
Statistica Sinica 32 (2022), 1701-1721
doi:https://doi.org/10.5705/ss.202020.0398

METRIC LEARNING VIA CROSS-VALIDATION

Linlin Dai, Kani Chen, Gang Li and Yuanyuan Lin

Southwestern University of Finance and Economics, Hong Kong University

of Science and Technology, University of California, Los Angeles and

The Chinese University of Hong Kong

Abstract: In this paper, we propose a cross-validation metric learning approach to

learn a distance metric for dimension reduction in the multiple-index model. We

minimize a leave-one-out cross-validation-type loss function, where the unknown

link function is approximated by a metric-based kernel-smoothing function. To the

best of our knowledge, we are the first to reduce the dimensionality of multiple-

index models in a framework of metric learning. The resulting metric contains

crucial information on both the central mean subspace and the optimal kernel-

smoothing bandwidth. Under weak assumptions on the design of the predictors,

we establish asymptotic theories for the consistency and convergence rate of the

estimated directions, as well as the optimal rate of the bandwidth. Furthermore,

we develop a novel estimation procedure to determine the structural dimension of

the central mean subspace. The proposed approach is relatively easy to implement

numerically by employing fast gradient-based algorithms. Various empirical studies

illustrate its advantages over other existing methods.

Key words and phrases: Multiple-index model, nonparametric regression, sufficient

dimension reduction.

1. Introduction

The performance of many successful machine learning algorithms, such as

the k-nearest neighbors (Cover and Hart (1967)) (KNN) and support vector ma-

chine (Cortes and Vapnik (1995)), rely heavily on the notion of a metric or a

distance between pairs of inputs. Here, the Euclidean distance is a commonly

used distance metric. However, it ignores how samples are distributed in the fea-

ture space, especially in high-dimensional settings. A great deal of effort has been

devoted to learning a proper pseudometric or Mahalanobis distance in settings

such as classification, regression, and clustering, among others. A comprehensive

discussion may be found in Bellet, Habrard and Sebban (2013). It is known that

learning a Mahalanobis metric is equivalent to identifying a linear transformation
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of the feature vectors (or predictors), and applying the standard Euclidean metric

to the transformed data (Xing et al. (2003)). When the linear projection is of

lower rank, the metric is particularly important for data visualization, dimension

reduction, and algorithm efficiency. Specifically, for two entries x,x′ ∈ Rp, the

Mahalanobis metric

dM(x,x′) ≡
√

(x− x′)>M(x− x′) = ‖A>(x− x′)‖,

for a p × p positive semi-definite matrix M, where the second equality is the

result of the decomposition that M = AA>, for some A with rank(A) ≤ p.

Goldberger et al. (2005) presented a neighborhood components analysis by maxi-

mizing a variant of the leave-one-out KNN score using gradient-based algorithms,

which is conceptually appealing and effective for a low-rank A. Nevertheless, its

theoretical justifications are generally quite challenging. The large margin near-

est neighbors algorithm (LMNN) by Weinberger, Blitzer and Saul (2006) and

Weinberger and Saul (2009) directly learns a metric M to determine the “target

neighbors” in a KNN classification based on certain local pairs or triples con-

ditions. For regression problems, Weinberger and Tesauro (2007) constructed a

novel metric learning algorithm for a kernel regression, without any theoretical

justification for the resulting metric; Noh et al. (2017) investigated an effective

approach for reducing the bias and mean squared error in kernel regressions under

Gaussian models. Though both works studied metric-learning for kernel regres-

sions, they do not consider the problems for multiple-index models, which have

received much attention and have been investigated intensively in many scientific

fields.

In this study, we focus on dimension reduction for the multiple-index model

in a framework of metric learning. Specifically, for a response Y ∈ R and a vector

of predictors X ∈ Rp, we concentrate on reducing the dimensionality of the mean

function f(X) = E(Y |X), leaving the rest of Y |X as “nuisance parameters.” A

reduced-rank structure of the regressors f(x) leads to the popular multiple-index

model

Y = g(L>0 X) + ε, (1.1)

where g : Rr0 → R is an unknown link function (r0 ≤ p), L0 is a p × r0 column

orthogonal matrix, and the noise ε satisfies E(ε|X) = 0, almost surely. The

subspace spanned by the column vectors of L0 is referred to as the central mean

subspace (CMS), as introduced by Cook and Li (2002), and is of major importance

in the literature. It is well defined and is unique under mild conditions. We refer

to r0 as the structural dimension of the CMS, and to the column vectors of L0



CROSS-VALIDATION METRIC LEARNING 1703

as the directions in the CMS.

Note that there is a large body of literature in statistics on dimension reduc-

tion for model (1.1) and its variants. One of the most fundamental and powerful

methods is the seminal sliced inverse regression (SIR), invented by Li (1991). It

can be used to find vectors outside the CMS, but inside the central subspace, the

smallest subspace capturing the complete dependence of Y on X (Cook and Li

(2002)). Li (1991) also developed a sequential testing procedure to determine the

dimension of the CMS when r0 is unknown. Since then, many state-of-the-art

inverse regression-based approaches have been developed, such as the sliced av-

erage variance estimation (SAVE) (Shao, Cook and Weisberg (2007)); see Bura

and Cook (2001a), Bura (2003), Cook and Li (2004), Cook and Ni (2005), and

Yin and Cook (2006), among many others. These methods are computationally

simple, and thus widely applied in data mining. However, it is known that the

inverse regression-based methods usually need strong assumptions on the design

of X, such as the elliptical symmetry condition, similar to the requirement in

the principal Hessian directions method (pHd) (Li (1992); Cook (1998)). As an

important alternative, Xia et al. (2002) invented a novel minimum average vari-

ance estimation method (MAVE) based on local linear smoothing. Based on the

MAVE, they also proposed a consistent estimate for the dimension of the CMS.

