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Abstract: This study investigates a weighted least squares (WLS) estimation in a

nonlinear cointegrating regression. In a nonlinear regression model, where the re-

gressors include nearly integrated arrays and stationary processes, we show that

the WLS estimator has a mixed Gaussian limit, and the corresponding Studentized

statistic converges to a standard normal distribution. The WLS estimator is free of

the memory parameter, even when a fractional process is included in the regressors.

We also consider an ordinary least squares estimation in a nonlinear cointegrat-

ing regression. Compared with the WLS estimator, the limit distribution of the

ordinary least squares estimator is non-Gaussian, and depends on the nuisance pa-

rameters from the regressors when the regression function is non-integrable.

Key words and phrases: A mixture of normal distributions, cointegration, nonlinear

cointegrating regression, nonstationarity, weighted least squares estimation.

1. Introduction

It is well known that nonstandard asymptotic behavior appears in nonlinear

(linear) cointegrating regressions. A fundamental issue in such a regression model

with nonstationary time series is that the limiting distribution of the least squares

(LS) often depends on various nuisance parameters, and/or such a limit result is

cumbersome in the relevant asymptotic inferences. To illustrate, we consider the

following cointegrating regression model:

yk = αxk + ηk, xk = xk−1 + ϵk, k = 1, 2, . . . , (1.1)

where vk := (ϵk, ηk−1) is assumed to be a sequence of independent and identically

distributed (i.i.d.) random vectors with Ev1 = 0 and Ω := cov(v1, v
′
1) =

(
1 ρ

ρ 1

)
.

The standard LS estimator α̂n of the unknown parameter α in model (1.1) has a

nonstandard limit distribution, namely,
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n (α̂− α) =

∑n
k=1 ηkxk∑n
k=1 x

2
k

→D

∫ 1

0
B1tdB2t∫ 1

0
B2

1tdt
, (1.2)

where
(
B1t, B2t

)
is a two-dimensional Brownian motion with covariance matrix Ω.

In practice, ρ (or Ω) is usually an unknown parameter. Noting that ρ is hidden in

the functional
∫ 1

0
B1tdB2t, result (1.2) cannot be used directly in inference theory,

in which the relevant asymptotic critical value usually depends on the standard

normal distribution.

To solve this problem, several instrumental estimators have been proposed in

literature as alternatives to the standard LS. Earlier contributions include Phillips

and Hansen (1990) and Phillips (1995), who consider the fully modified LS. In a

different direction, Magdalinos and Phillips (2009) (see also Kostakis, Magdalinos

and Stamatogiannis (2015) for refined statements) introduced an IVX estimator,

using linear filtering to transform the regressor xk into a mildly integrated process.

In comparison with the standard LS, this IVX estimator has a mixed Gaussian

limitation, such that the corresponding Student t statistic converges to a standard

normal distribution, enabling many works on conventional inference theory. For

other contributions in this area, see Jansson and Moreira (2006), Phillips and

Lee (2013), Ellott, Müller and Watson (2015), Bae and de Jong (2007), Yang et

al. (2020), and Demetrescu et al. (2022). The latter works generalize the IVX

method to multi-regression (linear) models with nonstationary time series, and

the method has been used to test the episodic predictability in stock returns.

More recently, for a simple nonlinear in-variables cointegrating regression model,

the locally trimmed LS was introduced in Hu, Kasparis and Wang (2024) and

Kasparis and Phillips (2020) investigated the model with a single covariate heavy-

tailed regressor.

Our study has a similar goal to the aforementioned works, but focus on

nonlinear parametric cointegrating regression. Nonlinear cointegrating regres-

sion was initially introduced in Park and Phillips (2001). Since then, significant

developments have occurred in parametric, nonparametric, and semiparametric

specifications of such models. These developments have provided a framework

for econometric estimation and inference for a wide class of nonlinear, nonsta-

tionary relationships: see, for instance, Wang and Phillips (2009a), Wang and

Phillips (2009b), Wang and Phillips (2016), Duffy (2016), Duffy (2020), Wang,

Phillips and Kasparis (2021), Chang, Park and Phillips (2001), Bae and de Jong

(2007), Kim and Kim (2012), Dong, Gao and Tjostheim (2016), Dong and Linton

(2018), Lin, Tu and Yao (2020), and Wang (2021), together with the references

therein. It is now well known that the conventional kernel estimator in a nonpara-

metric cointegrating regression has a mixed Gaussian limitation, even when the

regressors are nearly integrated, but that the behaviors of parametric regression
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estimators are asymptotically nonpivotal. The limit distribution of the standard

LS estimator in nonlinear (parametric) cointegrating regression is not only non-

Gaussian, but also depends on the unknown degree of persistence of the regressor,

posing difficulties in inference theory. As a result, it is desirable to develop an

alternative estimation theory to the standard LS, so that the limit distribution of

the suggested estimator is pivotal in regression models with nonstationary time

series.

The aim of this study is to investigate the weighted least squares (WLS) es-

timation in a nonlinear cointegrating regression. For some selected weight func-

tions, our results show that the WLS estimator has a mixed Gaussian limit, and

that the corresponding Studentized statistic converges to a standard normal dis-

tribution. Such a WLS estimator is free of the memory parameter, even when a

fractional process is included in the regressors, enabling us to apply much classical

inference theory directly. In comparison with the ordinary LS estimator, there

is a slightly low convergence rate for the WLS estimator (less than (log n)−1,

say). This deduction in the convergence rate is necessary for a standard normal

limitation. For further explanation, refer to Remark 2.

The remainder of this paper is organized as follows. We present the main

results in Section 2. Section 2.1 introduces a nonlinear cointegrating regression

model and the corresponding WLS estimator. Our model is more general than

those of previous works by allowing for both nonstationary and stationary regres-

sors. Our assumptions and some preliminaries are given in Section 2.2, and the

asymptotic theory of the WLE estimators is developed in Section 2.3. In Section

3, we investigate the asymptotics of the ordinary LS estimators for a comparison.

A numerical example is given in Section 4 to illustrate our asymptotics. This sim-

ple example is designed to illustrate the effect of different weighted functions and

the performance of the Studentized statistic given in (2.7). Section 5 concludes

the paper. All technical proofs are given in the Appendix, where we also provide

a framework for the WLS estimation in a general nonlinear regression model, and

collect some general results on convergence to local time and a mixture of normal

distributions.

Throughout this paper, we denote constants as C,C1, C2, . . ., although their

values may vary between instances.

2. Main Results

2.1. Model and estimation

We consider a nonlinear cointegrating regression model:

yk = f(xk, wk, θ) + uk, k = 1, . . . , n (2.1)
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where yk is the dependent variable, wk is an m× 1 stationary random vector, xk

is a unit-root nonstationary regressor, uk is the residual, f(· · · ) is a given smooth

regression function, and θ = (θ1, . . . , θq) is a vector of unknown parameters such

that θ ∈ Θ, where Θ is a compact set of Rq.

When the regression function f(· · · ) is linear, model (2.1) is well studied in

the literature. As a result, linear cointegrating regression has become an impor-

tant framework in which to capture long-term relationships among many macroe-

conomic time series. However, in spite of their importance and convenience in

implementation, the linear structure in the related theory is often too restric-

tive in practice. For empirical examples, see Granger and Teräsvirta (1993) and

Teräsvirta, Tjøstheim and Granger (2010). To overcome this problem, various

nonlinear parametric cointegrating regression models have been introduced. For

instance, Park and Phillips (2001), Chang, Park and Phillips (2001), and Chan

and Wang (2015) allow for the regression function f(· · · ) to be integrable or a

class of homogeneous functions. Recently, Hu, Phillips and Wang (2021) consid-

ered the power regression function; see also Li, Tjostheim and Gao (2016) and

Wang (2021).

The regression given in (2.1) is similar to the models studied previously, but

allows for the presence of stationary regressors. This generalization provides coin-

tegrating relationships that vary or evolve smoothly over time. In particular, our

model allows for the additive regression, functional-coefficients nonlinear cointe-

grating regression, and nonlinear cointegrating regression with finite lags of the

I(1) variables xk. Thus the regression in (2.1) is particularly useful in empirical

applications in which there may be a structural evolution in a relationship over

time.

We estimate the unknown parameter θ in model (2.1) using the WLS method.

Specifically, we define the WLS estimator θ̂n of an interior θ0 (real value) of Θ to

minimize the sum of the weighted squared errors:

θ̂n = argmin
θ∈Θ

n∑
k=1

[
yk − f(xk, wk, θ)

]2
λ

(
xk

bn

)
, (2.2)

where 0 < bn → ∞ is a sequence of constants, and λ(.) is a bounded weight func-

tion. Here, we show that the asymptotics of θ̂n under selected weight functions

differ significantly from the usual LSE (i.e., λ(.) = 1) considered by Park and

Phillips (2001), Chan and Wang (2015), and Wang (2021). In particular, when

self-normalization is used, this WLS estimator has a standard normal limitation,

and is free of the memory parameter even when a fractional process is included in

the regressors. Note that the WLE method is widely used in stationary regression.

In related work, Li, Tjostheim and Gao (2016) consider a nonlinear regression
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with a Harris recurrent Markov chain. However, no stationary regressors are

involved.

2.2. Assumptions and preliminaries

Let vk := (ϵk, ηk−1), for k ∈ Z, be a sequence of i.i.d. random vectors, with

Ev0 = 0, Eϵ20 = Eη20 = 1, and ρ = Eϵ1η0. Let ξj =
∑∞

k=0 ϕk ϵj−k, for j ≥ 1, be

a linear process, where the coefficients ϕk, for k ≥ 0, satisfy one of the following

conditions:

LM. ϕk ∼ k−µ a(k), where 1/2 < µ < 1, and a(k) is a function slowly varying

at ∞.

