of (0, c0) such
that T' € T, Yr a real-valued response variable at time 7', Z a vector of ¢ real-
valued covariates, and S € T a real-valued TTI variable. Suppose that n subjects
are drawn randomly from a population of interest and Y7 is measured repeatedly
during the course of the study. The longitudinal random sample of {Y7, T, S, Z}
is denoted by {Y;;,T;;,S:,Z; : i =1,...,n; j =1,...,n;}, where the TTI S,
covariate vector Z;, and n,; outcomes, Y;y,...,Y,,,, at time points T}y, ..., T},
respectively, are measured for subject i. We call Z; preintervention covariates,
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because it consists of covariates measured prior to an intervention.

When a longitudinal study is designed, the same visit or assessment schedule
is normally planned for all individuals. In this regard, we assume that there exist
no potential factors that confound the associations between the measurement
time 7" and the outcome Yr. In practice, the assessment times are likely not the
same across all individuals for various reasons, including missed visits or simply
visit times falling outside the predefined windows. This results in different values
of n; and Tjy,...,T;,, across individuals. In addition, the intervention can be
initiated at any time during the follow-up period; that is, there exist individuals
such that T;; # S;, for all j.

Under the stable unit treatment value assumption (SUTVA, Imbens and
Rubin (2015])) that only one version of the intervention is used and no interference
between subjects exists, we define a potential outcome measured at time 7T if an
intervention is initiated at time S since the baseline, and denote it by Y (7, S).
This follows from the unconfoundedness assumption between the measurement
and the outcome, and the consistency assumption that a potential outcome
for subject i at time T;; is observed as Y;; = Y(T;;,S5;). We are interested
in estimating the average outcome trajectory of individuals who intervened at
S € T, denoted by u(T,S) = E{Y(T,S)}. Therefore, we develop a marginal
mean regression model that assesses changes in the population mean outcome
based on generalized linear models for longitudinal data (Liang and Zeger| (1986)).

Suppose that p(7,.5) depends on T" and S through a known link function of
1(+) (e.g., the logit link function for Bernoulli random response variables, or the
log link function for count response variables). Assuming that the transformed
mean response changes linearly over time 7', but that the rate of the change is
altered by the intervention at time S, we formulate the following marginal mean
regression model with TTI-varying coefficients for the potential outcome Y (7', S):

Bo(S) + B(S)T, T<S

ao(S) 4+ ay(S)T, T>8' 21

Hu(T,8)} = {

where 5y(S), B1(5), ao(S), and «;(S) are unknown smooth functions of the
TTI S. Because (;(S) and a4 (S) are the rates of the change before and after the
intervention, respectively, the difference between §;(5) and «;(.5) is the expected
rate of the change due to the intervention at time S. As a result, the TTI-
varying effects of the intervention on the changes in j{u(7,S)} can be obtained
by accessing 3, (S) and a;(S) with respect to the TTI S.

Under the continuity assumption of p(7,S) in time T, we combine two
segments in , and propose the following TTI-varying coefficient piecewise
linear model:

H(T, )} = Bo(S) + Bu(S)T + B(S)(T = )+, (2.2)
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where (5(S) = a1(S) — 51(S), and (T'— S). = (T — S)I(T > S) is a truncated
term with a fixed knot of S and an indicator function I(7" > S) being one if T' > S
and zero otherwise. As a result, the change of the population mean outcome due
to the intervention at time S is reflected in the last term in model . For
example, (5>(S) = 0 indicates that the intervention at time S does not alter the
rate of the change in the outcome, because the linear pattern of the time-varying
outcome remains the same before and after the intervention. If 55(S) is a nonzero
constant over S € T, the effect of the intervention remains the same, regardless
of the TTIs.

The piecewise linearity assumption between the time and the transformed
mean response can be relaxed by developing a piecewise polynomial regression
model with TTI-varying coefficients, as follows:

Hu(T,8)} = Bo(S) + Bi(S)T + -+ + Bp (S) TP + B, 2 (S)(T = ), (2.3)

where (T'—S)% = (T'—S)P<I(T > S) is the p, degree truncated polynomial term,
and the degree of nonlinearity p, can vary with S. Note that model smoothly
connects two different polynomial curves with a p, degree of the polynomial, under
the restriction that their first p; — 1 derivatives are continuous in time 7" (Gallant
and Fuller (1973)).

3. Statistical Inference

In this section, we propose estimation procedures and discuss statistical
inferences about the TTI-varying coefficients in model in observational
studies in which the preintervention covariates confound the associations between
the TTI and the repeated outcomes.

3.1. Double-weighted estimation procedure

In order to control for covariates that could cause an estimation bias in
(T, S), we propose a double-weighted estimation procedure based on the inverse
probability weighting scheme (Horvitz and Thompson| (1952)). Following |[Hirano
and Imbens (2004) on propensity score analysis, we assume that the TTI is
independent of the potential outcome, conditional on the covariates, denoted
by Y(T,s) L S|Z, for s € T. This assumption rules out any systematic selection
into the TTI based on unobservable covariates, and is called the “no hidden bias
assumption.” The assumption is a natural extension of the unconfoundedness
assumption commonly used for binary treatments (Rosenbaum and Rubin (1983);
Heckman et al.| (1998); Imbens| (2000)).

