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Abstract: Cross-validation (CV) methods are popular for selecting the tuning pa-

rameter in high-dimensional variable selection problems. We show that a misalign-

ment of the CV is one possible reason for its over-selection behavior. To fix this

issue, we propose using a version of leave-nv-out CV (CV(nv)) to select the optimal

model from a restricted candidate model set for high-dimensional generalized linear

models. By using the same candidate model sequence and a proper order for the

construction sample size nc in each CV split, CV(nv) avoids potential problems

when developing theoretical properties. CV(nv) is shown to exhibit the restricted

model-selection consistency property under mild conditions. Extensive simulations

and a real-data analysis support the theoretical results and demonstrate the per-

formance of CV(nv) in terms of both model selection and prediction.
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1. Introduction

Massive high-throughput data sets are becoming increasingly common as a

result of technological advancements in many fields. Such data are characterized

by a large number of variables p compared with the sample size n. For an overview

of the many challenges associated with high-dimensional statistical modeling,

refer to Fan and Lv (2010) and Bühlmann and van de Geer (2011).

A crucial goal in high-dimensional data analyses is to achieve a balance

between the goodness-of-fit and the complexity of a model, because a model’s

predictive ability and interpretability are both important to practitioners in many

scientific fields. A popular way to achieve this balance is to impose penalties

on the model’s complexity, which allows for simultaneous variable selection and

parameter estimation in one step. This approach has been examined in numerous

theoretical and numerical works. For example, Tibshirani (1996) proposed the

https://doi.org/10.5705/ss.202015.0394


1608 FENG AND YU

Lasso method, which is an `1 penalty, or equivalently, Chen and Donoho (1994)

proposed the basis pursuit, Fan and Li (2001) proposed the smoothly clipped

absolute deviation (SCAD) penalty, and Zhang (2010) proposed the minimax

concave penalty (MCP).

An important aspect of penalization techniques is the tuning parameter,

which determines the size of the penalty imposed. Over-penalization runs the risk

of overlooking scientifically meaningful information; on the other hand, under-

penalization may erroneously identify seemingly meaningful patterns that are

actually the result of experimental noise. Therefore, it is critical to choose the

tuning parameter with care.

There is an abundance of research on which information criteria to use to

select the tuning parameter. These include the generalized cross-validation (CV)

method (Tibshirani (1996); Wang, Li and Tsai (2007)), Cp (Efron et al. (2004)),

extended Bayesian information criterion (EBIC) (Chen and Chen (2008); Luo

and Chen (2014)), modified BIC (Wang, Li and Leng (2009)), and generalized

information criterion (Zhang, Li and Tsai (2010); Fan and Tang (2013)). Other

works propose selecting the tuning parameter by jointly estimating the regression

coefficient and the standard deviation (Städler, Bühlmann and Van De Geer

(2010); Sun and Zhang (2012)).

CV is a data-driven method and a popular way of selecting a tuning pa-

rameter. As such, a large amount of theoretical work has been done on using

CV in fixed-dimensional linear regression models. For example, leave-one-out

CV (CV(1)) has been shown to be asymptotically equivalent to the Akaike in-

formation criterion (AIC), Cp, jackknife method, and bootstrap method (Stone

(1977); Efron (1983, 1986)). Shao (1993) proved the model-selection inconsis-

tency of CV(1) for the fixed-dimensional linear regression model. In addition,

for leave-nv-out CV (CV(nv)), the author gave the proper ratio of the size of

the construction set to that of the validation set and showed that this ratio is

necessary for model-selection consistency. Here, the construction and validation

data sets refer to the subsets used to construct and validate the estimators in CV

splits. However, K-fold CV, the most commonly used method, is well known for

its conservativeness; that is, the corresponding estimator selects too many noise

variables (Yu and Feng (2014b)). As mentioned in Zhang and Huang (2008),

the theoretical justification for using a CV-based tuning parameter is unclear for

model-selection purposes. Yu and Feng (2014b) proposed a modified CV for high-

dimensional linear regression models and showed that it outperforms the regular

K-fold CV in numerical experiments. Compared with Yu and Feng (2014b),
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we adopt CV(nv) for a sequence of candidate models from a complete data set.

Then, we develop the restricted consistency results under the generalized linear

model framework for high-dimensional variable selection.