SM.
∑∞

k=0 |ϕk| <∞ and ϕ ≡
∑∞

k=0 ϕk ̸= 0.

Suppose that lim sups→∞ sδ|Eeisϵ0 | < ∞ for some δ > 0 throughout this paper.

This distributional smooth condition on ϵ0 is required to establish the convergence

to local time for a partial sum process of ξj, as shown in Appendix B. To establish

the asymptotics of the WLS estimator θ̂n, we use the following assumptions on

the regressors xk and wk and the error process uk.

A1. xk = ρnxk−1 + ξk, where ρn = 1− τn−1, for some τ ≥ 0, and x0 = oP (
√
n);

A2. wk = (w1k, . . . , wdk), where, for i = 1, . . . , d, wik = Γi(vk, . . . , vk−k0
), for

some k0 ≥ 0, and Γi(.) are real measurable functions of their components;

A3. {uk,Fk}k≥1, where Fk is an σ-field generated by vk+1, vk, . . ., forms a

stationary martingale difference, with E(u2
k | Fk−1) = σ2 > 0 and supk≥1

E(|uk|2+δ | Fk−1) ≤ C <∞, for some δ > 0

A1 allows for the nearly integrated regressor xk derived from short memory

(under SM) and long memory (under LM) innovations, which is quite general, in

practice. Define

d2n = E|
n∑

k=1

ξk|2 ∼
{
cµ n

3−2µa2(n), under LM,

ϕ2 n, under SM,
(2.3)

where cµ is a constant. Standard functional limit theory (see Buchmann and

Chan (2007) or Theorem 2.21 of Wang (2015), with a minor modification) shows

that (
1√
n

⌊nt⌋∑
i=1

ϵi,
1√
n

⌊nt⌋∑
i=1

ϵ−i,
1

dn
x[nt]

)
⇒
(
Bt, B−t, Xt

)
(2.4)

on DR3 [0,∞), where {Bt}t≥0 is a standard Brownian motion, {B−t}t≥0 is an
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independent copy of {Bt}t≥0, and Xt is defined by

Xt =W (t) + τ

∫ t

0

e−τ(t−s)W (s)ds,

with Wk =

{
G3/2−µ(t), under LM,

G1/2(t), under SM,
where GH is a fractional Brownian motion

having the following presentation: with a+ = max{a, 0},

GH(t) = κH

∫ t

−∞
(t− u)

H−1/2
+ − (−u)H−1/2

+ dBu,

where κH is a constant such that EG2
H(1) = 1. Note thatXt is an Ornstein−Uhlenbeck

process with a continuous local time LX(t, s) defined by

LX(t, s) = lim
ϵ→0

1

2ϵ

∫ t

0

I(|Xr − s| ≤ ϵ)dr.

A2 is related to stationary regressors, where k0 (fixed) can be taken as large as

necessary, and quite general settings on Γi(.) are allowed. An extension to general

linear processes is possible when certain smoothing conditions on the regression

function f(.) are imposed. Details can be found in Corollary 1. A3 enables model

(2.1) to have a martingale structure, which is widely used in the literature; see, for

instance, Park and Phillips (2001) and Chan and Wang (2015). An extension that

includes varying volatility is possible, but involves quite complicated calculations,

and is therefore left to future work.

We next introduce the assumptions on the regression function f(· · · ) and the

weight function λ(.). Write ḟ(x, y, θ) = (ḟ1, . . . , ḟq)
′, where ḟi = ∂f(x, y, θ)/∂θi,

for i = 1, . . . , q, and let p(x, y, θ) be one of f and ḟi, for i = 1, . . . , q.

A4. A measurable function Tp(x, y) and a continuous function T (x) exist such

that

(i) for each θ, θ0 ∈ Θ, (x, y) ∈ R1+q and for some α > 0,

|p(x, y, θ)− p(x, y, θ0)| ≤ ||θ − θ0||α Tp(x, y);

(ii) for each θ ∈ Θ and (x, y) ∈ R1+q,

p(lx, y, θ) = vp(l)hp(x, y, θ) +R(lx, y, θ),

where vp(l) is a positive real function bounded away from zero as l

becomes large, hp(x, y, θ) is a locally Riemann-integrable function (i.e.,
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Riemann-integrable on any compact set), and as l → ∞,

sup
(x,y)∈R1+q

sup
θ∈Θ

|R(lx, y, θ) |
Tp(lx, y)

→ 0;

(iii) for any l > 0 and (x, y) ∈ R1+d, and for some β > 0,

sup
θ∈Θ

|hp(x, y, θ)| ≤ T (x)(1 + ||y||β), Tp(lx, y) ≤ vp(l)T (x)(1 + ||y||β);

(iv) λ(x)
[
1 + T 2(x)

]
is a bounded and integrable function;

(v) Σ =
∫∞
−∞ λ(x)E

[
ḣ(x,w1, θ0)ḣ

′(x,w1, θ0)
]
dx is a positive-definite ma-

trix, where

ḣ(x, y, θ) =
(
hḟ1

(x, y, θ), . . . , hḟq
(x, y, θ)

)
,

and, for any δ > 0 such that {θ : ||θ − θ0|| ≥ δ} ⊂ Θ,

min
||θ−θ0||≥δ

∫ ∞

−∞
λ(x)E

[
hf (x,w1, θ)− hf (x,w1, θ0)

]2
dx > 0. (2.5)

Assumption A4(i)−(iii) is a weak condition that is required for the regres-

sion function f(x, y, θ). It includes many common nonlinear (linear) regres-

sion functions, and is easy to verify in practice. To give an illustration, let

f(x, y, θ) = m(x, θ)K(y). If |K(y)| ≤ 1 + ||y||β, for some β > 0, and m(x, θ) is

one of θex/(1 + ex), θ log |x|, θ|x|α(α is fixed), or θ0 + θ1|x| + · · · + θk|x|k, then
f(x, y, θ) satisfies A4(i)−(iii). The weight function λ(x) is required to satisfy

A4(iv), which is key to the development of our asymptotics. Such a weight

function, together with an additional condition on bn, reduces the signal of the

regression function f(x, y, θ), enabling us to use the extended martingale limit

theorem given in Wang (2014); see Remark 2 for more details. Because T (x) is

continuous, λ(x) = I(|x| ≤ K), for any K > 0, satisfies A4(iv). Assumption

A4(v) ensures the consistency of θ̂n, where the condition (2.5) is close to nec-

essary, and can therefore be understood as an identification condition in model

(2.1).

2.3. Asymptotic theory

This section discusses the limit behavior of the WLS estimator θ̂n defined by

(2.2). We provide a pivotal asymptotic distribution. The limit results without

an effect from a weight function are considered in Section 3 for a comparison.
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Theorem 1. Suppose A1–A4 hold and E||w1||4β+2 < ∞, where β is given as in

A4 (iii). Then, for any bn > 0 such that cn := dn/bn → ∞, we have

Dn (θ̂n − θ0) →D σΣ−1 Σ
1/2
1 LX(1, 0)

−1/2 N, (2.6)

where Dn =
(
n/cn

)1/2
diag

(
vḟ1(bn), . . . , vḟq(bn)

)
,

Σ1 =

∫ ∞

−∞
λ2(x)E

[
ḣ(x,w1, θ0)ḣ

′(x,w1, θ0)
]
dx,

and N is a standard q-dimensional normal random vector independent of Xt. We

further have

Tn := ΩnΩ
−1/2
1n (θ̂n − θ0) →D σN, (2.7)

where Ωn =
∑n

k=1 λ(xk/bn)ḟ(xk, wk, θ0)ḟ(xk, wk, θ0)
′ and

Ω1n =
n∑

k=1

λ2

(
xk

bn

)
ḟ(xk, wk, θ0)ḟ(xk, wk, θ0)

′.

Remark 1. Because σ2 = Eu2
1, under given conditions, a natural consistency

estimator σ̂2
n of σ2 is σ̂2

n = (1/n)
∑n

k=1

[
yk − f(xk, wk, θ̂n)

]2
. As a result, (2.7) can

be rewritten as

σ̂−1
n ΩnΩ

−1/2
1n (θ̂n − θ0) →D N, (2.8)

indicating a pivotal and standard normal limitation. Recall A1. The regressor xk

in model (2.1) allows for a nearly integrated process derived from short memory

(under SM) and long memory (under LM) innovations. The result (2.8) is free of

all parameters, such as τ, µ, and ψk raised in the nearly integrated regressor xk,

and is therefore extremely convenient in inference theory.

Remark 2. In the usual LS estimation theory for nonlinear cointegrating re-

gression (i.e., the estimator θ̂n is given by (2.2) with λ(x) ≡ 1), the standard

convergence rate for the asymptotics is D̃n = n1/2 diag
(
vḟ1(dn), . . . , vḟq(dn)

)
. See

Theorem 3. In comparison, result (2.6) has a low convergence rate, because

cn = dn/bn → ∞. This reduction in the convergence rate, together with condi-

tion A4(iv), is essentially necessary for the standard normal limitation in (2.7). A

simple example helps to explain this argument. Consider a nonlinear-in-variables

cointegrating regression:

yk = θ g(xk) + uk, (2.9)

where continuous functions v and H exist such that g(l x) = v(l)H(x), for any

l ≥ 0 and x ∈ R. Write xnk = xk/dn and recall that cn = dn/bn. For this simple

model, we have
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Tn =

∑n
k=1 g

2(xk)λ(xk/bn)√∑n
k=1 g

2(xk)λ2(xk/bn)

(
θ̂n − θ0

)
=

∑n
k=1 ukg(xk)λ(xk/bn)√∑n
k=1 g

2(xk)λ2(xk/bn)
=

∑n
k=1 ukH(cn xnk)λ(cnxnk)√∑n
k=1H

2(cn xnk)λ2(cnxnk)
. (2.10)

When λ(x)(1 +H2(x)) is assumed to be bounded and integrable (an equivalent

condition to that of A4(iv)), both λ(x)H(x) and λ2(x)H2(x) are bounded and

integrable. In this case, to ensure Tn →D N(0, σ2) (i.e, (2.7) holds), cn → ∞ and

cn/n→ 0 are necessary. See Wang (2014) or Theorem 7 in Appendix B. Indeed,

if cn = 1, we have

Tn →D

σ
∫ 1

0
H(Xt)λ(Xt)dBt√∫ 1

0
H2(Xt)λ2(Xt)dt

̸=D N(0, σ2),

provided that (xn,[nt], (1/
√
n)
∑[nt]

j=1 uj) ⇒ (Xt, σ Bt) on DR2 [0, 1].