Rosenbaum and Rubin| (1983)) show that adjusting for differences in the
propensity score (i.e., the probability of receiving the treatment conditioning
on the preintervention covariates) removes the selection bias between treated and
untreated individuals under the unconfoundedness assumption. We define a GPS,
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denoted by f(s|Z), that is the conditional density of the TTI variable given the
covariates. We assume that every individual has a nonzero density of intervening
at any time point in 7; that is, f(s|Z) > 0, for s € 7. Hirano and Imbens| (2004)
show that the GPS exhibits the following properties: 1) within strata with the
same value of f(s|Z), the occurrence of the event S = s does not depend on the
value of Z, that is, Z L I{S = s}|f(s|Z); and 2) the TTI is unconfounded, given
the GPS and the aforementioned unconfoundedness assumption. The second
property enables us to remove selection bias by using the GPS on the estimation of
w(T,s). In particular, we can identify the causal parameter E{Y (T s)} from the
observed data as u(T,s) = E[E{Y (T, s)|f(s|Z) = c¢}| = E[E{Y7|S = s, f(s|Z) =
c}.

For the estimation of 3,(.5), ..., Bp.+1(S) in model at given values of TTI
s and f(s|Z;), we propose the following double-weighted generalized estimating
equations:

ZuTA PRAp(s)} AT Y - py(s)} s =0, (3.1)

where fs; = Op(s)/0B(s), wi(s) = {p(Ti, ), T, s} uTyyns) =
UK BN Xy = (LT, T (Ty—s)2) T B(s) = {Bo(s A, B )
Bp.+1(s)} ", A, is a diagonal variance matrix on = (Yi,..,Yi,) ", Ri{p(s)} is
a working correlation structure of Y; with a nuisance smoothing function vector
of p(s), and K;(s) = K{(S;—s)/b(s)} is a kernel function with a local bandwidth
b(s). The kernel function up-weights subjects whose TTI is closer to the given
value of s for a consistent estimation of B(s). The GPS f(s|Z;) is used as an
inverse weight to eliminate the disparity between the study population and the
sampling population (i.e., the group of subjects who intervened at s). Within-
subject correlations are considered, while allowing the degree of the correlations
p(s) to vary with the TTIs. When the working correlation structure is specified
correctly, the efficient estimator can be obtained by solving , but this requires
estimating the unknown nuisance parameter vector p(s).

An alternative is to approximate R;{p(s)}~' in as Ri{p(s)}7! =
S 14(5)Byg, where Byy,...,B,p are basis matrices and 7 (s),...,np(s) are
unknown varying coefficients. The choice of a set of the basis matrices depends
on the type of working correlation structure. For example, if the compound
symmetry structured is assumed, then R;{p(s)} " = n1(s)Bi1 + 172(s)Bio, where
B,; is an identity matrix, and B;; is a matrix with zero on the diagonal, and
one elsewhere. If the first-order autoregressive, denoted by AR(1), structure
is assumed, then R;{p(s)}™' = 1:(s)Bi1 + 12(5)Bi2, where B;; is an identity
matrix, and B;, is a matrix with one on the sub-diagonals, and zero elsewhere
(Qu, Lindsay and Li (2000)). If R;{p(s)} is unstructured, a set of basis matrices
can be obtained using an eigenvector decomposition method; see [Zhou and Qu
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(2012) and |Cho and Qu| (2015).
After extending to a score vector of g;{3(s)} = h{B(s)}K,(s)/f(s|Z;),
with
] A7 PB AT Y - ()}
hi{B(s)} = : J (3.2)
il A B A{Y G - y(s)}

an estimator of 3(s) is obtained by minimizing the quadratic inference function
(QIF, Qu, Lindsay and Li (2000)))

Q{B(s)} = nb(s) G{B(s)} 'V{B(s)} ' G{B(s)}, (3-3)
where G{B(s)} = 3, &i{B(s)}/{nb(s)} and V{B(s)} = 31, 8{B(s)}8:{B(s)}

/{nb(s)}. This accounts for within-subject correlations, without needing to
estimate the varying nuisance parameter vector p(s) in R;{p(s)}. As a result,
the estimator is more efficient than the one obtained under the working
independent correlation structure. In addition, it is the most efficient of
the estimators obtained from the same set of estimating equations in ,
because Q{B(s)} optimally combines the extended scores by taking the inverse
of their variability. With B(s) = argminﬁ(s)Q{,@( s)}, the mean outcome
trajectory for the study populatlon intervened at time s is estimated as
AT, ) = 7 {Bo(s) + Bi(s)T + - + By, ()T + By 1 (8)(T = s)2}.

Note that when extreme propensity scores are present, a stabilized weight
{(s) can be used as g;{B(s)} = h;{B(s)}K;(s)l(s)/f(s|Z;), where {(s) is an
arbitrary function of S evaluated at the TTI s, although a marginal density of
the TTI is commonly used. The stabilized inverse probability avoids obtaining
an estimator of (7, s) that is dominated by repeated outcomes of individuals
with an extremely small value of f(s|Z;).

For statistical inferences about B(s), we demonstrate asymptotic properties
of ,@(s) Note that with undersmoothing, nb(s)> — 0, Wilks’ phenomenon holds
for the QIF. Therefore, we use the QIF with undersmoothing to build a goodness-
of-fit statistic to select the best degree of polynomial in model , and to build
a hypothesis test statistic to check whether or not the intervention at time s is
effective.

Theorem 1. Let s be a fized interior point in T and B,(s) be a true parameter
vector. Under the causal inference conditions discussed in Section 3.1, the
reqularity conditions in the Appendiz, nb(s) — oo, and nb(s)®> — 0, we have:

(i) /nb(s) — Bo(s)) = N(0, 0 [(fa(2)/ f(s]2))dz{®(s)TE(s) ()} 1),
where denotes convergence in distribution, px = [ K*(u)du, fz(-) is the
density function of Z, ®(s) = E[0h,{B(S;)}/0B(S:)|S; = s]|, and X(s) =
Eh{B(S)hi{B(S:)} ]S = sl;
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.. 3 d . . .
(1) Q{B(8)} = X{p. +ay(p_1) if model (2.3)) is specified correctly, where X7, \op_1)
is a chi-squared distribution with (ps + 2)(D — 1) degrees of freedom.