Another related method is the relaxed Lasso (Meinshausen (2007)). This

is a two-stage method, with the penalty in the second stage operating only on

those variables selected in the first stage. The author conjectures that the K-

fold CV of this two-step method will achieve model-selection consistency. In

contrast to Meinshausen (2007), we study the theoretical behavior of CV(nv).

In particular, we focus mainly on model selection, rather than on proposing a

variant of the Lasso procedure. We also provide a rigorous discussion of the

asymptotic behavior of the CV.

This study offers two main contributions to the literature. First, we inves-

tigate the advantages and drawbacks of the CV methods commonly used for

tuning parameter selection in penalized estimation methods. Second, we exam-

ine CV(nv), showing that it is consistent, in a restricted sense, for a wide range

of penalty functions in the high-dimensional generalized linear model framework.

We use the following notation throughout this paper. For a p-dimensional

vector β and an n× p-dimensional matrix A, suppose s is a subset of {1, . . . , n},
and α is a subset of {1, . . . , p}. Then βα represents the subvector of β corre-

sponding to α, As represents the submatrix of A corresponding to rows with

indices in s, and Aα represents the submatrix of A corresponding to columns

with indices in α. Let |s| represent the cardinality of set s. In addition, define

the `0, `1, and `2 norms of β as ‖β‖0 =
∑p

j=1 1{βj 6= 0}, ‖β‖1 =
∑p

j=1 |βj |, and

‖β‖ = [
∑p

j=1 β
2
j ]1/2, respectively. Let g1 and g2 be two functions of n. We use

g1(n) = Θ(g2(n)) to represent that they are asymptotically of the same order;

that is, there exist positive constants c1 and c2, such that

c1 ≤ lim inf
n

g1(n)

g2(n)
≤ lim sup

n

g1(n)

g2(n)
≤ c2.

The rest of the paper is organized as follows. We introduce the generalized

linear model setup and discuss K-fold CV in Section 2. Motivated by the prob-

lems associated with K-fold CV, in Section 3, we introduce CV(nv) for high-

dimensional variable selection, and show that it can achieve restricted model-

selection consistency. Next, Section 4 discusses relevant theory, after which we

present our simulation studies in Section 5 and a real-data analysis in Section 6

to compare CV(nv) with other CV methods and popular information criteria.

We conclude the paper with a short discussion in Section 7. All technical details

are collected in the supplementary material.
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2. Model Setup and K-fold CV

2.1. Model setup

Suppose we have n independent and identically distributed (i.i.d.) observa-

tion pairs (xi, yi), for i = 1, . . . , n, where xi is a p-dimensional predictor and yi
is the response. For generalized linear models, we assume the conditional distri-

bution of y, given x, belongs to an exponential family with a canonical link and

the canonical parameter θ = x>β; that is, it has the following density function:

f(y;x,β) = c(y, φ) exp

(
yθ − b(θ)
a(φ)

)
,

where φ ∈ (0,∞) is the dispersion parameter, and the functions a(·), b(·), and

c(·, ·) are known and vary across models. Let βo be the true regression parameter,

with ‖βo‖0 = do. In the high-dimensional setting, p may well exceed n, but do is

usually assumed to be strictly upper-bounded by n (i.e., do < n). Up to an affine

transformation with θi = x>i β, the log-likelihood divided by the sample size is

given by

`(β) = n−1
n∑
i=1

{yiθi − b(θi)}. (2.1)

Minimizing the penalized negative log-likelihood function leads to the following

estimator:

β̂(λ) = arg min
β∈Rp

{−`(β) + pλ,γ(β)}, (2.2)

where pλ,γ(·) is the penalty function.

Given subset s ⊂ {1, . . . , n}, the log-likelihood function evaluated on the

subset s is

`(s)(β) = (|s|)−1
∑
i∈s
{yiθi − b(θi)}. (2.3)

Then, the corresponding minimizer of the penalized negative log-likelihood is

β̂(s)(λ) = arg min
β∈Rp

{−`(s)(β) + pλ,γ(β)}. (2.4)

In this study, we consider only separable sparsity-inducing penalties; that

is, there exists a non-negative function ρ(·), such that for any vector β =

(β1, . . . , βp)
>, the penalty function pλ,γ(·) satisfies

pλ,γ(β) =

p∑
j=1

ρ(|βj |;λ, γ), (2.5)

where λ and γ are the parameters of the penalty function, and the minimizer
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of the penalized negative log-likelihood leads to a sparse solution. Both convex

and folded-concave penalties can be written in the form of (2.5). For convex

penalties, such as the Lasso method (Tibshirani (1996)), γ = ∞, whereas for

folded-concave penalties, 0 < γ < ∞. In the penalty function given in (2.5), γ

is a parameter controlling the concavity of the penalty. Here, we focus on the

collection of solutions as λ changes, with γ fixed.