Remark 3. The simple model (2.9) also helps to reveal the mechanism of our

weighting scheme. In fact, if g(x) is bounded and integrable, we have∑n
k=1 ukg(xk)√∑n

k=1 g
2(xk)

→D N(0, σ2), (2.11)

as shown in Theorem 2. As a result, the usual Studentized statistic Tn (i.e.,

λ(x) = 1 applies) has a standard normal limitation. However, result (2.11) is

incorrect when g(x) is a non-integrable function. By employing a weight function

λ(x), we can enable both g(x)λ(x) and g2(x)λ2(x) to be integrable, and thus

use the “integrable function” asymptotics, yielding a standard normal limitation

for Tn. In our weighting scheme, using λ(x/bn) instead of λ(x) improves the

convergence rate for θ̂n, as seen in (2.6).

Remark 4. Although the results in (2.7) and (2.8) have theoretical and practice

advantages, it seems to be difficult to determine optimal choices of λ(x) and bn
in finite-sample simulations. To provide an illustration, we assume in (2.10) that

H(x) = |x|1/2 and λ(x) = I(|x| ≤ K), where K > 0 is a constant. In this case,

we have

Tn =

∑n
k=1 uk|xnk|1/2I(|xnk| ≤ K/cn)√∑n

k=1 |xnk|I(|xnk| ≤ K/cn)
→D N(0, σ2),

for any fixed K > 0 and bn > 0 satisfying cn =
√
n/bn → ∞ or Kc−1

n → 0. Al-

though the limit distribution of Tn is free of the values of K when bn is given such

that cn → ∞, the performance of Tn in finite-sample simulations (with fixed n)

depends on K/cn (being close to zero or not) rather than on K or cn individually;

see Section 4 for detailed numerical examples. This simple example indicates the
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complexity of choosing optimal λ(x) and bn in a finite sample size. This topic de-

serves further consideration, but the solution might require an accurate estimate

for the distribution function of the Studentized statistic Tn. For example, an

ideal Berry−Esseen bound or an Edgeworth expansion can be established. This

left for future work.

When it is difficult to choose the optimal λ(x) and bn, we suggest using

a truncated weight function λ(x) = I(|x| ≤ K) in practice (bn can be taken

close to dn, such that dn/bn → ∞). This kind of weight function reduces the

signal by removing partial data. Thus, we can apply Wang’s extended martingale

limit theorem for a standard normal limitation (e.g., Wang (2014)), which closely

matches the mechanism of our weighting scheme. Furthermore, as shown in

Section 4, a reasonable normal density approximation can be achieved with K =

1/10 for a wide class of regressors, even for a sample size as small as n = 100.

Remark 5. If the regression function f(x, y, θ) satisfies further smoothness con-

ditions, the stationary regressor wk given in A2 can be extended to include general

linear processes. The following is a corollary for such an extension.

Corollary 1. If in addition to A1, A3, and A4, for all x ∈ R and y, t ∈ Rd,

||ḣ(x, y, θ0)− ḣ(x, t, θ0)|| ≤ T (x)||y − t||δ(1 + ||y||β + ||t||β), for some δ > 0,

(2.12)

the results (2.6) and (2.7) still hold when we replace A2 with

A2∗. wk = (w1k, . . . , wdk), where, for i = 1, . . . , d, wik =
∑∞

j=0 ψi,j λ
′
k−j, with

ψi,j = (ψi,1j, ψi,2j) satisfying
∑∞

j=0(|ψi,1j|+ |ψi,2j|) <∞.

3. Asymptotics for the Standard LS Estimator (Without a Weight

Effect)

Theorem 1 provides a useful pivotal limit result for the WLS estimator θ̂n
defined by (2.2). For a comparison, this section considers the asymptotics of the

standard LS estimator in model (2.1), denoted by θ̂n: that is, θ̂n is defined by (2.2)

with λ(.) ≡ 1. Note that the standard LS in nonlinear cointegrating regression has

been investigated by Park and Phillips (2001), Chang, Park and Phillips (2001),

and Chan and Wang (2015). See also Wang (2021) for a nonlinear regression with

nonstationarity and heteroscedasticity. The results in this section generalize these

previous works by allowing for more general settings. In particular, we allow for a

stationary regressor wk in the model (2.1). Because there are essential differences

between integrable and nonintegrable functions, we present the asymptotics in

two separate subsections.



WEIGHTED NONLINEAR REGRESSION 1775

3.1. Integrable function

This section considers the limit distribution of θ̂n defined by (2.2) with λ(.) ≡
1 when f(x, y, θ) is an integrable function, for each fixed y and θ ∈ Θ. As in

Section 2.3, we define ḟ(x, y, θ) = (ḟ1, . . . , ḟq)
′, where ḟi = ∂f(x, y, θ)/∂θi, for

i = 1, . . . , q, and p(x, y, θ) is one of f and ḟi, for i = 1, . . . , q.

Theorem 2. In addition to A1−A3, suppose that

(i) a bounded and integrable function T (x) exists such that for each θ, θ0 ∈ Θ,

(x, y) ∈ R1+d and for some α > 0,

|p(x, y, θ)− p(x, y, θ0)| ≤ ||θ − θ0||α T (x)(1 + ||y||β) and

sup
θ∈Θ

|p(x, y, θ)| ≤ T (x)(1 + ||y||β); (3.1)

(ii) Σ2 =
∫∞
−∞E

[
ḟ(x,w1, θ0)ḟ

′(x,w1, θ0)
]
dx is a positive-definite matrix and, for

any δ > 0 such that {θ : ||θ − θ0|| ≥ δ} ⊂ Θ,

min
||θ−θ0||≥δ

∫ ∞

−∞
E
[
f(x,w1, θ)− f(x,w1, θ0)

]2
dx > 0.

Then, as n→ ∞, √
n

dn
(θ̂n − θ0) →D σΣ

−1/2
2 NL−1/2

X (1, 0), (3.2)

where N is a standard q-dimensional normal random vector, independent of Xt.

We further have

Ω
1/2
2n (θ̂n − θ0) →D σN, (3.3)

where Ω2n =
∑n

k=1 ḟ(xk, wk, θ0)ḟ(xk, wk, θ0)
′. Furthermore, if, for all x ∈ R and

y, t ∈ Rd,

||ḟ(x, y, θ0)− ḟ(x, t, θ0)|| ≤ T (x)||y − t||δ(1 + ||y||β + ||t||β), for some δ > 0,

the results (3.2) and (3.3) still hold if we replace A2 with A2∗.

Remark 6. Condition (3.1) indicates that f(x, y, θ) is an integrable function

for each fixed y and θ ∈ Θ. This result improves and generalizes Theorem 3.2

of Chan and Wang (2015) by using less smoothness in the condition on the

regression function f(x, y, θ) and allowing for a stationary regressor wk in model

(2.1). Note that, as in Theorem 1, result (3.3) has a pivotal limit distribution

if a consistency estimator for the conditional variance σ2 is given (see Remark 1

for such a consistency estimator). Therefore it is usually unnecessary to use the
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WLS method for such nonlinear cointegrating regression models with integrable

regression functions.

3.2. Nonintegrable regression function

This section establishes the limit distribution of θ̂n defined by (2.2) with

λ(.) ≡ 1 when f is nonintegrable, for each fixed y and θ ∈ Θ. For technical

reasons, we require that the regression function f(x, y, θ) satisfies a certain ad-

ditional structure. Specifically, we assume that f(x, y, θ) = m(x, θ)K(y), where

|K(y)| ≤ 1 + ||y||β and m(x, θ) satisfies the following condition A4∗.

Write ṁ(x, θ) = (ṁ1, . . . , ṁq)
′, where ṁi = ∂m(x, θ)/∂θi, for i = 1, . . . , q,

and let χ(x, θ) be one of m and ṁi, for i = 1, . . . , q.

A4∗. Real continuous functions Tχ(x) and T (x) exist such that

(i) |χ(x, θ) − χ(x, θ0)| ≤ ||θ − θ0||α Tχ(x), for each θ, θ0 ∈ Θ and some

α > 0;

(ii) for any bounded x,

χ(lx, θ) = vχ(l) h̃χ(x, θ) + R(l x, θ),

where vχ(l) is a positive real function bounded away from zero as l

becomes large, h̃χ(x, θ), for each θ ∈ Θ, is a continuous function and

supθ∈Θ |R(lx, θ)|/Tχ(lx) = o(1) as l → ∞.

(iii) Tχ(lx) ≤ vχ(l)T (x) as |lx| → ∞.