It is well known that the kernel-based estimator is consistent, but biased (Li
and Racine| (2007))), and that the bias term is O(b(s)?); see the proof of Lemma
1 in the Appendix for details. Because the bias term contains first- and second-
order derivatives, which are not easy to estimate in practice, it is common practice
to either ignore it or to undersmooth it with a slightly smaller bandwidth than
the optimal bandwidth satisfying nb(s)> — 0, as shown in Theorem 1. Given
the optimal local bandwidth O(n~'/®), Theorem 1 (i) shows that the resultant
estimator asymptotically follows a multivariate normal distribution with a mean
vector of the true coefficients at the specific value of the TTI s.

3.2. Inference about the TTI-varying coefficients

It is of particular interest to perform a statistical inference about the last term
Bp.+1(s) in model (2.3)), because S, 41(s) quantifies the effect of the intervention
at time s on the change of the mean outcome pattern. Given that Q{3,(s)} is an
analog to the negative twice loglikelihood, a hypothesis test for Hy : 8, 41(s) =0
against H, : 3, 41(s) # 0 is conducted by comparing Q{8(s)} with Q{B(s)},
where 3(s) and 3(s) are estimators obtained under H, and H,, respectively.

Theorem 2. Let s be a fized interior point in T. Under the causal inference
conditions in Section 3.1, the regularity conditions in the Appendiz, nb(s) — oo,
and nb(s)® — 0, if the null hypothesis is true, Q{B(s)} is as small as Q{B(s)},
and the test statistic W(s) = Q{B(s)} — Q{B(s)} asymptotically follows a chi-
squared distribution with one degree of freedom.

Theorem 2 indicates that the intervention at time s is effective if the test
statistic WW(s) is larger than the (1—a)th percentile of the chi-squared distribution
with one degree of freedom at a significance level of . The hypothesis test is an
analog to the traditional likelihood ratio test that compares two nested models,
because the null model is nested within the alternative model. The test is useful
and easy to implement, because estimating the limiting variance of 5, ;1(s) in
Theorem 1 (i) is difficult in practice, but not required in the proposed test.

3.3. Kernel-weighted estimation procedure

When no confounders exist (e.g., the TTI is randomized to subjects in a
population), the following kernel-weighted GEE and QIF can be used to estimate

Bls)
S il AT PR AT Y - @)K () =0 (34)
and

Qx{B(s)} = nb(s) Gr{B(s)} Vi{B(s)} "Gk {B(s)}, (3.5)
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where G {B(s)} =" gri{B(s)}/nb(s), gri{B(s)} =hi{B(s)} Ki(s), hi{B(s)}
is defined in (3.2), and Vx{B(s)} = >, gr.i{B(s)}gr.i{B(s)} " /{nb(s)}. An
estimator of 3(s) can be obtained by minimizing Qx{3(s)}, denoted by B (s) =
argminﬁ(s)QK{,B(s)}. Note that is a special case of with a constant
value of f(s|Z;). Thus, none of the preintervention covariates are related to
the link between the TTI variable and the potential outcome. As a result, the
asymptotic properties in Theorems 1 and 2 can be used to perform a statistical
inference about B(s) based on Qx{B(s)}. In Section 6, we show that the kernel-
weighted estimation procedure leads to a valid statistical inference about 3(s),
when no confounders exist.

4. Implementation
4.1. Selection of a parsimonious model

Choosing the best degree of polynomial p, in model is essential to select
a parsimonious model that specifies the time-varying population mean outcome
correctly. At the given value of the TTI s, we provide an iterative two-step
procedure that selects the local bandwidth b(s) and polynomial degree p, in

model (2.3)).

1. Given a predetermined value of p,, we modify a leave-one-subject-out
cross-validation method (Rice and Silverman| (1991)) and select the local
bandwidth b'(s) by minimizing the kernel-weighted least squares

S S Y — ATy, S0 Y K (S — 5)/b(s)}

b'(s) = argmin ~ o , (4.1)
b(s)>0 py Zj:l K {(Si —5)/b(s)}
where 1(=9(Tj;,S;) is an estimate of the population mean at time Tj;

intervened at time S;, with the bandwidth b(s) obtained from all data except
the ith subject. The cross-validation obtains a local bandwidth effectively by
using the kernel-based weights accounting for the distance between the data
S; and the TTT of interest s. To hold the asymptotic properties in Theorem
1, we obtain the optimal bandwidth b*(s) by undersmoothing ¥'(s) in
as b*(s) = b'(s)n~/?0. Because b'(s) and b*(s) are O(n~'/?) and O(n=1/%),
respectively, the condition for undersmoothing nb*(s)® — 0 in Theorem 1 is
fulfilled.

2. Given the selected local bandwidth b*(s), B(s) is obtained by minimizing
Q{B(s)}. Following Theorem 1 (ii), we select ps as the best polynomial
degree if Q{B(s)} is no greater than the (1 — a)th percentile of the chi-
squared distribution with (p;+2)(D—1) degrees of freedom at a significance
level o

In practice, we let the initial value of p, be one, which is the piecewise linear model
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, and repeat Steps 1 and 2 by increasing p, by one until the criterion in Step
2 is met. This iterative procedure enables us to choose the most parsimonious
model, based on Theorem 1 (ii) that Q{B(s)} converges in distribution to
X%ps +2)(p—1) under the correctly specified model.