Other related approaches, including the average derivative estimation (Härdle and

Stoker (1989)), structure adaptive approach (SA) (Hristache et al. (2001)), and

outer products of gradients (OPG) (Samarov (1993)), are designed to estimate

the derivative of the regressor g(L>0 x) pertaining to the CMS. More advance-

ments can be found in Xia (2008), Wang and Xia (2008), Dalalyan, Juditsky and

Spokoiny (2008), Chen, Hall and Müller (2011), Alquier and Biau (2013), and

Akritas (2016). Overall, compared with the inverse regression, direct regression

methods are easy to implement and are superior in terms of their finite-sample

performance (Hristache et al. (2001); Xia et al. (2002); Xia (2007)). With the

bandwidth carefully chosen, direct regression methods report elegant results. Ma

and Zhu (2012) provided a novel semiparametric approach to estimate the CMS

by solving estimating equations, and later studied its efficiency issues (Ma and

Zhu (2014)). Recently, an important discussion paper (Cannings and Samworth

(2017)) introduced a general classifier for high-dimensional data using random

projections.

In this paper, we propose the cross-validation metric learning (CVML) ap-

proach to learn a distance metric that contains crucial information on the CMS

and the nonparametric link function in model (1.1). For any fixed dimension

r, such that 1 ≤ r ≤ p, the CVML procedure minimizes a leave-one-out cross-
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validation-type sum of squared errors over matrix A ∈ Rp×r, in which the link

function is approximated by the Nadaraya-Watson kernel estimator. One can

thus estimate the directions of the CMS and the bandwidth of the link function

simultaneously using the singular value decomposition M̂ = ÂÂ> = L̂1Ĥ
−2L̂>1 .

When r = r0, the CVML estimate for the directions of the CMS is shown to

be consistent at a certain convergence rate. Furthermore, a sequential procedure

is developed to determine the dimension r0 of the CMS when it is unknown.

The results of simulation studies show that the proposal outperforms other al-

ternatives in terms of estimating the directions and dimension of the CMS. The

CVML procedure is model-free, in the sense that its validity does not rely on

any specific functional relation between the response variable and the predictors,

making it practically appealing. Furthermore, unlike many other metric learning

algorithms, such as the methods developed in Xing et al. (2003), Weinberger,

Blitzer and Saul (2006), and Weinberger and Saul (2009), the loss function of

the proposed CVML is differentiable and free of local constraints. As a result,

computation of the proposal is straightforward, with the help of gradient-based

algorithms.

The rest of the paper is organized as follows. Section 2 describes the proposed

CVML procedure for estimating the directions and the dimension of the CMS,

and presents the theoretical results for the consistency, asymptotic expansion and

convergence rate. The results of simulations and real-data applications are given

in Sections 3 and 4, respectively. Assumptions and remarks are summarized in

the Appendix. Technical proofs are provided in the Supplementary Material.

2. Cross-Validation Metric Learning Method

Suppose that {(Yi,Xi), i = 1, . . . , n} are independent random copies of (Y,X)

taking values in R× Rp, and εi are random errors such that

Yi = g(L>0 Xi) + εi, i = 1, . . . , n, (2.1)

where Xi is supported by a bounded set Ω.

Note that model (1.1) is not uniquely defined. This is because for any or-

thonormal transformation Q ∈ Rr0×r0 ,

f(x) = g(L>0 x) = g(Q>QL>0 x) ≡ g1(L∗>0 x),

where g1(u) = g(Q>u) and L∗0 = L0Q
>. Although L0 is not unique, the subspace

spanned by the column vectors of L0, denoted by S(L0), is unique, with the



CROSS-VALIDATION METRIC LEARNING 1705

projection matrix L0L
>
0 . In this paper, S(L0) is referred to as the CMS.

2.1. Estimating the directions in the CMS

Given the true projection matrix L0, the regression function can be written

as

f(x) = E(Y |X− x ∈ L⊥0 ),

where L⊥0 denotes the space spanned by vectors perpendicular to S(L0). We

estimate f(·) using the kernel smoothing method, as follows.

For any fixed 1 ≤ r ≤ p, set M = L1H
−2L>1 , where L1 is of size p × r

satisfying L>1 L1 = Ir, and H = diag(h1, . . . , hr) is the bandwidth matrix with

h1 > 0, . . . , hr > 0. Hence, the matrix M is positive semi-definite, and can be

viewed as a distance metric between two samples. The kernel function based on

the distance metric M is defined as

KM(t) =
1

h1 · · ·hr
K(t>Mt) =

1

h1 · · ·hr
K(t>L1H

−2L>1 t), t ∈ Rp,

where K(·) is a univariate kernel function defined on [0,∞), with a bounded

support satisfying
∫
s∈Rr K(‖s‖2)ds = 1.