A popular class of algorithms used to solve (2.2) are the path algorithms.

Many path algorithms have been proposed, including forward regression, stepwise

regression, lars (Efron et al. (2004)), glmpath (Park and Hastie (2007)), glmnet

(Friedman et al. (2010)), ncvreg (Breheny and Huang (2011)), and apple (Yu

and Feng (2014a)), among others. In a path algorithm, a collection of (usually

sparse) estimators {β̂r, r = 1, . . . , R} is generated, where R represents the total

number of candidate estimators. Then, the best estimate β̂r̂ is chosen from the

R candidates according to certain criteria.

2.2. CV

There are many different versions of CV. Thus, to avoid ambiguity, we de-

scribe K-fold CV using glmnet and ncvreg in the penalized negative log-likelihood

context in Algorithm 1.

Algorithm 1 K-fold CV for a typical path algorithm.

Input: The complete data set {(xi, yi), i = 1, . . . , n}, a path algorithm.

Output: The optimal location r̂ and its corresponding solution β̂r̂.
1: Using the complete data set, generate a data-driven penalty parameter sequence λ = {λ1, . . . , λR}.

Compute the solution path {β̂r, r = 1, . . . , R}, where β̂r = β̂(λr).
2: Randomly divide the data set into K folds, and denote the index of each fold as sk, for k = 1, . . . ,K,

where s(−k) = {1, . . . , n} \ sk.
3: For each fold k = 1, . . . ,K:

a) Using the construction data in s(−k), generate its own penalty parameter sequence λ(−k) =

{λ(−k)
1 , . . . , λ

(−k)
R }.

b) Compute the corresponding solution path {β̂(−k)
r , r = 1, . . . , R}, where β̂

(−k)
r = β̂(s(−k))(λ

(−k)
r )

is the penalized estimator defined in (2.4) with penalty parameter λ
(−k)
r .

c) Evaluate the prediction performance of {β̂(−k)
r , r = 1, . . . , R} on the validation data in sk using

the negative log-likelihood function. The resulting values are denoted by {Lk
r , r = 1, . . . , R},

where Lk
r = −`(sk)(β̂(−k)

r ), as defined in (2.3).

4: Calculate the average criterion values {Lr, r = 1, . . . , R}, where Lr = K−1
∑K

k=1 L
k
r . Let r̂ =

arg minr=1,...,R Lr.

In Algorithm 1, to compare the performance of {β̂r, r = 1, . . . , R}, we average

the prediction performance on the corresponding validation set sk over the K

folds using the estimator β̂
(−k)
r from the construction set s(−k). However, there

is no guarantee that we are averaging across the same models or the same tuning
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Figure 1. An example of K-fold CV.

parameters across different folds. In path algorithms, the tuning parameters are

determined by the construction data set, and the estimators are determined by

the tuning parameters and the construction data set.

Remark 1. Other path algorithms, including lars and glmpath, do not start

with a sequence of data-driven penalty parameters. Instead, they proceed by

adaptively adding/deleting one predictor at a time from the model, and then

provide the corresponding β̂r after each operation. Note that a solution β̂r from

such path algorithms implies a certain value of λr in (2.2). As a result, the

preceding discussion on the averaging process applies to these algorithms as well.

Remark 2. In practice, it is common to use the tuning parameter sequence

λ generated by the complete data set in all splits. Although this guarantees

the alignment of the tuning parameters across different splits, it results in mis-

alignment in terms of model sequences. This can cause additional problems

because a desirable tuning parameter should be a function of the sample size.

Furthermore, it is difficult to link a chosen tuning parameter from the splits with

its performance for the complete data set.

We conduct a simple simulation for a high-dimensional linear regression ex-

ample using five-fold CV. In Figure 1, we show the results for two construction

data sets when performing this CV. In the left panel, we show the first 30 values

of λ on each path, with the x-axis showing the location indices. The right panel

presents the sequences of the model sizes against their locations on the solution

paths. The CV averages the models across different splits. However, as shown

in Figure 1, the corresponding λ-sequences and model-size sequences are quite

different for the two splits. As a result, it is difficult to derive a theoretical justi-
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fication for either the model selection or the tuning parameter selection property

of the CV-tuned estimator. Further numerical results on the alignment issue of

the CV are discussed in Section 5.1.