4.2. Prediction of the GPS

Modeling the GPS f(s|Z;) plays an important role in providing an accurate
estimator of 3(s). We need to predict the GPS prior to minimizing Q{3(s)} when
estimating (3(s). We propose a simple and easy implementation for predicting
f(s|Z;) based on the definition of the probability density function that f(s|Z;) =
limgo{F (s +d|Z;) — F(s — d|Z;)}/2d = limg_,o E{I(s —d < S < s+ d)|Z;}/2d,
where F'(s|Z;) = P(S < s|Z;) is the conditional distribution function of s given
Z;. Given a small positive value of d*, the GPS for subject ¢ can be approximated
" B{M()Z:}

i\S)| 4
f(s|Z;) = — og
where M;(s) = I(s —d* < S; < s+ d*) is a Bernoulli random variable that
indicates whether or not subject 7 initiates the intervention at time s, or nearby.
To avoid the curse of dimensionality due to the multivariate covariate Z;, we
model E{M;(s)|Z;} in under the following generalized linear model with

the logit link function:

(4.2)

exp{ro(s) + 3251 75(s) Zis}

E{M;(s)|Z;} = P{M,(s) = 1|Z;} = 1+ exp{o(s) + 20, 7(s)Zi;

(4.3)

where Z; = (Zi,...,Zi,)" and y0(s),...,7,(s) are unknown TTI-varying coeffi-
cients. If the logistic regression model in is specified correctly, [Fan, Yao and
Tong| (1996) show that as d — 0, E{M;(s)|Z;}/2d > f(s|Z;), under Condition
(C4) in the Appendix.

We need to choose an optimal value of d* to predict f(s|Z;). We propose
a cross-validation approach based on an integrated squared error (ISE, Fan and
Yiml (2004))

ISE = [ {Fulsiz) ~ f(s12)) fa(a)dads
_ /ﬁ(s\z)fz(z)dzds—z/ﬁi(s\z)f(s|z)fz(z)dzds+/f?(syz)fz(z)dzds

:/fz(z) {/ﬁ(s|z)ds}dz2/ﬁj(s|z) S, % dzd8+/f (z)dzds,

where ﬁi(s|z) estimates f(s|z) by conducting a logistic regression in 1} with a
bandwidth d. Because the last term of the quadratic expansion does not depend
on d, a cross-validation is driven by the first two terms in ISE as
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1 n /E 2 n R
Cv(d) = n Z fa—i(s|Z;)ds — " Z fa,-i(SilZy), (4.4)
=1 =1

where fi_i(s|Zi) is obtained from all data, except subject i, using the approx-
imation in (4.2). The optimal bandwidth is selected by minimizing C'V(d)
as d* = argmin,. ,CV(d), and is O(n"1/?), like the bandwidth '(sq) in
(Fan, Yao and Tong (1996)). However, undersmoothing is not required for
this bandwidth, because undersmoothing uses a smaller bandwidth in order
to eliminate the bias asymptotically more quickly, while losing some efficiency.
Because this results in a slower convergence rate, the bandwidth d* with the order
O(n~%/?) is fast enough to achieve the consistency of the estimator of f(s|Z;) and
the asymptotic results in Theorems 1 and 2.

5. Analysis of a Guideline-Based Intervention Study

In HIV-infected subjects, inflammations often result in other disease progres-
sion, such as cardiovascular disease and chronic anemia. Because ART is effective
for reducing inflammations (Kanters et al.| (2016))), it is often recommended for
HIV-infected adults. However, owing to limited resources, such adults in Haiti
have initiated ART following the WHO guideline of the early 2010s, that is, ART
is initiated when the CD4 cell count is below 200 or AIDS has developed. This
leads to different times of ART initiation, without knowing how these differing
times would affect their level of inflammation over time.

As part of a clinical trial of an HIV study conducted in 2010 (Severe et
al.| (2010)), 816 HIV-infected adults in Haiti who meet the following baseline
criteria are enrolled: older than 18; CD4 counts between 200 and 350; AIDS-
free; and no prior ART. A clinician meets all participants monthly and starts
the intervention when the WHO guideline is met. Interleukin 6 (IL-6) is an
inflammation biomarker of interest, and is collected approximately every six
months over a three-year period. Note that the value of IL-6 correlates positively
with clinical severity in HIV-infected adults. We apply the double-weighted
estimating procedure and assess the TTI-varying coefficients in model with
the identity link function at a specific value of the TTI s = 0.75 (i.e., ART is
initiated 9 months since the baseline) and 1.5 (i.e., ART is initiated 18 months
since the baseline). Note that five covariates at the baseline are observed prior
to ART initiation. In Table 1, we provide the kernel-weighted average of the
observed baseline covariates, including gender, CD4 cell counts, hemoglobin,
BMI, and age at s = 0.75 and 1.5. The results show that some covariates,
particularly on gender and CD4 cell counts, are not balanced between the two
TTIs.

In order to adjust for differences in the covariates, we predict the GPS
using the logistic regression analysis at each value of s, conditioning on the
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Table 1. Kernel-weighted average and double-weighted average of five baseline covariates
at s = 0.75 and 1.5, respectively.

Kernel weight Double weight
Covariate s=075 s=15 =07 s=15
Female (%) 56.6 73.9 58.1 61.1
CDh4 262.9 268.1 265.3 265.1
Hemoglobin 11.30 11.42 11.38 11.34
BMI 22.08 21.33 21.71 21.46
Age 37.79 37.34 38.10 37.64

preintervention covariates as log [P{M;(s) = 1|Z;}/P{M;(s) = 0|Z;}] = 7o(s) +
~1(s)gender; +72(s)CD4;+5(s)hemoglobin, +v4(s) BMIL; 45 (s)age;, where M;(s)
is one if |S; — s| < d*, and is zero otherwise. The optimal value of d* = 0.30 is
selected using the cross-validation in . Based on the predicted GPS, the
double-weighted average of the baseline covariates is reported in Table 1. We
confirm that the differences in the covariates of gender and CD4 cell counts are
reduced substantially using the GPS analysis.