Heuristically, the Nadaraya-Watson kernel-smoothing estimator of f(x) is

f̂n(x) =

∑n
i=1 YiKM(Xi − x)∑n
i=1KM(Xi − x)

, for any x ∈ Rp,

where M is unknown and to be estimated. Thus, we define

K∗j,i =
KM(Xj −Xi)∑
l 6=iKM(Xl −Xi)

, for j 6= i,

and K∗i,i = 0. Note that
∑n

j=1K
∗
j,i = 1 and K∗j,i 6= K∗i,j , for any i 6= j. Let Sp+

be the cone of symmetric positive semi-definite p × p real-valued matrices. The

proposed estimator of M is the minimizer of

CMn(M) =
1

n

n∑
i=1

{f̂ (−i)(Xi)− Yi}2w(Xi), (2.2)

over all M ∈ Sp+, denoted by M̂, where

f̂ (−i)(Xi) =

n∑
j=1

YjK
∗
j,i =

∑
j 6=i YjKM(Xj −Xi)∑
j 6=iKM(Xj −Xi)

, (2.3)
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and w(·) is a bounded and positive weight function with support Ω◦ strictly inside

Ω. The objective function (2.2) is essentially a leave-one-out cross-validation

based on the squared errors, and thus the proposed procedure is called cross-

validation metric learning. The weight function w(·) is introduced to handle the

boundary effect by letting w(x) = 0 if infy∈∂Ω ‖x − y‖ < c, for some constant

c > 0, where ∂Ω is the boundary of Ω.

In practise, to obtain M̂, we remove the constraint M ∈ Sp+ using the decom-

position M = AA>, for all A ∈ Rp×r. Let vec(A) denote the vectorization of a

matrix A by its column vectors, and let A1 ⊗A2 denote the Kronecker product

of A1 and A2. Then, (2.3) can be written as

f̂ (−i)(Xi) =

n∑
j=1

YjK
∗
j,i =

∑
j 6=i YjK(‖(Ir ⊗X>ij)vec(A)‖2)∑
j 6=iK(‖(Ir ⊗X>ij)vec(A)‖2)

,

where Xij ≡ Xj−Xi. Taking the derivative of (2.2) with respect to vec(A) yields

a gradient rule:

∂CMn(M)

∂vec(A)
= − 2

n

n∑
i=1

∂f̂ (−i)(Xi)

∂vec(A)
{Yi − f̂ (−i)(Xi)}w(Xi), (2.4)

where

∂f̂ (−i)(Xi)

∂vec(A)
=

2
∑

j 6=i K̇(‖A>Xij‖2){Yj − f̂ (−i)(Xi)}(Ir ⊗XijX
>
ij)vec(A)∑

j 6=iK(‖A>Xij‖2)
.

Here, K̇(·) denotes the first derivative of the kernel function K(·). Therefore,

the numerical computation of the proposed CVML approach can be carried out

by employing gradient-based algorithms, such as the conjugate gradient or gra-

dient descent algorithms. In particular, when r � p, the computation would

be relatively efficient. To further improve the computational efficiency, one may

also consider using algorithms such as the stochastic gradient decent. Once M̂

is obtained, the estimated bandwidth matrix Ĥ and the directions L̂1 can be

calculated immediately using the singular value decomposition of M̂.

The detailed estimation procedure for the proposed CVML method is sum-

marized in Algorithm 1. This procedure is free of local pairwise constraints

that are required in many other metric learning methods. Moreover, the pro-

cedure to simultaneously estimate the effective directions and the bandwidths

avoids the bias problem arising from using two separate cost functions to estimate

the directions and the link function in many popular methods; see Hall (1989),
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Härdle and Stoker (1989), and Carroll et al. (1997).

Algorithm 1: Estimation of directions and bandwidth.

Data: X, y, r

Result: L̂1, Ĥ

Get Â by minimizing (2.2) with the gradient (2.4);

Calculate M̂ = ÂÂ>;

Singular value decomposition M̂ = L̂1Λ̂L̂>1 ;

Ĥ = Λ̂−1/2;

Remark 1. Härdle, Hall and Ichimura (1993) first applied the cross-validation

technique to estimate the single-index model (r0 = 1), and the estimator is shown

to have good asymptotic properties. The proposed method is similar, but also

substantially different from their method. The cross-validation method cannot

be extended easily to multiple-index models, because it uses a grid search algo-

rithm to estimate the directions and bandwidths, which is inefficient and costly in

higher-dimensional settings. In addition, instead of estimating the bandwidths

and directions separately, we simply regard the fusion matrix M as a Maha-

lanobis metric. A relevant work to Algorithm 1 is Weinberger and Tesauro (2007).

Nonetheless, the bandwidth and directions in the CMS are not studied in their

setup, and no theoretical justification for the properties of M̂ is established. They

do not consider how to estimate the desired dimensionality when it is unknown.

In contrast to Weinberger and Tesauro (2007) and Noh et al. (2017), we pro-

vide an in-depth study of the structure of M̂ (eigenvalues and eigenvectors) in a

statistical way and attempt to apply it to multiple-index models.