Theorem 3. Suppose A1−A3 and A4∗ hold. Suppose that, for each η > 0,∫
|x|≤η

[
h̃m(x, θ)− h̃m(x, θ0)

]2
dx ̸= 0, for any θ ̸= θ0, and∫

|x|≤η

h̃(x, θ0) h̃
′(x, θ0)dx is a positive-definite matrix, (3.4)

where h̃(a, θ) =
(
h̃ṁ1

(a, θ), . . . , h̃ṁq
(a, θ)

)
. Then, as n→ ∞,

D̃n (θ̂n − θ0) →D

(
EK2(w1)

∫ 1

0

Ψ(t)Ψ(t)′dt

)−1 ∫ 1

0

Ψ(t) dUt, (3.5)

where D̃n =
√
n diag

(
vṁ1

(dn), . . . , vṁq
(dn)

)
, Ψ(t) = h̃(Xt, θ0), Bt and Xt are

defined as in Section 2.2, and (Ut, Bt)t≥0 is a bivariate Brownian motion with

covariance matrix

Ω =

(
σ̃2 ρ

ρ 1

)
, where σ̃2 = E

[
u1K(w1)

]2
and ρ = E

[
ϵ1u1K(w1)

]
.
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Remark 7. In a special case whereK(x) = 1, Theorem 3 provides a similar result

to Theorem 3.4 of Chan and Wang (2015); see also Theorem 3.2 of Wang (2021).

Note that the limit result (3.5) is not pivotal, because the unknown covariance

ρ is hidden in the joint distribution (Ut, Xt) (e.g., (Ut, Bt), see result (2.4)).

Furthermore, the limit distribution in (3.5) is a functional of (Ut, Xt), which

is inconvenient in practice, particularly in inference theory where the relevant

asymptotic critical value usually depends on it being standard normal.

4. Numerical Example

We provide a numerical example to illustrate our asymptotics. This example

is designed to show the effects of different weighted functions (in particular, the

effects of the different parameters in each weight function) and the performance

of the Studentized statistic Tn given in (2.7) for finite sample sizes.

Example 1. Consider the cointegrating regression model defined by

yk = θ |xk−1|1/2 + ϵk, θ0 = 1, k = 1, 2, . . . , n, (4.1)

where xk is generated by one of the following three scenarios:

S1: xk = xk−1 + ϵk;

S2: xk = xk−1 + ξk, ξk = ρ ξk−1 + ϵk with |ρ| < 1;

S3: xk = xk−1 + ξk, (1 − B)dξk = ϵk, where 0 < d < 1/2 and (1 − B)d is the

fractional difference operator.

In this design, model (4.1) has a martingale structure, as required in theory,

and the regressor xk is generated from a simple random walk by S1, and from short

and long integrated processes by S2 and S3, respectively. For the WLS estimator

θ̂n defined by (2.2), we consider the following weight functions for comparison:

NW: λ(t) = 1, that is, no weight function is used;

W1: λ(x) = I(|x| ≤ K), where K > 0 is a constant;

W2: λ(x) = (1 + a |x|4)−1, where a > 0 is a constant:

W3: λ(x) = exp(−b |x|), where b > 0 is a constant.

It is readily seen that W1 reduces the signal that may affect the asymptotics

by removing partial data. Note that I(|x| ≤ K) → 1 as K → ∞. As noted

in Remark 2, in theory, the consistency of the WLS estimator is better when

K is large. For W2 and W3, we use the full data set, but the weight functions

have heavy and light tails, respectively. The power 4 is taken in W2 so that the



1778 JIN AND WANG

Table 1. Means and standard errors of θ̂n − θ0, n = 100.

W1 K = 1 K = 3 K = 5 K = ∞
S1 0.00055 (0.18554) 0.00018 (0.05546) 0.00015 (0.04039) 0.00012 (0.03935)

S2 -0.00249 (0.17897) -0.00060 (0.06265) -0.00060 (0.04010) -0.00034 (0.02831)

S3 -0.00079 (0.18395) -0.00057 (0.06443) -0.00048 (0.04192) -0.00046 (0.02857)

W2 a = 10 a = 5 a = 1 a = 0

S1 -0.00865 (0.42538) -0.00764 (0.34801) -0.00444 (0.21719) -0.00011 (0.03870)

S2 0.00564 (0.35219) 0.00452 (0.29266) 0.00309 (0.19724) 0.00063 (0.02857)

S3 0.00250 (0.47346) 0.00128 (0.37809) -0.00032 (0.24435) 1.874e-05 (2.404e-02)

W3 b = 10 b = 5 b = 1 b = 0

S1 -0.00024 (1.79907) 0.00491 (0.92793) 0.00135 (0.24665) -0.00037 (0.03920)

S2 0.01353 (1.66340) 0.01023 (0.75282) 0.00208 (0.24818) 3.776e-05 (2.863e-02)

S3 0.00191 (2.73886) -0.00269 (0.99212) -0.00021 (0.28759) 0.00017 (0.02403)

Table 2. Means and standard errors of θ̂n − θ0

sample size n = 100 n = 200 n = 500

S1

NW -0.00043 (0.03918) -0.00024 (0.02230) 0.00006 (0.01087)

W1 (K = 2) -0.00233 (0.18209) -0.00029 (0.12166) -0.00053 (0.07160)

W2 (a = 5) -0.00217 (0.35129) 0.00014 (0.23513) -0.00095 (0.14389)

W3 (b = 2) -0.00361 (0.24858) -0.00058 (0.16568) -0.00061 (0.09980)

S2

NW -9.555e-05 (2.825e-02) -0.00025 (0.01647) 3.533e-05 (7.908e-03)

W1 (K = 2) -0.01260 (0.18550) 0.00309 (0.12791) 0.00061 (0.08158)

W2 (a = 5) -0.00610 (0.30113) 0.00387 (0.21615) 0.00201 (0.14196)

W3 (b = 2) -0.00151 (0.24739) 0.00435 (0.19203) 0.00122 (0.13118)

S3

NW -0.00063 (0.02416) -0.00015 (0.01328) -0.00010 (0.00589)

W1 (K = 2) 0.00024 (0.22817) 0.00290 (0.17250) 0.00114 (0.12037)

W2 (a = 5) 0.00486 (0.37433) 0.00157 (0.27732) 0.00103 (0.19601)

W3 (b = 2) -0.00071 (0.29167) 0.00413 (0.22780) 0.00036 (0.16937)

condition in our theorems is satisfied. This can be modified slightly, but is not

important to our discussion. By using Remark 2 again, it is expected, in theory,

that the consistency of the WLS estimator using W1 and W2 is better when a

and b, respectively, are small.

In the simulations, for simplicity of implementation, we assume that x0 = 0,

ϵk are i.i.d. N(0, 1), bn = n1/3, ρ = 1/2 in S2, and d = 0.3 in S3. Other settings

are similar, and the results are available upon request. All simulations have

10,000 repetitions. Table 1 shows that the consistency of the WLS estimators is

good for all weight functions, even when the sample size n is as small as 100. The
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consistency is better when the parameter K in W1 is larger, and when a and b

are smaller in W2 and W3, respectively, supporting our theoretical results. The

best performance is for K = ∞ under W1 and a = b = 0 under W2 and W3,

respectively. Note that K = ∞ (a = b = 0 as well) corresponds to the consistency

of the standard LS estimator (i.e., no weight is used). This indicates that the

standard LS estimator has a fast convergence rate, as explained in Remark 2. In

Table 2, we further consider the effect of the sample size on the consistency (here,

we take K = 2, a = 5, and b = 2). As expected, the consistency of the WLS

estimators is always better with a larger sample size, and there is essentially no

difference between the weight functions and three scenarios when the sample size

is large enough (n = 500, say).

Although the standard LS estimator provides a fast consistency rate, the

corresponding Student t-statistic T̃n has a nonstandard limit distribution. In

fact, under the model (4.1) with the regressor xk generated by S1, we have

T̃n =

∑n
k=1 |xk−1|1/2ϵk√∑n

k=1 |xk−1|
→D

∫ 1

0
|Bt|1/2dBt√∫ 1

0
|Bt|dt

,

where {Bt}t≥0 is a standard Brownian motion; that is, the limit distribution is

a functional of a standard Brownian motion rather than of a standard normal.

This fact is confirmed by the simulations. Indeed, the density of NW (no weight

function, i.e., the density of T̃n) in Figure 1 (see also Figures 2 and 3) is clearly

away from the standard normal for different sample sizes n = 100, 500, and 1000.

Figure 1 also provides the densities of the Studentized statistic Tn given in (2.7)

with different K = 1, 1/2 and 1/10 using W1 under S1. The density of Tn with

K = 1/10 is close to the standard normal, and the performance improves as the

sample sizes increase. When K = 1 and 1/2, the densities of Tn are not as good

as that of K = 1/10 (particularly for K = 1), and the improvement is not so

obvious when the sample size increases from 100 to 1,000.

This can be explained theoretically. In fact, under S1 (the discussion is

similar under S2 and S3), it follows from (2.7) that (recalling W1 is used)

Tn =

∑n
k=1 I(|xk−1|/bn ≤ K)|xk−1|1/2ϵk√∑n

k=1 I(|xk−1|/bn ≤ K)|xk−1|

=

∑n
k=1 I(|xk−1|/

√
n ≤ Kc−1

n )|xk−1|1/2ϵk√∑n
k=1 I(|xk−1|/

√
n ≤ Kc−1

n )|xk−1|
→D N(0, 1), (4.2)

for any fixed K > 0 and bn > 0 satisfying cn =
√
n/bn → ∞ or Kc−1

n → 0. As

noted in Remark 4, although the limit distribution of Tn is free of the values of

K when bn is given such that cn → ∞, the performance of Tn depends on K in
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finite-sample simulations. Indeed, when bn is given (bn = n1/3, say), we have

K = 1, K = 1/2, K = 1/10,

Kc−1
n = Kn−1/6 = 0.4641598, 0.2320794, 0.04641528, if n = 100,

0.3549537, 0.1774768, 0.03549537, if n = 500,

0.3162278, 0.1581139, 0.03162278, if n = 1000.

Because Kc−1
n with K = 1/10 is close to meeting the condition in establishing

(4.2) (i.e., Kc−1
n → 0), the performance of Tn in a finite sample size, such as

n = 100, 500, and 1000, is expected to be better when K = 1/10 than when

K = 1 or K = 1/2. Figure 1 confirms this asymptotic theory. Furthermore,

when K = 1, even under n = 1000, Kc−1
n = 0.3162278 is far from the required

condition in establishing (4.2) (i.e., Kc−1
n → 0). Hence, it is natural that the

densities of Tn using W1 with K = 1 do not perform good, under given sample

sizes n = 100, 500 and 1000, as shown in Figure 1.