Given the predicted GPS, we apply the iterative two-step procedure in
Section 4.1 using the Epanechnikov kernel function, and select b*(s) = 0.46
and p, = 2 at s = 0.75 (e, Q{B(0.75)} = 2.248 < Xo.054 = 9:49), and
b*(s) = 0.31 and p, = 2 at s = 1.5 (i.e., Q{B(1.5)} = 3.09 < X0.05.4)- For pg =1,
Q{B(0.75)} = 12.08 and Q{B(1.5)} = 10.42 arc both greater than Xb.05.3 = 7-81.
We estimate B(s) = (Bo(s), Bi(5), Ba(s), B5(s)) " in

(T, 5) = Bo(s) + Bu(s)T + Ba(s)T? + Bs(s)(T — s)3, (5.1)

and provide the fitted mean IL-6 trajectories, u(T,s) at s = 0.75 and 1.5 in
Figure 1.

Figure 1 shows that f(7,0.75) and (7, 1.5) remain the same at the baseline,
and increase with a very similar rate of the change before ART initiation. These
results indicate that the sample selection biases in the two subsamples at s = 0.75
and 1.5 are corrected properly and thus, the two fitted mean trajectories are
very comparable before ART initiation. After ART is initiated, (7,0.75) and
f(T,1.5) decrease, but the rate of the decrease lessens over time during the post-
treatment period. The fitted population mean no longer decreases at the end of
the follow-up. As a result, the greater the delay before initiating ART, the higher
is the mean of IL-6. Of note is that the population mean pattern appears to be
comparable. Nevertheless, faster initiation of ART in the study population had a
more positive effect on reducing IL-6. We also check whether ART is effective at
s = 0.75 and 1.5 by testing Hy : 3(s) = 0 against H, : B5(s) # 0 in model (5.1)).
The test statistic W(s) in Theorem 2 is 9.49, with a p-value of 0.002, at s = 0.75,
and 7.21, with a p-value of 0.007, at s = 1.5. These results confirm that ART is
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Figure 1. Fitted mean IL-6 trajectories using Q{B(s)} (left) and Qx{B(s)} (right) at
s = 0.75 (dashed curves) and s = 1.5 (solid curves), respectively, under the AR(1)
working correlation structure.

significantly effective in reducing the population mean of IL-6 in both cases at a
significance level of 0.05.

To demonstrate the importance of adjusting for confounders in the analysis
of the guideline-based intervention study, we fit model at s =0.75 and 1.5
using the kernel-weighted estimation procedure in Section 3.3, and denote the
fitted mean outcome trajectory by fix (T, s). The right panel of Figure 1 shows
that during the pre-treatment period, fix(7,0.75) increases more rapidly than
b (T,1.5). Although the initiation of ART is delayed in HIV-infected adults,
the fitted mean IL-6 of the population is lower during most of the follow-up
period. Comparing the two estimation procedures, fix (7, 0.75) obtains using the
kernel-weighted approach is larger than that of the double-weighted approach
in the smaller delay population over the follow-up period. This phenomenon
reverses in the greater delay population. The different fitted mean outcome
trajectories can be explained by the fact that the distribution of the baseline
covariates is not balanced across times to ART initiation, as shown in Table 1.
Therefore, the distribution of participants initiated at time s deviates from that
of all participants drawn randomly from the study population. As a result, it
is likely that the kernel-weighted estimation procedure yields a biased estimate
of u(T,s), whereas the double-weighted estimation procedure corrects the bias
successfully.

6. Simulation Studies

In this section, we use simulation studies to determine whether the double-
weighted estimation procedure effectively removes estimation bias problems when
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confounding factors exist. We also show that the proposed method performs
valid statistical inferences, including the parsimonious model selection and the
hypothesis test for the last term (55(S) in the piecewise linear regression model,
w(T, ) = Bo(S) + LT + Bo(S)(T" — S)4, where Bo(S) = exp(0.15 — 0.15),
B1(S) = cos(mS)/25 — 1, and B2(S) = 0.03 — 0.02S.

To simulate a longitudinal sample, we first generate the ith subject’s TTI S;,
for i =1,...,1000, independently from a uniform distribution ¢/(0.5,2.5). Given
the value of S;, we generate five repeated outcomes for the subject ¢ as

Yi; = (T35, 8:) + €5 = Bo(S:) + B1(S:) T35 + B2(S:)(Ti; — Si)+ + €5, (6.1)

where T;; = 0 indicates the time at the baseline, T;; = j + U(—2,—1), for j =
2,...,5, resulting in unequally spaced measurement time points between zero
and four across subjects. The random error is modeled with three confounders,
denoted by Z;1, Z;5, and Z;3, as

€ = Zin + ZioTij + Zis(Ti; — Si)+ + €45, (6.2)

where Z;1, Z;2, Z;3, and e;; are generated independently from a normal distribu-
tion with mean zero and standard deviation 0.5, where E(¢;;) = 0 still holds. We
then drop Y;; if an indicator is zero. This indicator is generated independently

at visits j = 2,...,5 for subject ¢ from a Bernoulli distribution with the success
probability of 0.8. This results in a different number of repeated outcomes across
subjects.