Remark 2. In contrast to some SIR-based methods (Li (1991, 1992); Cook

(1998)), the proposed method is free of the linearity condition and constant co-

variance condition; see condition (C1) in the Appendix. Methods such as the

seminal MAVE and SA methods usually perform a nonparametric kernel esti-

mation procedure to estimate the link function or its derivative, which involves

selecting bandwidths to be used in estimating effective directions. This is not

needed in the proposed CVML approach, because it directly obtains a data-

driven bandwidth. For all large n, the estimated bandwidth is shown to be at

the same rate as the theoretically optimal bandwidth in the sense of minimizing

the mean weighted integrated squared errors
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x∈Rp

E{f̂n(x)− f(x)}2w(x)fX(x)dx. (2.5)

Here and after, ‖A‖ denotes the Frobenius norm for matrix A, and ġ(x) and

g̈(x) denote the first and second derivatives of g(·) at x, respectively.

Theorem 1 (Consistency). Suppose that the true dimension r0 of the CMS is

known and conditions (C1)–(C5) in the Appendix hold. Define h = (h1, . . . , hr0)
>.

If ‖h‖ → 0 and h1h2 · · ·hr0 > n−δ, for some 0 < δ < 1, then L̂1 → L∗ in proba-

bility as n→∞, where S(L∗) = S(L0).

Theorem 1 states that under certain conditions, the estimated direction L̂1

converges to the directions in the true CMS. In other words, the CVML method

is able to estimate the directions in the CMS consistently. To determine the

convergence rate, we first present the asymptotic expansion of CMn(M). Let

R1(K)Ir0 =

∫
s∈Rr0

ss>K(‖s‖2)ds, R2(K) =

∫
s∈Rr0

K2(‖s‖2)ds.

Theorem 2 (Asymptotic expansion). Suppose that the true dimension r0 of the

CMS is known and conditions (C1)–(C5) in the Appendix hold. Let

L =
(
L1 L2

)
be a p × p orthonormal matrix, where L1 ∈ Rp×r0 and L2 is the augmented

orthonormal basis in Rp satisfying ‖L>0 L2‖ → 0. Let fr0(·) be the density of L>0 X.

Then, uniformly over {h : ‖h‖ ≤ δn} for any δn → 0, and h1h2 · · ·hr0 > n−δ for

some 0 < δ < 1,

CMn(M)− η0 =

∫
t∈Rp

{ψ(t,h,L1)}2fX(t)
w(t)

f2
r0(L

>
0 t)

dt +
R2(K)V0

nh1 · · ·hr0

+ op

(
‖L>0 L2‖2 + ‖h‖4 +

1

nh1 · · ·hr0

)
, (2.6)

where η0 = n−1
∑n

i=1w(Xi)ε
2
i ,

ψ(t,h,L1) = ġ(L>0 t)>L>0 L2b(L>0 t) +R1(K)tr{HL>1 L0A(L>0 t)L>0 L1H},

A(L>0 t) =
1

2
g̈(L>0 t)fr0(L

>
0 t) + ġ(L>0 t)ḟr0(L

>
0 t)>, t ∈ Rp,

b(L>0 t) = Eu2|u1
(U2 − L⊥>0 t|U1 = L>0 t)fr0(L

>
0 t),

V0 =

∫
t∈Rp

σ2(L>0 t)
fX(t)w(t)

fr0(L
>
0 t)

dt.
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Remark 3. The asymptotic expansion in (2.6) offers some insight into the CVML

method. The first term on the right-hand side of (2.6) is the bias term, and the

second term is the variance term. For instance, when the identifiability condition

(C4) in the Appendix is violated, there exists a unit vector `1 ∈ Rp, such that

`>1 L0ġ(L>0 t) = 0, for all t ∈ Rp. Then, `>1 L0A(L>0 t)L>0 `1 = 0. The bandwidth

along the direction `1 need not be small. In a special case that g(·) is constant,

and thus A(L>0 t) = 0, the bias term is irrelevant to the bandwidth h, and only

the variance term R2(K)V0/(nh1 · · ·hr0) plays a role in CMn(M) − η0. As a

result, the estimated bandwidth tends to be large and the estimate of the link

function reduces to a constant.

The following corollary presents the rate of convergence of L̂1. Define the

distance between the subspaces spanned by L0 and L̂1 as m(L̂1,L0) = ‖L>0 (Ip −
L̂1L̂

>
1 )‖, where Ip is a p× p identity matrix.

Corollary 1 (Rate of convergence). Suppose that the true dimension r0 of the

CMS is known and conditions (C1)–(C5) in the Appendix hold. Then,

m(L̂1,L0) = Op(‖h‖2).

Moreover, the resulting bandwidth minimizing (2.6) is at the order of n−1/(r0+4).

Recall that the theoretically optimal bandwidth for the nonparametric esti-

mation in the sense of minimizing (2.5) is also at the order of n−1/(r0+4). This

implies that we can simultaneously estimate the central mean subspace and the

link function with the optimal rate of bandwidth.

On the other hand, it can be seen from the asymptotic expansion (2.6) in

Theorem 2 that the esimated directions in the CMS are only relevant to the bias

term. As a result, the convergence rate of L̂1 is at the order of ‖h‖2. Intuitively,

a narrower bandwidth would result in a faster convergence rate. This finding

induces the following correction method that allows a faster rate of convergence.

Instead of minimizing CMn(M), one can minimize

CMn(M)− R2(K)V̂0

nh1 · · ·hr0

over M, where V̂0 is an estimate of V0. Recall that V0 is related to the den-

sity fX(x) and the variance function σ2(x), which are usually unknown. The

density fX(x) can be estimated using conventional density estimation methods.

The variance function σ2(·) can be estimated by referring to Härdle, Hall and

Ichimura (1993). The correction method improves the rate of convergence and is
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of theoretical interest.