In Figures 2 and 3, the densities of Tn are simulated using W2 and W3,

respectively, under S1. As shown in Figures 2 and 3, the ideal results for finite

sample sizes can be achieved by using large a and b values, respectively. The

theoretical explanation for this is similar to that of W1, and hence the details

are omitted. In summary, finite-sample simulations confirm the asymptotic nor-

mality of the Studentized statistic Tn given in (2.7). The difference between the

weight functions W1, W2, and W3 is not significant, but the choice of the pa-

rameter (K, a, and b, respectively) in each weight function has a big effect on

the performance of Tn in finite sample sizes. This seems to be natural for the

Studentized statistics generated from nonstationary time series.

5. Conclusion

Nonstandard asymptotic behavior appears in regression models with nonsta-

tionary time series. The limiting distribution of the standard LS estimator in

such regression models often depends on various nuisance parameters, so that

the limit results are cumbersome in the relevant asymptotic inferences. In this

study, we investigate the WLS estimation in a nonlinear cointegrating regression.

Comparied with the standard LS estimator, the WLS estimator has a mixed

Gaussian limit, so that the corresponding Studentized statistic converges to a

standard normal distribution. This result has advantages in applications, be-

cause it is not only convenient in inference theory, but is also free of the memory

parameter, even when a fractional process is included in the regressors. There

is a convergence rate loss for such a WLS estimator, but it is controllable by

using a suitable weight. The ideas presented here work in other areas; such as
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Figure 1. Tn densities under W1 with different K.

specification testing related to a cointgerating regression. This is left to future

work.
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Appendix

A. Weighted Least Squares Estimation – A Framework

Consider a nonlinear regression model having the form:

yk = gk(θ) + uk, k = 1, 2, . . . , n, (A.1)

where gk(.) can be random or deterministic functions, θ = (θ1, . . . , θq) is a vector

of unknown parameters and uk are the unobservable random disturbances. We

assume θ ∈ Θ, where Θ is a compact of Rq. The weighted least squares estimator
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Figure 3. Tn densities under W3 with different b.

θ̂n of θ in model (A.1) is defined by

θ̂n = argmin
θ∈Θ

Qn(θ), where Qn(θ) =
n∑

k=1

[
yk − gk(θ)

]2
lk (A.2)

and lk is a weight function allowing for dependence on n and gk, but free of the

unknown parameter θ.

The asymptotics of θ̂n without weight effects (i.e., lk ≡ 1) has been widely

investigated in literature. See, for instance, Andrews and Sun (2004), Pollard

and Radchenko (2006), Jacob (2010) and Chan and Wang (2015). Recently,
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Wang (2021) established a new framework on the asymptotics of θ̂n that can

be easily applied to various nonlinear regression models with heteroscedasticity.

This section generalizes and modifies the framework by Wang (2021) by allowing

for weight effects and endogeneity in the model (A.1). Throughout this section,

let a real parameter value θ0 of θ be an interior of Θ.

A.1. Consistency of θ̂n

To consider the consistency of θ̂n, we introduce the following conditions on

gk(θ).

A5. A sequence of constants 0 < kn → ∞ and a sequence of random variables

Tk exist such that

(a) |gk(θ1) − gk(θ2)| ≤ h(||θ1 − θ2||)Tk for all θ1, θ2 ∈ Θ, where h(x) is a

continuous function satisfying limx↓0 h(x) = 0;

(b) (1/kn)
∑n

k=1 lkTk

(
|uk|+Tk

)
= OP (1) and (1/kn)

∑n
k=1 lk

[
gk(θ)−gk(θ0)

]
uk = oP (1) for each θ ∈ Θ;

(c) the finite dimensional distributions of (1/kn)
∑n

k=1 lk
[
gk(θ) − gk(θ0)

]2
converge to those of G(θ), where G(θ), θ ∈ Θ is a stochastic process of

θ satisfying P (inf ||θ−θ0||≥δ,
θ∈Θ

G(θ) > 0) = 1 for each δ > 0.

Theorem 4. Suppose A5 holds. Then θ̂n is a consistent estimator of θ0, i.e.,

||θ̂n − θ0|| = oP (1).

Proof. Write Ln,θ =
∑n

k=1 lkdk(θ)uk, Dn,θ =
∑n

k=1 lkd
2
k(θ) and Qn(θ) =

∑n
k=1

lk
[
yk − gk(θ)

]2
, where dk(θ) = gk(θ)− gk(θ0). Given that θ0 is a real value of θ in

the model (A.1), we have∑
lku

2
k = Qn(θ0) ≥ Qn(θ̂n) =

∑
lku

2
k +Dn,θ̂ − 2Ln,θ̂ .

Hence, for any ϵ > 0, we have

P (||θ̂n − θ0|| ≥ ϵ) ≤ P

(
sup

||θ−θ0||≥ϵ

|Ln,θ|
Dn,θ

≥ 1

2

)
≤ P

(
sup
θ∈Θ

|Ln,θ| ≥
1

2
inf

||θ−θ0||≥ϵ
Dn,θ

)
,

and Theorem 4 will follow if we prove

(i) supθ∈Θ |Ln,θ| = oP (kn);

(ii) k−1
n inf ||θ−θ0||≥δ,

θ∈Θ
Dn,θ for any δ > 0, is away from 0 with probability one, as

n→ ∞;
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We only prove (i) since (ii) is the same as that of Proposition 2.1 in Wang

(2021) except some routine notation changes. DenoteNη(θ1) = {θ : ||θ−θ1|| < η}.
Since Θ is compact, by the finite covering property of compact set, (i) will follow

if we prove Ln,θ1 = oP (kn) for each θ1 ∈ Θ and

sup
θ∈Nη(θ1)

|Ln,θ − Ln,θ1 | →P 0, (A.3)

as n→ ∞ first and then η → 0. In fact, since

sup
θ∈Nη(θ1)

|Ln,θ − Ln,θ1 | ≤ sup
θ∈Nη(θ1)

n∑
k=1

lk|gk(θ)− gk(θ1)| |uk|

≤ sup
θ∈Nη(θ1)

h(||θ − θ1||)
n∑

k=1

lk Tk |uk|

by using A5(a), result (A.3) follows immediately from A5(b), because h(x) is

continuous with h(x) → 0 as x→ 0.

Remark 8. Assumption A5 allows for endogeneity in model (A.1), enabling The-

orem 4 quite useful in nonlinear (cointegrating) regression. This result extends

Theorem 5.8 of Wang (2015) by allowing for the use of the weight function lk
in (A.2). If h(x) satisfies more smoothness condition and model (A.1) has a

martingale structure, we have the following extension of Theorem 2.2 in Wang

(2021).

Theorem 5. Suppose that {uk,Fk}t≥1 is a martingale difference with E(u2
k |

Fk−1) < ∞, a.s. for each k ≥ 1. Suppose that lk and gk(θ) for each θ ∈ Θ

are adapted to Fk−1. Suppose that a sequence of constants 0 < kn → ∞ and a

sequence of random variables Tk (adapted to Fk−1) exist such that

(a)′ |gk(θ1)− gk(θ2)| ≤ ||θ1 − θ2||α Tk for all θ1, θ2 ∈ Θ and for some α > 0;

(b)′ (1/kn)
∑n

k=1 lkT
2
k = OP (1) and

∑n
k=1 l

2
k T

2
k

[
1 + E(u2

k | Fk−1)
]
= OP (k

2
n/

log2 n);

(c)′ A5 (c) holds.

Then θ̂n is a consistent estimator of θ0.

Note that (b)′ in Theorem 5 is a weaker condition than that of (b) in Assump-

tion A5. This is a trade off among other assumptions. The proof of Theorem 5

is similar to Theorem 2.2 of Wang (2021) and hence the details are omitted.
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A.2. Asymptotic distribution of θ̂n

Let ġk(θ) = (∂gk(θ)/∂θ1, . . . , ∂gk(θ)/∂θq)
′ be the first derivative of gk(θ),

Zn(θ) = (D−1
n )′

∑n
k=1 lk ġk(θ)uk and

Yn = (D−1
n )′

n∑
k=1

lk ġk(θ0)ġk(θ0)
′D−1

n ,

where Dn = diag(D̃n, . . . , dqn) is a sequence of diagonal matrices satisfying

n−δ min1≤j≤q djn → ∞ for some δ > 0. For the asymptotic distribution of θ̂n, we

have the following extension of Theorem 2.1 in Wang (2021).

Theorem 6. Suppose that

(i) Yn →D M , where the smallest eigenvalue of M is almost surely positive

(i.e., M > 0, a.s.);

(ii) Zn(θ0) = OP (1), supθ∈Θ ||Zn(θ)− Zn(θ0)|| = OP (log
1/2 n) and

sup
||Dn(θ−θ0)||≤logn

||Zn(θ)− Zn(θ0)|| = oP (1);

(iii) sup||θ−θ0||≤δ

∑n
k=1 lk||D−1

n [ġk(θ)− ġk(θ0)]||2 = oP (1), as n→ ∞ first and then

δ → 0.

For any estimator θ̂n of θ0 satisfying (A.2) such that θ̂n →P θ0, we have

Dn(θ̂n − θ0) = Y −1
n Zn(θ0) + oP (1). (A.4)

If in addition (Yn, Zn) →D (M,Z) where M > 0, a.s., then Dn(θ̂n − θ0) →D

M−1 Z.

Proof. The idea is similar to Theorem 2.1 of Wang (2021) since, except obvious

notation changes, Assumption 2.1 and Assumption 2.2 (i) in the cited paper are

only used to prove the conditions (ii) and (iii) of Theorem 6. We omit the details.