To examine the performance of the double-weighted estimation approach,
an indicator variable of M;(S;) is generated independently from a Bernoulli
distribution with success probability P{M;(S;) = 1|Z;1, Zi2, Zi3} = exp(0.2Z;; +
0.3Z;2 — 0.5Z;3) /{1 + exp(0.2Z;; + 0.3Z; — 0.5Z;3)}. From the 1,000 subjects in
the simulated sample, we drop subjects with M;(S;) = 0 from the sample, and
consider the subsample in our analysis. Subjects in the subsample are likely to
have a higher value of Z;; or Z;, or a smaller value of Z;3, resulting in the sample
selection problems. As a result, Z;;, Z;», and Z,3 are confounders that affect the
TTI and the population mean outcome.

At a given TTI value of s = 1.5, we assess 3(1.5) = (5o(1.5), 81(1.5), 52(1.5))
in from 1,000 simulated subsamples using Q{3(s)} and Qx{B(s)} under the
independence, AR(1), and compound symmetry working correlation structures.
Table 2 shows the average bias and mean squared error (MSE) of the estimates.
The results show that the kernel-weighted approach using Q{3(s)} yields biased
estimates, and that the direction and amount of the bias depends on the level
of confounder. Specifically, the average bias of 32(1.5) is negative and largest,
because the random error depends on Z;3, and Z;3 has the largest effect on
the indicator M;(S;) and the formation of the subset. In contrast, the double-
weighted approach using Q{3(s)} decreases the average bias substantially.
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Table 2. Averages of bias and mean squared error (MSE) of estimates under the AR(1),
compound symmetry (CS), and independent (IN) working correlation structures when
confounders exist (top) and do not (bottom).

Confounders BIAS MSE
Exist QBE)] QxlBG)] QB QuiBG)
Bo(s) -0.0016 0.0208 0.0028 0.0038
AR(1)  Bi(s) 0.0052 0.0419 0.0041 0.0060
Ba2(s) -0.0051 -0.0661 0.0089 0.0145
Bo(s) -0.0005 0.0207 0.0031 0.0039
CS B1(s) 0.0064 0.0451 0.0047 0.0069
Ba(s) -0.0085 -0.0719 0.0111 0.0161
Bo(s) -0.0080 0.0130 0.0034 0.0039
IN B1(s) 0.0198 0.0652 0.0081 0.0116
Ba(s) -0.0388 -0.1020 0.0235 0.0310
Confounders BIAS MSE
Not exist Q{B(s)}  Qxk{B(s)} Q{B(s)} Qx{B(s)}
Bo(s) -0.0052 -0.0051 0.0031 0.0033
AR(1)  Bi(s) 0.0072 0.0078 0.0039 0.0040
Ba(s) -0.0067 -0.0075 0.0088 0.0090
Bo(s) -0.0054 -0.0053 0.0031 0.0033
CS B1(s) 0.0074 0.0078 0.0048 0.0050
Ba(s) -0.0089 -0.0092 0.0108 0.0110
Bo(s) -0.0118 -0.0117 0.0035 0.0038
IN B1(s) 0.0231 0.0238 0.0069 0.0072
Ba2(s) -0.0399 -0.0401 0.0218 0.0220

We check the performance of the parsimonious model selection, and confirm
that at a significance level of 0.05, the proportion of rejecting the piecewise linear
model is 0.057 and 0.056 under the AR(1) and compound symmetry structures,
respectively. We also conduct a statistical inference about [5(1.5) in (6.1)).
Because the true value of fa(s) is zero at s = 1.5, we test Hy : ($2(1.5) = 0
against H, : [(3(1.5) # 0 using the test statistic W(s) in Theorem 2 when
the null hypothesis is true. At a significance level of 0.05, the proportion of
rejection is 0.047 and 0.054 under the AR(1) and compound symmetry structures,
respectively. According to Q-Q plots for the chi-squared distribution with one
degree of freedom versus W(1.5) in Figure 2, the Q-Q plots follow the identity
line sufficiently well, because the null hypothesis is true. We conduct a similar
test based upon Qx{B(s)}, but the rejection rate increases to 0.119 and 0.124
under the AR(1) and compound symmetry structures, respectively. Moreover,
the test statistic no longer follows the chi-squared distribution.

The repeated outcomes, Y;i,...,Y;s, are correlated, and Table 2 shows
that the estimation efficiency of 3(s) improves by accommodating the within-
subject correlations (i.e., the AR(1) and compound symmetry) as compared
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Figure 2. Quantile—quantile plots for the chi-squared distribution with one degree of
freedom versus the test statistic based on Q{83(s)} (top) and Qx{B(s)} (bottom), when
the null hypothesis is true under the AR(1) (left) and compound symmetry (right)
structures.

with ignoring the correlations (i.e., the independence structure). In particular,
the true covariance matrix of Y; = (Vj,...,Ys) " is 0.25(X; X/ + I5), where
X, = (X, ..., X5)T with X;; = (1, T, (T}, — 2).) |, and I is the 5 x 5 identity
matrix. The AR(1) approximates the true correlation structure better than the
compound symmetry does. This is aligned with the smallest MSE under the
AR(1) structure in all cases under consideration.