The following remark provides greater insight into the convergence rate and

the optimal rate of the bandwidth in Corollary 1.

Remark 4. Let α = (α1, . . . , αr0)
>, h1 = α1n

−1/(r0+4), . . . , hr0 =αr0n
−1/(r0+4),

L>0 L1 =D̃r0×r0 , which is an orthonormal matrix, and L>0 L2 =n−2/(r0+4)Dr0×(p−r0).

The leading term of the right-hand side of (2.6) is

n−4/(r0+4)

{∫
t∈Rp

[
ġ(L>0 t)>Db(L>0 t)

+R1(K)tr
{

diag(α)D̃>A(L>0 t)D̃diag(α)
}]2
× fX(t)w(t)

f2
r0(L

>
0 t)

dt +
R2(K)V0

α1 · · ·αr0

}
.

(2.7)

Denote the minimizer of (2.7) as α∗,D∗, D̃∗. As a result, the optimal bandwidth

ĥ = n−1/(r0+4)α∗{1 + o(1)} and L̂1 = (L0 − n−2/(r0+4)L̂⊥1 D>∗ )D̃−1
∗ {1 + o(1)}.

2.2. Determining the dimension of the CMS

The true dimension r0 is crucial to the estimation of the CMS, but it is often

unknown in practice. Determining r0 is also a nontrivial task. Many existing

approaches used to determine the structural dimension of the CMS are inspired

by the equivalence between dimension reduction and matrix eigen-decomposition.

The sequential test methods (Li (1991); Bura and Cook (2001b); Cook and Ni

(2005)) generally cannot give a consistent r̂ owing to the type-I error. The boot-

strapping methods (Ye and Weiss (2003); Zhu and Zeng (2006); Luo and Li

(2016)) can determine the dimension in a data-driven manner, but are computa-

tionally burdensome. The BIC criterion (Zhu, Miao and Peng (2006); Zhu and

Zhu (2007)) and the ratio estimation methods (Luo, Wang and Tsai (2009); Xia,

Xu, and Zhu (2015); Zhu, Kang and Liu (2019); Zhu et al. (2020)) are able to

produce consistent estimations of r0 and are computationally attractive. The

sparse eigen-decomposition proposed by Zhu, Yu and Zhu (2010) can estimate

directions and the structural dimension of the CMS simultaneously. However,

the aforementioned methods rely on a relevant kernel matrix, usually obtained

by inverse regression-based estimation procedures, and thus the link function is

lost. In a nonparametric regression framework, Xia et al. (2002) proposed de-

termining r0 using a leave-one-out cross-validation procedure based on MAVE

estimated directions. Inspired by the novel ideas of Xia et al. (2002) and the

ratio estimation approaches, we propose the CVML method for determining the

dimension of the CMS.
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Proposition 1. Suppose that the conditions (C1)–(C5) in the Appendix hold.

Under model (1.1), as n→∞, with probability tending to one,

(i) CMn(M̂r)/CMn(M̂r0) > 1, for all 1 ≤ r < r0;

(ii) CMn(M̂r)/CMn(M̂r0)→ 1, for all r0 ≤ r ≤ p.

Proposition 1 shows that CMn(M̂r) > CMn(M̂r0), for all r < r0, because of

lack of fit. Intuitively, CMn(M̂r) would decrease as r increases until it arrived at

r0. Therefore, we attempt to track the first time that the ratio CMn(M̂r)/CMn(

M̂r+1) hits one, and estimate the dimension of CMS as

r̂ ≡ min
0≤r≤p−1

{
r :

∣∣∣∣ CMn(M̂r)

CMn(M̂r+1)
− 1

∣∣∣∣ < τn

}
,

where τn is positive and converges to zero at a slow rate and CMn(M̂0) = n−1(yi−
ȳ)2. The choice of τn is given in Section 3. The estimation procedure is detailed

in Algorithm 2.

Remark 5. The estimation procedure ranges r from 1 to p. The method in Xia

et al. (2002) involves calculating cross-validation errors for all r ∈ {1, . . . , p}. Our

proposed approach stops at a certain r < p and, thus, possibly avoids the com-

putational burden caused by the calculation of M̂r for some large r. In practise,

to ensure the estimation accuracy, one can require that the procedure stops only

when two consecutive ratios are close to one or, equivalently, modify the stopping

condition as |CMn(M̂r)/CMn(M̂r+1)−1| < τn and |CMn(M̂r+1)/CMn(M̂r+2)−
1| < τn, for some fixed r.

The empirical performance of the proposed method in terms of determining

the dimension of the CMS is shown in the next section.

3. Simulations

In this section, we examine the performance of the proposed CVML method

in terms of estimating the directions in the CMS and determining the structural

dimension of the CMS, respectively. We adopt the Gaussian-type kernel function

K(u) = exp(−(1/2)u>Mu). For simplicity, the weight function w(x) is set to

be one, and thus all the observations have equal weights. The CVML approach

is implemented with the help of the limited-memory Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm in the lbfgs package in R. Let ε follow the standard

normal distribution N(0, 1). We generate models from the following cases:



1712 DAI ET AL.

Algorithm 2: Determining the dimension of the CMS.