3. Leave-nv-out CV

Now that we have a better understanding of the issues associated with CV,

we propose a version of CV(nv). We first introduce several key concepts related

to model selection and CV(nv) in Section 3.1, and then point out its major

differences from CV in Section 3.2. In Section 3.3, we show that CV(nv) is

restricted model-selection consistent (defined formally in Section 3.1) under mild

technical conditions in the generalized linear model framework for both convex

and folded-concave penalties.

3.1. Key concepts

From the solution path {β̂r, r = 1, . . . , R} in Algorithm 1, we obtain a cor-

responding path of models A = {αr, r = 1, . . . , R}, where αr = {j ∈ {1, . . . , p} :

(β̂r)j 6= 0} denotes the indices with nonzero coefficient estimates. Similar to Shao

(1993), we divide A into two disjoint subsets: Ac, and its complement A \ Ac,
where Ac = {α ∈ A : (Xα)βoα = Xβo}. Next, we provide three definitions,

which constitute the fundamental concepts of this study.

Definition 1 (True model). The true model is defined as O = {j : βoj 6= 0}.

Here, for any estimated model Ô, we define its false negative (FN) as |O \Ô|
and its false positive (FP) as |Ô \ O|. Then, for the models in Ac, FN = 0, and

for the models in A \ Ac, FN > 0.

Definition 2 (Optimal model set). Let d∗ = minα∈Ac |α|. Define the optimal

model set as α∗ = {α ∈ Ac : |α| = d∗}.

When |α∗| = 1, there is only one optimal model. Thus, with a slight abuse

of notation, we call α∗ the optimal model. The optimal models can be different

from the true model, and they are the sparsest models without FNs.

Remark 3. For any model α ∈ A, define its fitted risk as follows:

R(α) = sup
x∈Rp:‖x‖=1

(x>αβ
o
α − x>βo)2 =

∥∥βo−α∥∥2
.

It is obvious that if α ∈ Ac, then R(α) = 0; otherwise, R(α) > 0.

We now demonstrate the differences between the true model and the optimal

model (set) using a toy example. In a linear regression setting, assume that the
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true regression coefficient βo ∈ R100, where βoj = 1, for j = 1, . . . , 5, and βoj = 0,

for j = 6, . . . , 100. Then, the true modelO = {1, 2, 3, 4, 5}. The candidate models

are given as follows: α1 = {1, 2, 3}, α2 = {1, 2, 3, 4}, α3 = {1, 2, 3, 4, 5, 6}, and

α4 = {1, 2, 3, 4, 5, 6, 7}. Note that the true model is not among the candidate

models. Both models α1 and α2 miss at least one important variable, with

R(α1) = 2 and R(α2) = 1. The true model is a subset of both α3 and α4, and

R(α3) = R(α4) = 0. In this situation, α3, α4 ∈ Ac. From the definition of the

optimal model (set), we know α3 is the optimal model because it contains fewer

FPs than α4 does. As a result, it is reasonable to focus on the optimal model

(set) when the true model is unavailable.

Definition 3 (Restricted model-selection consistency). We say that a method

has the restricted model-selection consistency property if the selected model α̂n
satisfies

lim
n→∞

pr{α̂n ∈ α∗} = 1.

Here, we do not require a specific path algorithm, but start with a collec-

tion of candidate models. As a result, in Definition 3, restricted model-selection

consistency means that the selected model is in the optimal model set with proba-

bility tending to one. This differs from model-selection consistency, which means

limn→∞ pr{α̂n = O} = 1 in our setup. However, the two properties coincide

when the true model is an available candidate (i.e. O ∈ A).

3.2. Methodology

The detailed CV(nv) algorithm for the high-dimensional penalized regres-

sion is described in Algorithm 2. The main idea is to use the complete data

set to derive the collection of solutions and the corresponding model sequence.

The problem of selecting the optimal solution is then reduced to choosing the

optimal model. In this sense, we recast the tuning parameter selection problem

for high-dimensional generalized linear models to one of model selection for low-

dimensional generalized linear models. Here, the different splits are the same.