Remark 9. As noticed in Remark 8, Theorem 6 is useful in nonlinear cointegrat-

ing regression as endogeneity is allowed in model (A.1). When model (A.1) has

a martingale structure, we have the following corollary, providing an extension

of Theorem 2.1 of Wang (2021) to weighted LS. Let {Fk}k≥0 be an increasing

sequence of σ-fields on some probability space (Ω,F , P ) with F0 = σ(ϕ,Ω).

Corollary 2. Suppose that

(i) {uk,Fk}k≥1 forms a martingale difference with E(u2
k | Fk−1) < ∞, a.s. for

each k ≥ 1;
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(ii) gk(θ) for each θ ∈ Θ and lk are adapted to Fk−1;

(iii) ||D−1
n

[
ġk(θ1) − ġk(θ2)

]
|| ≤ ||θ1 − θ2||α Tnk for some 0 < α ≤ 1 and for any

θ1, θ2 ∈ Θ, where Tnk is adapted to Fk−1 for each n ≥ 1, satisfying

n∑
k=1

l2k T
2
nk

[
1 + E(u2

k|Fk−1)
]
+

n∑
k=1

lk T
2
nk = OP (1); (A.5)

(iv) Zn(θ0) = OP (1) and Yn →D M , where M > 0, a.s., i.e., the smallest

eigenvalue of M is almost surely positive.

Then, for any estimator θ̂n of θ0 satisfying (A.2) such that θ̂n →P θ0, result (A.4)

still holds.

Proof. It follows from the same arguments as that of Corollary 2.1 in Wang

(2021), i.e., under conditions (i)-(iii), we may prove supθ∈Θ ||Zn(θ) − Zn(θ0)|| =
OP (log

1/2 n) and

sup
||Dn(θ−θ0)||≤logn

||Zn(θ)− Zn(θ0)|| = oP (1),

by using Theorem 2.3 of Wang (2021). Then result follows from Theorem 6.

B. Convergence to Local Time and a Mixture of Normal Distributions

The proofs of Theorems 1, 2 and 3 depend on certain fundamental results

on convergence to local time and a mixture of normal distributions, which are

summarized in this section. Except mentioned explicitly, notation is the same as

in Section 2.

Recall (uk,Fk)k≥1, where Fk = σ(vk+1, vk, . . .), is a sequence of stationary

martingale differences with E(u2
k|Fk−1) = σ2 < ∞. Let xnk = xk/dn, where

d2n = var(
∑n

k=1 ξk). Let g(.), g1(.), . . . and other related G(.), T (.), etc be Borel

measurable functions on their components. For the convergence to a local time

process, the following result comes from Theorem 2.21 of Wang (2015).

Lemma 1. Write g̃(x) = sup0≤s≤1 |g(s, x)| and suppose that g̃(x) is a bounded

and integrable function on R. Then, for any cn → ∞ satisfying cn/n → 0, we

have (
1√
n

[nt]∑
k=1

ϵk,
1√
n

[nt]∑
k=1

ϵ−k, xn,[nt],
cn
n

n∑
k=1

g

(
k

n
, cn xnk

))

⇒
(
Bt, B−t, Xt,

∫ 1

0

G(s)dLX(s, 0)

)
, (B.1)
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on DR4 [0,∞), where G(s) =
∫∞
−∞ g(s, x)dx.

By using Lemma 1, together with the extended martingale limit theorem by

Wang (2014) (also see Chapter 3 of Wang (2015)), we may establish following

Theorems 7 and 8, which are used for the purpose of this paper.

Let Vk,m = (vk, . . . , vk−m) and Vm = Vm,m, where m ≥ 0 is a fixed integer,

and write

Sn =
cn
n

n∑
k=1

g1

(
k

n
, cn xnk, Vk,m

)
, Mn =

(
cn
n

)1/2 n∑
k=1

g2

(
k

n
, cn xnk, Vk,m

)
uk,

where cn is a sequence of positive constants.

Theorem 7. Suppose that, for any x ∈ R and y ∈ Rm+1 and for some β > 0,

sup
0≤s≤1

|g1(s, x, y)|+ sup
0≤s≤1

|g2(s, x, y)| ≤ T (x)(1 + ||y||β), (B.2)

where T (x) is a bounded and integrable function. Suppose that E||v0||2∧(2β) <∞.

Then, for any cn → ∞ satisfying cn/n→ 0, we have(
1√
n

[nt]∑
k=1

ϵk,
1√
n

[nt]∑
k=1

ϵ−k, xn,[nt], Sn

)
⇒
(
Bt, B−t, Xt,

∫ 1

0

G1(s) dLX(s, 0)

)
(B.3)

on DR4 [0,∞), where G1(s) =
∫∞
−∞Eg1(s, x, Vm)dx. In addition to E||v0||4β+2 <

∞, we further have

(
Sn, Mn

)
→D

(∫ 1

0

G1(s) dLX(s, 0),

[ ∫ 1

0

G2(s) dLX(s, 0)

]1/2
N

)
, (B.4)

where G2(s) =
∫∞
−∞Eg22(s, x, Vm)dx and N is a standard normal variate indepen-

dent of X.

Proof. By virtue of Lemma 1, to prove (B.3), it suffices to show that, under

(B.2) and E||v0||2∧(2β) <∞,

Sn − cn
n

n∑
k=1

ĝ1

[
k

n
, cn xnk

]

=
cn
n

n∑
k=1

{
g1

[
k

n
, cn xnk, Vk,l

]
− ĝ1

[
k

n
, cn xnk

]}
= oP (1), (B.5)

where ĝ1(s, x) = Eg1(s, x, Vm). This is essentially the same as in the proof of

(A.20) with i = 2 in Wang, Phillips and Kasparis (2021) and hence the details

are omitted.
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We next prove (B.4). It follows from (B.5) and the similar arguments as in

the proof of Theorem 2.19 in Wang (2015) that

Sn =
cn
n

n∑
k=1

ĝ1

[
k

n
, cn xnk

]
+ oP (1)

=
1

n

n∑
k=1

G1

(
k

n

)
ϕϵ(xnk) +Rn(ϵ) =

∫ 1

0

G1(s)ϕϵ(xn,[ns])ds+Rn(ϵ),

where ϕϵ(x) = (1/ϵ
√
2π)e−x2/(2ϵ2) and Rn(ϵ) →P 0 as n→ ∞ first and then ϵ→ 0.

Since
∫ 1

0
G1(s)ϕϵ(Zn,[ns])ds is a continuous functional of the process {xn,[nt]}0≤t≤1,

the continuous mapping theorem indicates that (B.4) will follow if we prove

(
xn,[nt], Mn

)
⇒
(
Xt,

[ ∫ 1

0

G2(s) dLX(s, 0)

]1/2
N

)
, (B.6)

on DR2 [0, 1]. Note that Mn =
∑n

k=1mnkuk, where mnk = (cn/n)
1/2g2(k/n,

cn xnk, Vk,m) depends only on vk, vk−1, . . .. We may establish (B.6) by using the

extended martingale limit theorem given in Wang (2014). Indeed, by noting that,

for any −1 ≤ δ ≤ 1/β,(
1√
n

[nt]∑
k=1

ϵk,
1√
n

[nt]∑
k=1

ϵ−k, xn,[nt],
cn
n

n∑
k=1

∣∣∣∣g2(kn, cn xnk, Vk,m

)∣∣∣∣2+δ
)

⇒
(
Bt, B−t, Xt,

∫ 1

0

G̃2(s)dLX(s, 0)

)
,

(using (B.3) with g1(.) = |g2(.)|2+δ) where G̃2(s) =
∫∞
−∞E|g2(s, x, Vm)|2+δdx, it is

readily seen that

max
1≤k≤1

|mnk| ≤
[(

cn
n

)1+1/(2β) n∑
k=1

∣∣∣∣g2(kn, cn xnk, Vk,m

)∣∣∣∣2+1/β
]2β/(1+2β)

= oP (1)

and

1√
n

n∑
k=1

|mnk| = c−1/2
n

cn
n

n∑
k=1

∣∣∣∣g2(kn, cn xnk, Vk,m

)∣∣∣∣ = oP (1),

due to cn → ∞ and cn/n → 0. Result (B.6) follows from Theorem 2.1 of Wang

(2014).
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We next establish a more general result than that of Theorem 7. Write

S1n =
cn
n

n∑
k=1

g3

(
k

n
, cn xnk, wk + νnk

)
,

M1n =

(
cn
n

)1/2 n∑
k=1

g4

(
k

n
, cn xnk, wk + νnk

)
uk,

where the following additional conditions are used:

C1 (i) wk = (w1k, . . . , wdk), where, for i = 1, . . . , d, wik =
∑∞

j=0 ψi,j v
′
k−j with

ψi,j = (ψi,1j, ψi,2j) satisfying
∑∞

j=0(|ψi,1j|+ |ψi,2j|) <∞;

(ii) νnk = (ν1,nk, . . . , νd,nk), where, for i = 1, . . . , d, |νi,nk| ≤ δn
∑∞

j=0

(|φ1j ϵk−j| + |φ2j ηk−j|) with
∑∞

j=0(|φ1j| + |φ2j|) < ∞ and δn → 0, as

n→ ∞;

C2 there exist δ > 0, integer β ≥ 1 and a bounded and integrable function T (x)

such that, for all x ∈ R and y, t ∈ Rd and for i = 3 and 4,

(i) sups∈[0,1] |gi(s, x, y)| ≤ T (x)(1 + ||y||β);
(ii) sups∈[0,1] |gi(s, x, y)− gi(s, x, t)| ≤ T (x)||y − t||δ (1 + ||y||β + ||t||β) .