We also compare the performance of the two estimation approaches in cases
where Z;1, Z;5, and Z;3 are no longer confounding factors. We generate M;(S;)
independently from a Bernoulli distribution with P{M;(S;) = 1|Zi1, Zi2, Zis} =
0.5, and include subjects with M;(S;) = 1 in a subsample. From the 1,000
subsamples, we assess 3(1.5) in (6.1) using Qx{B(s)} and Q{B(s)} under the
three working correlation structures. Table 2 confirms that both the kernel-
weighted and double-weighted estimation procedures perform well in terms of
both small biases and MSEs. In sum, our simulation studies confirm that the
proposed procedure performs well, regardless of the presence of confounding
factors.
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7. Conclusion

An intervention can occur at different times across individuals in studies
where the effect of the TTI on the repeated outcome remains uncertain. [Wu
and Tian| (2008)), Xing and Ying| (2012), Liu et al| (2018), and (Cho, Kim and
Lee| (2020]) have proposed longitudinal models that account for the varying TTI
effect on the repeated outcome when no confounders exist. In observational
studies, the intervention is rather initiated based on other factors that confound
the TTT effect. Controlling for plausible confounders is a crucial, but challenging
part of observational data analysis. This becomes more critical and inevitable
in longitudinal observational studies when the entire set of repeatedly measured
outcomes and the TTT are confounded as a whole.

As an example, the two fitted time-varying mean outcomes show discernibly
different patterns in the analysis of repeated IL-6 outcomes in Section 5. This
shows that confounding factors can occur in the WHO guideline-based interven-
tion study, and the fitted mean without controlling for the confounding factors
deviates substantially from the population mean over time. In contrast, the pro-
posed double-weighted estimation procedure reduces the risk of estimation bias
and achieves a consistent estimator of the population mean outcome trajectory
from samples in observational studies.

The piecewise polynomial regression model with the TTI-varying coefficients
and double-weighted estimation procedure can also be applied to other types
of longitudinal observational studies with an event for which the timing is not
controllable, such as physiological phenomena or natural phenomena. The event
would occur to subjects at different times during the follow-up period, and could
have a significant and different effect on the outcome. The proposed methodology
provides a way to assess the population mean outcome trajectory accurately and
to examine the effect of times to event on the outcome time-varying population
mean outcome effectively.

Supplementary Material

Supplementary materials available online include an implementation algo-
rithm and R codes of simulation studies.
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Appendix

The following conditions are imposed to study the asymptotic properties of
the estimator B(s) = argminB(S)Q{,@(s)}.

(C1) There exists a B,(s) such that E[h;{3(s)}K:(s)/f(s|Z;)] — 0 for all 7 if and
only if B(s) = By(s).

(C2) The matrix X(s) is positive definite, and ®(s) is of full rank. ¥(-) and ®(-)
are twice continuously differentiable in a neighborhood of s.

(C3) B(-) is third continuous differentiable in a neighborhood of s. The inverse
link function j~'(-) is strictly monotone and has a continuous third deriva-
tive. Thus, (T, -) is third continuous differentiable in a neighborhood of
s.

(C4) The density functions fsz(-,-) and fz(-) are bounded, positive and third
continuous differentiable.

Lemma 1. Under the regularity conditions (C1)-(C4), the causal inference
conditions in Section 3.1, nb(s)®> — 0, and n — oo, we have

1 - d z(z)

= 2 s} —>/\/<0,2(3)ng / : (slz)dz).

Proof of Lemma 1. Recall g,{8(s)} = h{B(s)}K;(s)/f(s|Z;), Ki(s) =
K{(Si—5)/b(3)}, (T, 8) = B{Y (T, S)} and p,(S,) = (i(Toas S2) - (T, 52)) .
We define €,(S;)) = (e(Ti1,Si),...,€(Tin,,Si))" where €(T,S) = Y(T,S) —
E{Y(T,S)}. We can decompose g;{3,(s)} = hi{B,(S:)}Ki(s)/f(s|Z;) + ¢,

where

o] AT PBO AT Y - (S0} o] A7V BLAT e ()
hi{B(s)} = : = :
o] A7VPBip AT VPLY — (S0} 1] A7V Bip AT ei(S))
and
T A - - Ki(s)
T A —1/2 1/2 i
A" Ba A, i (Si) — py(s
Ei — :
T _ K;(s)
T A —1/2 1/2 i
;A "BipA; i (Si) — py(s

Consider the second term £; above first. Since K (-) has bound support, it is
sufficient to consider v such that |v — s| = O{b(s)}. Define [i(s) = Ou(T,s)/0s,
fi(s) = 0*u(T,s)/0s* and fs(s,z) = Ofsz(s,z)/ds. By Taylor’s expansion and
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the symmetry of kernel [uw K (u)du = 0 for v = 1,3,5,..., we have, for any
teT,
{u(t, Si) — p(t, s)} Ki(s)
B[
_ // [(v—s)ia(s) + (v — 5)%fi(s)/2 + O{ (v — s)*HK{(v — 5) /b(s)}
f(s]2)
_(v—y9)
f(s|2) fsz(v,z)dvdz by u= b

= [ [ A RC) 2+ ORI )
f(s]z)
fsz{s+ ub( z}b( )dudz

// [ub(s)fi(s) + {ub )}2 fi(s) /2] K (u) {fs.z(s,2) + ub(s) fs(s, z) }b(s)dudz
+O{b( )}
// ub(s fS uk LA

// 3 fsz (5, 2) K (u) dudz + O{b(s)*}

(slz)
fS(S»Z fsz 5
{ ) [ Ll B [ Lo }+0{b<s> )
{ /fs((;,z ! }+O{b( ). (A1)
and thus E[{nb(s)}~1/2Y"" | £;] = O{\/nb(s)*}. Note that [ fsz(s,z)/f(s|z)dz =

J{f(s|z)fz(2)}/ f(s \zdz—ffz )dz = 1. Since £;, i = 1,...,n, are indep-
endent, it is easy to show that Var[{nb(s)} 1/ ZLI&] — O as nb(s) — oo.
Therefore, {nb(s)}~*/2> " £; = 0,(1) can be shown under the assumption of
undersmoothing (i.e., nb(s)> — 0).