Therefore, the averaging has intuitive meaning.

Another key ingredient of CV(nv) is the choice of nc and nv, that is, the

sample sizes of the construction and validation subsets, respectively. Following

Shao (1993, 1996), we choose nc and nv such that nc/n → 0 and nc → ∞ as

n → ∞. This differs from the K-fold CV methods, where a larger proportion

of data is used for construction and a smaller proportion is used for validation.

Next, we briefly explain the intuitive reasoning behind the specific splitting of
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Algorithm 2 CV(nv) for a typical path algorithm.

Input: The complete data set {(xi, yi), i = 1, . . . , n}, a path algorithm.
Output: The optimal location r̂ and its corresponding solution β̃r̂.
1: Compute the solution path {β̂r, r = 1, . . . , R} using a given path algorithm with the complete data

set. Obtain a sequence of models {α1, . . . , αR}, where αr is the support of β̂r.
2: Independently draw validation sets {sk, k = 1, . . . ,K}, where sk ⊂ {1, . . . , n} and |sk| = nv . Let
s(−k) = {1, . . . , n} \ sk represent the corresponding construction set s(−k), with |s(−k)| = nc.

3: For each k = 1, . . . ,K:

a) Using the construction data in s(−k), compute the collection of solutions {β̃(−k)
r , r = 1, . . . , R},

where

β̃
(−k)
r = arg min

β∈Rp,
β(−αr)=0

{
−`(s−k)(β)

}
, (3.1)

where `(s(−k))(·) is defined in (2.3).

b) Evaluate the prediction performance of {β̃(−k)
r , r = 1, . . . , R} on the validation set sk using the

negative log-likelihood function. The resulting values are denoted by {Lk
r , r = 1, . . . , R}, where

Lk
r = −`(k)(β̃(−k)

r ).

4: Calculate the average criterion value {Lr, r = 1, . . . , R}, where Lr = K−1
∑K

k=1 L
k
r . Set r̂ =

arg minr∈{1,...,R} Lr, along with its corresponding solution β̃r̂, as in (3.1).

the sample. Note that the purpose of CV is to select the best model from the

candidates. As a result, in addition to having an accurate estimation for each

model (when nc → ∞), perhaps more importantly, we need a sufficiently large

(nc/n → 0) validation set in order to detect the subtle differences between the

models. This is particularly challenging in the high-dimensional settings because

there are many possible candidate models. The popular ten-fold CV, for example,

only uses 1/10 of the data for the validation set, which has been shown to be too

small for the purpose of model selection.

We now present the behavior of CV(nv) when nv varies using a simulation

study. In Figure 2, we present the average FP and FN of CV(nv) with a wide

range of nc in linear and logistic regression problems with n = 500 and p = 1,000.

The remaining settings are as shown in Example 1. From Figure 2, it is clear

that, in all cases, a larger order of nc results in more FPs, but the fewer FNs. For

the linear regression, nc = dn1/2e performs best, whereas nc = dn3/4e performs

best for the logistic regression. The behaviors for the linear regression and logistic

regression vary because when the covariates and the coefficients are the same, the

logistic regression needs a larger sample size to fit the model well than the linear

regression does. Intuitively, under the canonical link, the Fisher information

for generalized linear models can be written as 1/a(φ)X>WX, where φ is the

dispersion parameter. For the logistic regression, W = diag{π1(1−π1), . . . , πn(1−
πn)}, where πi = exp(x>i β)/(1 + exp(x>i β)) < 1 in non-degenerate
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Figure 2. The FP and FN of the CV(nv) for different nc-values in Example 1.
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cases, whereas for the linear regression, W = In. This indicates that the logistic

regression always has less information than the linear regression does. Thus,

compared with the linear regression, we need a larger sample size for the logistic

regression in order to have the same level of estimation accuracy.

We conclude that in order to achieve the restricted model-selection consis-

tency property, a small nc rate should be chosen, as long as the size of the

construction sample is large enough to provide accurate estimates. Despite the

above comparison, the optimal nc rates may change for different settings. How-

ever, CV(nv), with a wide range of nc values, always outperforms the ten-fold

CV, as well as the AIC and BIC.

In contrast to Shao (1993, 1996), we study a high-dimensional variable se-

lection problem, which leads to fundamental technical differences. We allow the

number of candidate models to diverge, as stated in Condition 3 below, whereas

in Shao (1993, 1996), this quantity is a fixed constant.