Data: X, y
Result: r̂, M̂r̂

Initialization: τn, r = 1, ∆ = 10, Err0 = n−1
∑n

i=1(yi − ȳ)2;
while |∆− 1| > τn do

if r=p+1 then
print r̂ = p, break ;

else

Calculate M̂r by Algorithm 1, Err1 = CMn(M̂r);
∆ = Err0/Err1, Err0 = Err1;
r = r + 1;

end

end
r̂ = r − 2.

Example 1. We generate Xi from the standard normal distribution N(0, 1)

independently; we generate Y from

Model 1: Y =
X1

0.5 + (X2 + 1.5)2
+ 0.5ε,

Model 2: Y = X1(X1 +X2 + 1) + 0.5ε,

where Model 1 and Model 2 follow those of, for example, Li (1991) and Xia et al.

(2002). The sample size is set at n = 200 or n = 400 and p = 10 or p = 30. In

each case, 100 replications are drawn. Let `1 = (1, 0, . . . , 0)>, `2 = (0, 1, . . . , 0)>,

and L0 = (`1, `2).

Example 2. We generate Xi from the uniform distribution U(0, 1). The response

variable Y is generated from

Model 3: Y = sin(2π`>1 X) + 4(`>2 X− 0.5)2 + σε. (3.1)

Let `1 = (1,−1, 1, 0, . . . , 0)>/
√

3 and `2 = (1, 1, 0, . . . , 0)>/
√

2.

Example 3. Consider the model:

Model 4: Y = 1 + 2(`>1 X)(`>2 X)2 + 2.5 exp{−(`>3 X)2}+ σε,

where Xi is generated from U(−1, 1). Let `1 = (1,−1, 1, 0, . . . , 0)>/
√

3, `2 =

(1, 1, 0, 1, 0, . . . , 0)>/
√

3, and `3 = (−1, 0, 1, 1, 0, . . . , 0)>/
√

3.

With regard to estimating the directions in the CMS, we compare the results

of the proposed methods with those of the MAVE, OPG, SIR, SAVE and pHd
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approaches. The means and standard deviations of the estimation errorm(L̂1,L0)

for Models 1–4 are presented in Tables 1 and 2. Table 3 summarizes the means of

the estimated bandwidths for Model 3, with the sample size n varying from 200

to 1,600. It is seen clearly from Table 1 that the estimation errors of the proposed

CVML estimates are usually smaller than those of the alternatives for Models 1

and 2, especially when p is large and n is small. The results in Table 2 also

indicate that the CVML method performs comparably with existing methods in

terms of estimating the directions of the CMS. In addition, Table 3 shows that

the estimated bandwidths obtained by the CVML method become smaller as the

sample size increases.

We also compare the performance of the proposed method in terms of deter-

mining the structural dimension with that of the MAVE-based method (MAVE,

Xia et al. 2002), the ridge-type ratio estimation (RRE, Xia, Xu, and Zhu 2015),

and the BIC (BIC, Zhu, Miao and Peng 2006). For those methods that involve

a tuning parameter, we use the values recommended in the literature. In partic-

ular, we take the ridge value cn = log(n)/(10
√
n) for the RRE and the penalty

value αn =
√
n for the BIC. Based on our limited simulation experiments, we

recommend τn = 2.5n−1/3 for the CVML method. The frequencies of the esti-

mated dimensions for Models 1–4 are presented in Table 4. Figure 1 presents

the box plots of the ratio CMn(Mr)/CMn(Mr+1) for Models 3 and 4, with red

horizontal straight lines representing y = 1. It is seen from the results in Table

4 that the CVML performs comparably with the MAVE and outperforms the

other competitors, especially for Model 4, where the true dimension of the CMS

is three. Figure 1 verifies the feasibility of the proposed estimation procedure.

Overall, the simulation results support our theoretical results, and the pro-

posed CVML works reasonably well in terms of dimension reduction, including

estimating both the directions and the dimension of the CMS.

4. Real-Data Illustration

4.1. London air quality data set

Air pollution may cause diseases, allergies, and even death. It occurs when

harmful substances, including particulates, liquid droplets, gases, and chemi-

cal molecules produced by human activity, are introduced into the atmosphere.

Pollutants are classified mainly as primary and secondary substances. Primary

pollutants are usually generated from a chemical process, such as the sulfur diox-

ide released from factories. Secondary pollutants form in the air when primary

pollutants react or interact. Ground-level ozone (O3) is a prominent example of
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Table 1. Means and standard deviations (in parentheses) of m(L̂1,L0) for Model 1 and
2.

Model p n CVML MAVE OPG SIR pHd SAVE
1 10 200 0.402 0.552 0.499 0.567 0.551 1.327

(0.095) (0.170) (0.154) (0.134) (0.104) (0.058)
400 0.223 0.319 0.279 0.375 0.385 1.227

(0.049) (0.069) (0.070) (0.071) (0.072) (0.114)
30 200 0.581 1.021 1.038 1.030 1.095 1.389

(0.058) (0.110) (0.111) (0.109) (0.103) (0.018)
400 0.475 0.785 0.779 0.728 0.778 1.400

(0.051) (0.168) (0.182) (0.089) (0.098) (0.011)
2 10 200 0.365 0.390 0.363 0.740 0.811 1.058

(0.102) (0.122) (0.123) (0.194) (0.186) (0.086)
400 0.240 0.242 0.210 0.484 0.628 0.961

(0.061) (0.065) (0.050) (0.127) (0.217) (0.104)
30 200 0.511 0.770 0.761 1.165 1.101 1.372

(0.065) (0.130) (0.121) (0.113) (0.038) (0.038)
400 0.475 0.785 0.779 0.728 0.778 1.400

(0.051) (0.168) (0.182) (0.089) (0.098) (0.011)

Table 2. Means and standard deviations (in parentheses) of m(L̂1,L0) for Model 3 and
4 with σ = 0.2.