Now consider the first term h;{8,(5;)}Ki(s)/f(s|Z;). By the fact that
E{K(s)|Z = z} = f(s|z) + o{b(s)} (Fan, Yao and Tong (1996)) and €(S;) and
(Z;, K;(s)) are independent, we have

oz} ey e 2
[ €;(S;)

B s)e <si>7zz-}}

. [ ei(SiS (S
= sz T iz

N // f(s|z) [f(s|z) + o{b(s)}] fe,z(u,z)dudz = 0,

=F
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and thus E[h,{3,(S;)}K;(s)/f(s|Z;)] = 0. In addition, by a similar manner in
(A.1) and the independence of h;{3,(S:)}, i = 1,...,n, we can show

1 - 4 \ Ki(s)
ar l SPOLRLICH f(s,zi)]

K3(s)
[nb OICHERINEREAE 0
(s ng/f(ZSZ)der(){b(s)}. (A.2)

Then, the following result is obtained by the central limit theorem and Slutsky’s
theorem, as nb(s)® — 0 and n — oo, we have

Zgl{,ﬁo }—>N<02 / z( >

Lemma 2. Under the regularity conditions (C1)-(C4), the causal inference
conditions in Section 3.1, and 1/nb(s) + b(s) — 0, we have:

1 08 8y(5)) b o
nb<s>§} op(s) 2l

8ol (s sow [ 142

Proof. By the symmetry of the kernel function K(-) and Taylor’s expansion, we
have

1 — 0g:{By(s)}
E[nb@z 98 (s) ]

i=1

Oh; {:80 Ki(s)
[nb Z (s z»]

- b(1s>E{ } 5 ] () ey e

u:(v—:s)/b(s // U fS Z{S + 'LLb )’ Z}b(S) dudz

s|z)
//K fszsz —|—U)O{b( )}dudz
_ K(u)fsa(s 2)
= @(s) [ S  dudz + O{0()?)

. fS‘ZfZZ)Z $)21 — s )2
- @(s)/K(u)du/f(S|Z) dz + O{b(s)?} = B(s) + O{b(s)?}
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and it can be shown that variance of each element in {nb(s)} >, 9g:{By(s)}

/0B(s) and {nb(s)} 13" 8:{B(s)}gi{Bu(s)}" is of order {nb(s)}~!. Then by
the result in (A.2)), the desired results are proven.

Proof of Theorem 1. By Taylor’s expansion, we have
G{B(s)} = G{B,(s)} + G{B(s)HB(s) — By ()},

= i &i{B(s)}/nb(s), G{B(s)} = IG{B(s5)}/0B(s), and B(s)
) and B,(s). Since G{B(s)} V{B(s)}'G{B(s)} = 0, we have

G{B(5)} V{B(5)} " G{By(5)}+G{B(5)} V{B(s)} " G{B()HB(s) By (s)} =0.
It is rewritten as \/nb(s){3(s) o(s)} =
- [G{B<s>}TV{B@)}*G{B(s)}}’ G{B(5)} TV{B(5)} ™\ /nb(s)G{By(5)}

It follows from Lemmas 1 and 2 and Slutsky’s theorem that

where G{3(s )2»

lies between 3

nb(s) {B(s) — Bo(s) | N(O,w/ (ZS(|ZZ>) dz{(I'(g)TZ(s)‘IJ(s)}ﬂ).

Now, we show that Q{B(s)} converges to the chi-squared distribution with
(ps+2)(D—1) degrees of freedom. By Taylor’s expansion and Lemma 2, we have

G{B(s)} = G{B,(s)} + G{B, ()} {B(s) — Bu(s) } + 0, (1)
= L2 — B(5){(5) D)8 (5)} 7 B(5) B(5) ' |G{Bo(5)} + 0,(1). (A3)

By plugging (A3) in Q{B(s)} = nb(s)G{B(5)} V{B(s)} ' G{B(s)} and Lemma
2, Q{B(s)} is rewritten as Q{B(s)} = H{By(s)} S1(s)H{By(s)} + 0,(1),
where S (8) = Lip.12yp — B(8) "2 (s){@(s) "E(s) ' ®(s)} ' ®(s)"=(s) /% and
H{3(s)}=+/nb(s)X(5)"2G{B,(s)}. Following Lemma 1, H, {3,(s)} converges
to the standard multlvarlate normal distribution and S;(s) is an idempotent and
symmetric matrix with trace equal to (ps + 2)(D — 1). Consequently, Q{3(s)}
converges to the chi-squared distribution with (ps+2)(D —1) degrees of freedom.

Proof of Theorem 2. We let B(s) = (Bo,---,Bp., Bp.11)" = (B7(s)7, Bp.11) "
Under Hy : 5,,+1 = 0, the true parameter vector of 3(s) is B,(s) = (BO( )T,0)T.

By a similar manner in |D the test statistic W(s) = Q{(/Bo( ) 0)} —
Q{(B (s)7,B,.)} is written as

W(s) = H{By(s)} "2(s)""/*{Sa(s) — Ss(s)}2(s)"/*H{Bo(s)} + 0,(1),

where Sy(s) = ®(s){P(s) X(s) ' P(s)} ' P(s)" and S;(s) = P*(s){P"(s)"
3(s)7 1@ (s)} 1@ (s)T with ®*(s) = E[0h;{B;(s)}/08(s)}]. Since S,(s) and



2322 CHO AND KIM

S3(s) are idempotent and symmetric matrices with trace equal to (ps + 2)
and (ps + 1), respectively. As consequence, W(s) converges to the chi-squared
distribution with one degree of freedom.
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