4. Theory

Before presenting the theory, we introduce several conditions.

Condition 1. The set Ac is nonempty.

Condition 1 is usually satisfied when the penalty parameter λ is sufficiently

small, and it ensures that the problem we are trying to solve is not degenerate.

Condition 2 (Beta-min). For the true model O, let σ2 = var(y). Here, we

assume

β∗ = min
j∈O

∣∣βoj ∣∣� σ

√
log p

n
.

Condition 2 is common in the high-dimensional sparse recovery literature

and guarantees that the signal variables are detectable from the noise variables.

If p = O (exp (na)), 0 < a < 1, then β∗ = Θ(1) is sufficient to satisfy this

condition. In fact, β∗ can tend to zero slowly as n and p diverge.

Condition 3 (Candidate set). Denote dmax = maxα∈Ac |α|, d∗ = max{dmax −
d∗, d∗}. Assume ncd

∗ � n and

R = o

(
exp

(
n

ncd∗

))
. (4.1)

Condition 3 ensures that the candidate set is well behaved. We allow the

number of candidate models to diverge, as long as ncd
∗ � n. For instance, if d∗

is bounded and nc = O(n1/2), then R = o(exp(n1/2)).
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In the fixed-p scenario, the candidate set can be all possible 2p models.

When we allow both p and n to diverge, we are aware that the number of the

candidate models increases. However, in practice, this is usually a fixed number,

say, R = 100, in the default setting in the glmnet package in R. We can control an

increasing number of candidate models by exploiting concentration inequalities.

Condition 3 gives the limit of this quantity.

Condition 4 (Generalized linear model properties). (i) Assume that b(·) has

continuous first-, second- and third-order derivatives ḃ(·), b̈(·), and
...
b (·), respec-

tively; in addition, b̈(·) > 0; (ii) there exists a function h(·) and ε0 > 0 such

that, for any α ∈ Ac and ηα ∈ {ζα : ‖ζα − βα‖ ≤ ε0}, we have E(h(x)) < ∞,

E(hα(xα)) < ∞, ‖b̈(x>αηα)‖2 ≤ hα(xα), and ‖
...
b (x>αηα)‖2 ≤ hα(xα), where

hα(·) is the function h(·) restricted to the subspace spanned by xα.

This is a mild condition for generalized linear models. For example, it is

easy to verify that the linear regression model satisfies Condition 4, because

b(θ) = θ2/2, in which case the function h(·) can be set as a constant function.

Condition 5 (Invertibility condition). There exist c∗ > 0 and q∗ = Θ(
√
n/ log p),

such that for all A ⊂ {1, . . . , p} with |A| = q∗ ≥ d∗ ≥ d0, and for any ηA ∈ {ζA :

‖ζA − βA‖ ≤ ε0}, where ε0 > 0 is fixed, and if v 6= 0 is a q∗-dimensional vector,

we have,

pr

{
c∗ ≤

∥∥(b̈(XAηA)
)1/2

XAv
∥∥2

n‖v‖2

}
→ 1, n→∞.

This condition indicates that in any manifold of dimension less than or equal

to q∗, its corresponding restricted maximum likelihood estimator is well-defined

and unique. This is a weaker version of the sparse Riesz condition (Zhang and

Huang (2008)), in which both the upper and the lower bounds are required. The

sparse Riesz condition (or a similar condition) is imposed in the existing literature

on the tuning parameter selection consistency using information criteria (Zhang,

Li and Tsai (2010)). With the invertibility condition, we can safely terminate

the evaluation on the path when the current model size exceeds q∗, without the

risk of missing the optimal model.

Condition 6 (Design matrix). For all A ⊂ {1, . . . , p}, with |A| = q∗, where q∗

is defined in Condition 5, and for any ηA ∈ {ζA : ‖ζA−βA‖ ≤ ε0}, where ε0 > 0

is a given constant, the following is satisfied:

max
s∈S

∥∥∥∥ 1

nv
(XA

s )>b̈(XA
s ηA)(XA

s )− 1

nc
(XA

sc)
>b̈(XA

scηA)XA
sc

∥∥∥∥ = op(1),



HIGH-DIMENSIONAL LEAVE-nv-OUT CROSS-VALIDATION 1619

where the norm is the operator norm of the matrices, sc = {1, . . . , n} \ s, and S
is the collection of splits.