Model p n CVML MAVE OPG SIR pHd SAVE
3 10 200 0.144 0.142 0.143 0.958 0.355 0.983

(0.064) (0.039) (0.039) (0.090) (0.069) (0.078)
400 0.076 0.091 0.089 0.925 0.249 0.672

(0.021) (0.025) (0.025) (0.106) (0.035) (0.214)
30 200 0.275 0.354 0.402 1.132 0.753 1.342

(0.048) (0.076) (0.079) (0.067) (0.108) (0.054)
400 0.168 0.168 0.183 1.043 0.479 1.223

(0.022) (0.027) (0.027) (0.041) (0.052) (0.078)
4 10 200 0.417 0.657 0.619 1.269 1.082 1.183

(0.125) (0.273) (0.298) (0.099) (0.127) (0.115)
400 0.209 0.222 0.202 1.241 0.999 1.066

(0.047) (0.047) (0.039) (0.102) (0.120) (0.101)
30 200 0.598 0.968 0.969 1.614 1.224 1.537

(0.119) (0.104) (0.103) (0.054) (0.052) (0.075)
400 0.499 1.034 1.026 1.475 1.287 1.448

(0.099) (0.141) (0.188) (0.050) (0.075) (0.072)

a secondary pollutant.

In this study, we attempt to exploit the relationship between primary pol-

lutants and the secondary pollutant O3, based on the London air quality data

in the R package openair. After deleting some missing data, the data set is col-
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Table 3. Means and standard deviations (in parentheses) of estimated bandwidths for
Model 3.

p σ n = 200 n = 400 n = 800 n = 1600

5 0.1 ĥ1 × 10 0.356 0.295 0.285 0.275
(0.079) (0.056) (0.058) (0.044)

ĥ2 × 10 0.519 0.420 0.432 0.420
(0.097) (0.061) (0.051) (0.043)

0.2 ĥ1 × 10 0.469 0.439 0.397 0.359
(0.081) (0.039) (0.026) (0.020)

ĥ2 × 10 0.698 0.609 0.548 0.494
(0.096) (0.059) (0.037) (0.036)

10 0.1 ĥ1 × 10 0.313 0.291 0.274 0.266
(0.056) (0.053) (0.052) (0.050)

ĥ2 × 10 0.452 0.415 0.414 0.404
(0.072) (0.048) (0.047) (0.040)

0.2 ĥ1 × 10 0.327 0.323 0.300 0.288
(0.073) (0.055) (0.053) (0.052)

ĥ2 × 10 0.483 0.471 0.460 0.443
(0.099) (0.056) (0.043) (0.034)

2
4

6
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10

r0 = 2

r

0 1 2 3 4 5 6 7 8 9

1
2

3
4
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7
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r

0 1 2 3 4 5 6 7 8 9

Figure 1. Box plots of the ratio CMn(Mr)/CMn(Mr+1) for Model 3 (left) and Model 4
(right) with n = 400 and p = 10.

lected from May 1, 1998, to September 30, 2004, with hourly updated records of

wind speed (x1), wind direction (x2), oxides of nitrogen concentration NOx (x3),

nitrogen dioxide concentration NO2 (x4), particulate PM10 in ug/m3 (x5), sulfur

dioxide concentration SO2 (x6), carbon monoxide concentration CO (x7), partic-

ulate PM2.5 in ug/m3 (x8), and Ozone concentration (Y ). We convert the hourly

level data to its daily average for all variables, and apply the CVML method to
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Table 4. Frequencies of estimated dimension for Models 1–4 with p = 10.

Model n = 200 n = 400
r̂ < r0 r̂ = r0 r̂ > r0 r̂ < r0 r̂ = r0 r̂ > r0

1 CVML 0.04 0.87 0.09 0 1 0
MAVE 0 0.77 0.23 0 0.99 0.01

BIC 0 0 1 0 0 1
RRE 0.44 0.48 0.08 0.27 0.72 0.01

2 CVML 0.24 0.73 0.03 0.05 0.95 0
MAVE 0.19 0.81 0 0.03 0.97 0

BIC 0 0 1 0 0 1
RRE 0.44 0.31 0.25 0.44 0.54 0.02

3 CVML 0 1 0 0 1 0
MAVE 0 1 0 0 1 0

BIC 0 0 1 0 0 1
RRE 0.98 0.01 0.01 0.99 0.01 0

4 CVML 0.16 0.82 0.02 0 1 0
MAVE 0.92 0.08 0 0.71 0.29 0.01

BIC 0 0.56 0.44 0 0.15 0.85
RRE 0.80 0.05 0.15 0.99 0.01 0

Table 5. Estimated directions in CMS for London air quality data set.

Direction x1 x2 x3 x4 x5 x6 x7 x8
(ws) (wd) (NOx) (NO2) (PM10) (SO2) (CO) (PM2.5)

ˆ̀
1 −0.045 0.006 0.948 −0.271 0.000 0.012 −0.161 −0.006

the treated daily level data set.