Theorem 8. Suppose that C1 and C2 hold and E||v0||2β+2 <∞ where β is given

as in C2. For any cn → ∞, cn/n→ 0 and z ∈ R, we have(
1√
n

[nt]∑
k=1

ϵk,
1√
n

[nt]∑
k=1

ϵ−k, xn,[nt], S1n

)
⇒
(
Bt, B−t, Xt,

∫ 1

0

G3(s) dLX(s, 0)

)
(B.7)

on DR4 [0,∞), where G3(s) =
∫∞
−∞Eg3(s, x, w0)dx. If in addition to E||v0||4β+2 <

∞, we further have

(
S1n, M1n

)
→D

(∫ 1

0

G3(s) dLX(s, 0),

[ ∫ 1

0

G4(s) dLX(s, 0)

]1/2
N

)
, (B.8)

where G4(s) =
∫∞
−∞Eg24(s, x, w0)dx and N is a standard normal variate indepen-

dent of X.

Proof. We only prove (B.7), since the proof of (B.8) is the same as that of

(B.4) by an application of the extended martingale limit theorem given in Wang

(2014). For any l ≥ 0, write wk(l) =
(
w1k(l), . . . , wdk(l)

)
, where, for i = 1, . . . , d,

wik(l) =
∑l

j=0 ψi,j v
′
k−j. It follows from Theorem 7 that, for each l ≥ 1,

cn
n

n∑
k=1

g3

[
k

n
, cn(xnk + c′nz), wk(l)

]
→D

∫ 1

0

G3,l(s)d L̃X(s, z), (B.9)
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where G3,l(s) =
∫∞
−∞Eg3(s, x, w0(l))dx. Using C2 (ii), we have

sup
s∈[0,1]

|G3,l(s)−G3(s)| ≤ C E
(
||w0(l)− w0||δ(1 + ||w0||β + ||w0(l)||β)

)
≤ C

( d∑
i=0

∞∑
j=l

|ψi,j|2
)1/2 (

E||w0||2β+2
)1/2 → 0,

as l → ∞, i.e.,∫ 1

0

G3,l(s)d L̃X(s, z) =

∫ 1

0

G3(s)d L̃X(s, z) + oP (1), (B.10)

as l → ∞. In terms of (B.9) and (B.10), (B.7) will follow if we prove

S1n − cn
n

n∑
k=1

g3

[
k

n
, cn(xnk + c′nz), wk(l)

]
= oP (1),

as n→ ∞ first and then l → ∞. Under C2(ii), this is similar to that of (A.20) of

Wang, Phillips and Kasparis (2021) with i = 1 and hence the details are omitted.

C. Proofs of the Main Results

We prove Theorems 1, 2, 3 and Corollary 1 by checking the conditions of

Theorem 6, where we require Theorems 7 and 8 for the results on the convergence

to local time and a mixture of normal distributions.

Proof of Theorem 1. We start with an outline. LetDn = (n/cn)
1/2 diag (vḟ1(bn),

. . . , vḟq(bn)), cn = dn/bn, xnk = xk/dn and

Zn(θ) = D−1
n

n∑
k=1

λ

(
xk

bn

)
ḟ(xk, wk, θ)uk,

Yn(θ) =
(
D−1

n

)′ n∑
k=1

λ

(
xk

bn

)
ḟ(xk, wk, θ)ḟ(xk, wk, θ)

′D−1
n .

Note that, owing to A4 (i) and (iii),

||D−1
n

[
ḟ(xk, wk, θ1)− ḟ(xk, wk, θ2)

]
||

≤ ||θ1 − θ2||α
(
n

cn

)−1/2 q∑
i=1

v−1

ḟi
(bn)Tḟi

(xk, wk)

≤ q ||θ1 − θ2||α
(
n

cn

)−1/2

T (cnxnk)(1 + |wk|β),
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for any θ1, θ2 ∈ Θ. It follows from Corollary 2 with gk(θ) = f(xk, wk, θ) that, to

prove Theorem 1, it suffices to show that

(i) θ̂n is a consistent estimator of θ0;

(ii) for any bounded and integrable function g(x),

cn
n

n∑
k=1

E
[
g(cn xnk)(1 + |wk|2β)

]
= O(1); (C.1)

(iii) for a q-dimensional standard normal vector N that is independent of X,{
Zn(θ0), Yn(θ0)

}
→D

{
σΣ

1/2
1 LX(1, 0)

1/2N , ΣLX(1, 0)
}
. (C.2)

Result (C.1) is well-known in literature. See, for instance, (7.22) of Wang,

Phillips and Kasparis (2021).

We next prove (C.2). We may write

Zn(θ0) = D−1
n

n∑
k=1

λ

(
xk

bn

)
ḟ(xk, wk, θ0)uk,

=

(
cn
n

)1/2 n∑
k=1

λ(cn xnk) ḣ(cnxnk, wk, θ0)uk +Rn

:= Zn1(θ0) +Rn, (C.3)

where Rn =
∑n

k=1 ankuk with

ank = λ

(
xk

bn

)[
D−1

n ḟ(xk, wk, θ0)−
(
cn
n

)1/2

ḣ(
xk

bn
, wk, θ0)

]
.

It follows from A4 (ii) and (iii) with l = bn that, for any ϵ > 0, there exists a n0

so that when n ≥ n0,

||ank|| ≤ ϵ q

(
cn
n

)1/2

λ

(
xk

bn

)
T

(
xk

bn

)
(1 + ||wk||β).

This, together with (C.1) with g(x) = λ2(x)T 2(x), yields that, for any ϵ > 0,

there exists a n0 so that when n ≥ n0,

ER2
n ≤ C

n∑
k=1

E||ank||2 ≤ Cϵ
cn
n

n∑
k=1

E

[
λ2

(
xk

bn

)
T 2

(
xk

bn

)
(1 + ||wk||2β)

]
≤ Cϵ,
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i.e., ||Rn|| = oP (1). Similarly, we have

Yn(θ0) =
(
D−1

n

)′ n∑
k=1

λ

(
xk

bn

)
ḟ(xk, wk, θ0)ḟ(xk, wk, θ0)

′D−1
n

=
cn
n

n∑
k=1

λ(cn xnk)ḣ(cn xnk, wk, θ0)ḣ(cn xnk, wk, θ0)
′ +R1n

= Yn1(θ0) +R1n, (C.4)

where ||R1n|| = oP (1).

By virtue of (C.3) and (C.4), result (C.2) follows from the fact: for any

α′
i = (αi1, . . . , αiq) ∈ R, i = 1, 2, 3,(
α′

1 Yn1(θ0)α2, α′
3Zn1(θ0)

)
→D

(
α′

1 Σα2 LX(1, 0),
[
α′

3 Σ1 α3 LX(1, 0)
]1/2

N
)
,

(C.5)

where we have used Theorem 7.

We finally prove θ̂n is a consistent estimator of θ0. Note that (cn/nv
2
f (bn))∑n

k=1 T
2(xk/bn)(1 + |wk|β)2 = OP (1) and, owing to A4 (i) and (iii) with p(.) =

f(.),

|f(xk, wk, θ1)− f(xk, wk, θ2)| ≤ ||θ1 − θ2||α vf (bn)T
(
xk

bn

)
(1 + |wk|β),

for any θ1, θ2 ∈ Θ. Using Theorem 4 with gk(θ) = f(xk, wk, θ) and kn =

cn/nv
2
f (bn), it suffices to show that, for any θj ∈ Θ and αj ∈ R, j = 1, 2, . . . , q,

q∑
j=1

αj Gn(θj) →D

q∑
j=1

αjG(θj), (C.6)

where

Gn(θ) =
cn

nv2f (bn)

n∑
k=1

λ

(
xk

bn

) [
f(xk, wk, θ)− f(xk, wk, θ0)

]2
,

G(θ) =

∫ ∞

−∞
λ(x)E

[
hf (x,w1, θ)− hf (x,w1, θ0)

]2
dxLX(1, 0),

since P
(
min||θ−θ0||≥δG(θ) > 0

)
= 1 for each δ > 0, owing to A4 (iv) and the fact

that P (LX(1, 0) > 0) = 1.

In order to establish (C.6), we write

Rn(θ) =
cn

nv2f (bn)

n∑
k=1

λ

(
xk

bn

)[
f(xk, wk, θ)− vf (bn)hf

(
xk

bn
, wk, θ

)]2
,
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G1n(θ) :=
cn
n

n∑
k=1

λ

(
xk

bn

)[
hf

(
xk

bn
, wk, θ

)
− hf

(
xk

bn
, wk, θ0

)]2
.

As that of Rn = oP (1), it follows from A4 (ii) and (iii) with l = bn that

sup
θ∈Θ

|Rn(θ)| ≤
o(1) cn
nv2f (bn)

n∑
k=1

λ

(
xk

bn

)
T 2
f (xk, wk)

= o(1)
cn
n

n∑
k=1

λ

(
xk

bn

)
T 2

(
xk

bn

)
(1 + |wk|β)

= oP (1) , (C.7)

as n→ ∞. On the other hand, as in the proof of (C.5),

q∑
j=1

αj G1n(θj) →D

q∑
j=1

αj G(θj). (C.8)

Now, by noting Gn(θ) can be decomposed into Gn(θ) = G1n(θ) + ∆n(θ), where

∆n(θ) ≤ 2 sup
θ∈Θ

|Rn(θ)|+ 4G
1/2
1n (θ) sup

θ∈Θ
|Rn(θ)|1/2 ,

we have
∑q

j=1 αj∆n(θj) = oP (1) and (C.6).

The proof of Theorem 1 is now complete.

Proof of Corollary 1. It is similar to that of Theorem 1 except using Theorem

8 instead of Theorem 7. We omit the details.