The structural dimension estimated by the CVML procedure is r̂ = 1. From

Table 5, the direction estimated by the CVML approach indicates that NOx

and NO2 have significant effects on O3 concentration. This provides empirical

evidence for the claim that secondary pollutants are usually products of the reac-

tions of primary pollutants under certain environmental conditions. Nevertheless,

the effects of wind speed, wind direction, and particulates seem not to be very

significant.

4.2. Beijing PM2.5 data set

Many cities experience hazy weather. The PM2.5—particulate matter less

than 2.5 µm in diameter—is known to influence human health and the atmo-

spheric climate. Epidemiological experts concluded that exposure to PM2.5

over a few hours to weeks can cause cardiovascular disease, and longer-term

exposure increases the risk for cardiovascular mortality and even shortens the

life span. In this real-data analysis, we investigate the factors that affect the
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Table 6. Estimated directions in CMS for Beijing PM2.5 data set.

Direction x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
(PM10) (SO2) (NO2) (CO) (O3) (temp) (pres) (dewp) (preci) (ws)

ˆ̀
1 −0.540 0.002 0.079 −0.128 −0.029 0.410 −0.034 −0.717 0.025 0.003

ˆ̀
2 −0.795 −0.139 −0.231 0.040 −0.109 −0.209 −0.034 0.446 −0.193 0.018

ˆ̀
3 0.091 −0.504 −0.231 −0.492 −0.136 0.403 −0.159 0.250 0.397 −0.125

PM2.5 concentration. We analyze the Beijing PM2.5 data set collected at the

Aotizhongxin air-quality monitoring site. The data set is downloadable from UCI

database with the link https://archive.ics.uci.edu/ml/datasets/Beijing+

Multi-Site+Air-Quality+Data. The PM2.5 (Y ) data ranging from March 2013

to February 2017 are converted to daily averaged records, with potential affecting

factors PM10 (x1), SO2 concentration (x2), NO2 concentration (x3), CO concen-

tration (x4), O3 concentration (x5) in ug/m3, temperature (x6), pressure (x7),

dew point temperature (x8), precipitation (x9), and wind speed (x10).

The structural dimension estimated by the CVML method is r̂ = 3. The

three estimated directions are shown in Table 6. Note that the first three eigen-

values of M̂ are 154.447, 36.138, and 9.933. Therefore, the first direction is very

important to reveal the relationship between the PM2.5 and the potential af-

fecting factors. The first direction in Table 6 clearly indicates that the PM10,

temperature, and dew point temperature are crucial variables associated with the

PM2.5 concentration. The latter two factors were also identified by Zhang et al.

(2017). The last two directions reveal that the PM2.5 concentration has weak

relationships with pressure and wind speed, but is possibly related to NO2 and

CO, which are potential chemical components of the PM2.5.

5. Discussion

In this study, we attempt to reduce the dimension of multiple-index models

in the framework of metric learning. The proposed cross-validation-based metric

learning method produces a metric that contains crucial information on both the

central mean subspace and the unknown link function. The rate of convergence

and the optimal order of the bandwidth are derived. A novel algorithm is pro-

posed to determine the structural dimension of the CMS when it is unknown.

For the purpose of prediction, we refer to the work of Conn and Li (2019), who

show that the kernel estimate using a full bandwidth matrix achieves the optimal

rate of convergence for a multiple-index model.

https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
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Supplementary Material

The technical proofs are provided in the online Supplementary Material.
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Appendix: Assumptions and Remarks

Let A⊥ denotes the space orthogonal to that spanned by the column vectors

of the matrix A. The following regularity conditions are imposed.

(C1) [Design of X.] The density function fX(x) of X is positive, bounded and is

continuously differentiable up to order two.

(C2) [Link function.] The second-order derivatives of g(·) exist and are bounded

away from infinity.

(C3) [Kernel function.] The kernel function K(·) is a symmetric univariate den-

sity function with bounded derivatives.

(C4) [Identifiability.] Let F = {t ∈ Rp : t ∈ L⊥0 }. For any x ∈ Rp, if f(x + ct) =

f(x) for all c ∈ R, then it must have t ∈ F .

(C5) [Moments of errors.] The error satisfies E(εi|Xi) = 0, E(ε2i |Xi) = σ2(L>0 Xi)

= σ2
i almost surely and supiE(|εi|4) < ∞ for all i, where σ2(·) is bounded

and continuous.

Condition (C1) is a relatively weaker assumption on the density of X, compared

with the linearity condition in many SIR-based methods. Conditions (C2)–(C3)

are common conditions on the nonparametric link function and the kernel func-

tion, respectively. Condition (C3) is satisfied by many commonly-used kernel
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functions, such as the biweight kernel and the quadratic kernel. The subspace F
in Condition (C4) indeed equals to the space orthogonal to S(L0). Hence, Con-

dition (C4) indicates that the dimension r0 cannot be further reduced and the

regression function f(x) remains constant when x varies in F . For more insights

into condition (C4), we consider a toy example in which t = (t1, t2)>, r0 = 2 and

f(x) = (x1 + x2)2. By choosing t1 = −t2, we have f(x + ct) = f(x) for all c ∈ R
and t ∈ F in this instance. The moment assumption up to the fourth order in

condition (C5) is made for technical simplicity.
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Härdle, W. and Stoker, T. M. (1989). Investigating smooth multiple regression by the method

of average derivatives. J. Amer. Statist. Assoc. 84, 986–995.
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