Proof of Theorem 2. For the first part, i.e., the proofs of (3.2) and (3.3), the

idea is essentially the same as that of Theorem 1. Indeed, by recalling that T (x)

is bounded and integrable and

||ḟ(xk, wk, θ1)− ḟ(xk, wk, θ2)|| ≤ ||θ1 − θ2||αT (xk)(1 + ||wk||β),

as in Theorem 1 by using Corollary 2 with lk ≡ 1 and gk(θ) = f(xk, wk, θ), it

suffices to show: (a) θ̂n is a consistent estimator of θ0; (b)

dn
n

n∑
k=1

E
[
g(xk)(1 + |wk|2β)

]
= O(1)

for any bounded and integrable function g(x); and (c){
Ŷn(θ0), Ẑn(θ0)

}
→D

{
Σ2 LX(1, 0), σN

[
Σ2LX(1, 0)

]1/2}
,
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where

Ẑn(θ) =

(
dn
n

)1/2 n∑
k=1

ḟ(xk, wk, θ)uk,

Ŷn(θ) =
dn
n

n∑
k=1

ḟ(xk, wk, θ)ḟ(xk, wk, θ)
′ .

and N is a standard q-dimensional normal random vector independent of Xt.

In fact, by recalling xnk = xk/dn, result (c) comes from a direct application of

Theorem 7; (b) is the same as (C.1) with cn = dn and (a) is similar to that of (i)

in the proof of Theorem 1 with some routine notation changes.

If A2 is replaced by A2∗, to show (3.2) and (3.3) still hold, we only need to

replace Theorem 7 by Theorem 8 and hence the details are omitted.

Proof of Theorem 3. As in Theorem 1, we establish Theorem 3 by using Corol-

lary 2 with gk(θ) = m(xk, θ)K(wk), but with different details. Indeed, owing to

A4∗ (i) and (iii), we have

||D̃−1
n

[
ġk(θ1)− ġk(θ2)

]
|| ≤ ||θ1 − θ2||α n−1/2

q∑
i=1

v−1
ṁi

(dn)Tṁi
(xk)(1 + ||wk||β)

≤ q ||θ1 − θ2||α n−1/2 T (xnk)(1 + ||wk||β),

for any θ1, θ2 ∈ Θ, where xnk = xk/dn and D̃n = n1/2 diag
(
vṁ1

(dn), . . . , vṁq
(dn)

)
.

It follows from Corollary 2 with lk ≡ 1 and gk(θ) = m(xk, θ)K(wk) that, to prove

Theorem 3, it suffices to show that

(i) for any function K̃(x) satisfying E|K̃(w1)|1+δ < ∞ for some δ > 0 and for

any continuous function g(x),

1

n

n∑
k=1

g(xnk)K̃(wk) =
EK̃(w1)

n

n∑
k=1

g(xnk) + oP (1)

→D EK̃(w1)

∫ 1

0

g(Xt)dt. (C.9)

(ii) θ̂n is a consistent estimator of θ0, or equivalently [using Theorem 5 with lk =

1 and gk(θ) = m(xk, θ)K(wk)] for any θj ∈ Θ and αj ∈ R, j = 1, 2, . . . , l,

l∑
j=1

αj

1

nv2m(dn)

n∑
k=1

[
m(xk, θj)−m(xk, θ0)

]2
K2(wk)

→D EK2(w1)
l∑

j=1

αj G(θj), (C.10)
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where G(θ) :=
∫ 1

0

[
h̃m(Xt, θ)− h̃m(Xt, θ0)

]2
dt.

(iii)

{
Z̃n(θ0), Ỹn(θ0)

}
→D

{∫ 1

0

Φ(t)dUt, EK
2(w1)

∫ 1

0

Φ(t)Φ(t)′dt

}
, (C.11)

where

Z̃n(θ) = D̃−1
n

n∑
k=1

ṁ(xk, θ)K(wk)uk,

Ỹn(θ) =
n∑

k=1

(
D̃−1

n

)′
ṁ(xk, θ)ṁ(xk, θ)

′ D̃−1
n K2(wk).

Note that wk, k ≥ 0, is a stationary k0-dependent random sequence. It is

routine to show that, for any m→ ∞ satisfying m/n→ 0,

max
m≤j≤n−m

E
∣∣∣ 1
m

j+m∑
k=j+1

K̃(wk)− EK̃(w1)
∣∣∣→ 0.

Result (C.9) now follows from Lemma 5.1 of Hu, Phillips and Wang (2021) and

standard result on the convergence to stochastic integrals.

The proof of (C.10) is similar to that of (B.3) of Wang (2021), by showing

that, for any θ ∈ Θ,

1

nv2m(dn)

n∑
k=1

[
m(xk, θ)−m(xk, θ0)

]2
K2(wk)

=
1

n

n∑
k=1

[
h̃m(xnk, θ)− h̃m(xnk, θ0)

]2
K2(wk) + ∆̃n, (C.12)

where ∆̃n →P 0. Indeed, by recalling h̃m(., θ) is continuous for each θ, (C.10)

follows from (C.9), (C.12) and the Cramér–Wold theorem. We provide an outline

proof of (C.12) for convenience of the reading. Write x∗
k = xkI(|xk|/dn ≤ A),

R̃n(θ) =
n∑

k=1

[
m(xk, θ)− vm(dn)h̃m

(
xk

dn
, θ

)]2
K2(wk),

R̃∗
n(θ) =

n∑
k=1

[
m(x∗

k, θ)− vm(dn)hm

(
x∗
k

dn
, θ

)]2
K2(wk).
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For any fixed A > 0, it follows from A4∗ (ii) and (iii) and (C.9) that

sup
θ∈Θ

|R∗
n(θ)| ≤ o(1) v2m(dn)

n∑
k=1

T 2

(
x∗
k

dn

)
K2(wk) = o(1)nv2m(dn)EK

2(w1),

as n→ ∞. This implies that, for any ϵ > 0,

P

(
1

nv2m(dn)
sup
θ∈Θ

|R̃n(θ)| ≥ ϵ

)
≤ P

(
xk ̸= x∗

k, for some k = 1, . . . , n
)
+ P

(
1

nv2m(dn)
sup
θ∈Θ

|R̃∗
n(θ)| ≥ ϵ

)
≤ P

(
max
1≤k≤n

|xk|
dn

≥ A

)
+ P

(
1

nv2m(dn)
sup
θ∈Θ

|R̃∗
n(θ)| ≥ ϵ

)
→ 0,

as n→ ∞ first and then A→ ∞, namely, we have

sup
θ∈Θ

|R̃n(θ)| = oP
[
nv2m(dn)

]
. (C.13)

Now (C.12) follows (C.9) and (C.13) since

∆̃n ≤ 4 sup
θ∈Θ

|R̃n(θ)|

+4 sup
θ∈Θ

|R̃n(θ)|1/2
(
1

n

n∑
k=1

[
h̃m(xnk, θ)− h̃m(xnk, θ0)

]2
K2(wk)

)1/2

.

We finally prove (C.11). We may write

Z̃n(θ0) =
1√
n

n∑
k=1

h̃(xnk, θ0)K(wk)uk + R̃n

:= Z̃n1(θ0) + R̃n, (C.14)

where R̃n =
∑n

k=1 ãnkK(wk)uk with

ãnk = D̃−1
n ṁ(xk, θ0)−

1√
n
h̃(xnk, θ0)

=

[
ṁ1(.)− vṁ1

(dn)hṁ1
(.)√

nvṁ1
(dn)

, . . . ,
ṁq(.)− vṁq

(dn)hṁq
(.)√

nvṁq
(dn)

]′
.
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As in the proof of (C.13), we have

n∑
k=1

||ãnk||2K2(wk) = oP (1) and max
1≤k≤n

[
||ãnk||2K2(wk)

]
= oP (1)

by (C.9). This yields ||R̃n|| = oP (1) since {ãnkuk,Fk} forms a martingale differ-

ence array with supk≥1E
(
|uk|2+δ | Fk−1

)
≤ C < ∞ for some δ > 0 under the

conditions A1-A3. Similarly, the same arguments used in the proofs of (C.9) and

(C.13) yield that

Ỹn(θ0) =
n∑

k=1

(
D̃−1

n

)′
ṁ(xk, θ)ṁ(xk, θ)

′ D̃−1
n K2(wk)

=
1

n

n∑
k=1

h̃(xnk, θ0)h̃(xnk, θ0)
′K2(wk) + R̃1n

=
EK2(w1)

n

n∑
k=1

h̃(xnk, θ0)h̃(xnk, θ0)
′ + oP (1)

= Ỹn1(θ0) + oP (1). (C.15)

By virtue of (C.14) and (C.15), result (C.11) will follow if we prove: for any

α′
i = (αi1, . . . , αiq) ∈ R, i = 1, 2, 3,{

α′
1 Yn1(θ0)α2, α

′
3Zn1(θ0)

}
→D

{
α′

1

∫ 1

0

Φ(t)Φ(t)′dtα2EK
2(w1), α

′
3

∫ 1

0

Φ(t)dUt

}
. (C.16)

Recall Ψ(t) = h̃(Xt, θ0). The proof of (C.16) is standard, which follows from the

classical result on the convergence to stochastic integrals [e.g., Kurtz and Protter

(1991)] and the fact: instead of (2.4), we have

(
1√
n

⌊nt⌋∑
i=1

K(wi)ui,
1√
n

⌊nt⌋∑
i=1

ϵi,
1√
n

⌊nt⌋∑
i=1

ϵ−i,
1

dn
x[nt]

)
⇒
(
Ut, Bt, B−t, Xt

)
,

on DR4 [0,∞), where Bt, B−t and Xt are given as in Section 2.2 and (Ut, Bt)t≥0

is a bivariate Brownian motion with covariance matrix:

Ω =

(
σ̃2 ρ

ρ 1

)
, where σ̃2 = E

[
u1K(w1)

]2
and ρ = E

[
ϵ1u1K(w1)

]
.

The proof of Theorem 3 is complete.
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