This condition bounds the difference between the Fisher information of the

validation set and the construction set. This is a reasonably mild condition. The

technical details of its corresponding version for linear models are discussed in

Section 4.4 of Shao (1993).

Theorem 1. For penalized generalized linear models with separable sparse-inducing

penalties, assume Conditions 1−6 hold, where nc/n→ 0, nc →∞, and the num-

ber of the splits K satisfies

K−1n−2
c n2 → 0.

Then, CV(nv) achieves restricted model-selection consistency.

In Theorem 1, we do not explicitly specify the order of p as a condition.

However, the restriction on the dimensionality is implied by Conditions 2 and

3. The ultra-high-dimensional setting where p = O(exp(na)), for 0 < a < 1,

is allowed. Theorem 1 can be derived easily from Lemma 2 in the Supplemen-

tary Material because CV(nv), as described in Algorithm 2, reduces a potentially

high-dimensional problem to a low-dimensional one. Now, we can use the unpe-

nalized solution in S4 of Algorithm 2 to improve the estimation and prediction

performance.

5. Numerical Experiments

In this section, we compare the proposed CV(nv) with several popular tuning

parameter selection methods, including the K-fold CV (K-fold), K-fold CV with

one standard error rule (1SE), AIC, BIC, and EBIC. Here, we investigate both the

linear regression and the logistic regression with different correlation structures

among the covariates.

Before presenting the results of the tuning parameter selection, we examine

the behavior of the collections of solutions generated by different splits in the CV

procedure.

5.1. Coherent rate

Example 1. (i) Linear regression. For i = 1, . . . , n, let yi = x>i β
o + εi, where

xi
i.i.d.∼ N (0p,Σ), with 0p a length-p vector with all-zero entries and Σj,k = ρ|j−k|,

εi
i.i.d.∼ N (0, 1), ρ = 0.5 and (n, p) = (500, 10,000). In addition, βo ∈ Rp for the

first nine coordinates (0.8, 0, 0.7, 0, 0.6, 0, 0.5, 0, 0.4), and is zero elsewhere. (ii)
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Logistic regression. For i = 1, . . . , n, yi satisfies pr(yi = 1) = exp(x>i β
o)/{1 +

exp(x>i β
o)} = 1− pr(yi = 0), where βo ∈ Rp for the first nine coordinates (1.6,

0, 1.4, 0, 1.2, 0, 1.0, 0, 0.8), and is zero elsewhere. The remaining part of the

simulation setting is the same as that in (i).

Suppose the sequence of tuning parameters for the complete data set is λ =

(λ1, . . . , λR). Here, we employ a variant of the ten-fold CV by repeatedly splitting

the complete data set K = 100 times into 9/10 fractions as a construction set,

and using the remaining 1/10 fraction as the validation set. Denote the collection

of validation sets as {sk, k = 1, . . . ,K} and the collection of construction sets as

{s(−k), k = 1, . . . ,K}. We also denote s0 = {1, . . . , n} as the complete sample,

as a reference. Denote by α
(k)
r the model of the r-th location in the collection of

solutions constructed by subset s(−k) using its corresponding tuning parameter

sequence λ(−k), where r = 1, . . . , R, and k = 0, 1, . . . ,K. We define the coherent

rate as a sequence representing the degree of agreement of the models across

different splits for each tuning parameter location, as follows:

CR(r) =
∣∣{k = 1, . . . ,K : α(k)

r = α(0)
r }
∣∣/K, r = 1, . . . , R.

In the ideal case, where CR(r) = 1, for all r = 1, . . . , R, the CV method for

choosing the tuning parameter may serve as a good surrogate for selecting the

optimal model. However, this is rarely true in practice, especially after the noise

variables are activated in the estimators. Next, we demonstrate the behavior of

the coherent rate.

For the setting in Example 1, we calculate the collection of solutions using

the R package glmnet for the Lasso, and the use the R package ncvreg for the

SCAD (Fan and Li (2001)) and MCP (Zhang (2010)). Figure 3 shows how the

coherent rate changes along the path in different scenarios. In addition, we mark

the location of the ten-fold CV chosen estimator and the first location where

noise variables are selected. It is clear that the coherent rate is much smaller

than one at most locations. Note that there exists a small segment where the

coherent rate is equal to one for all penalties in the linear regression; furthermore,

this segment is longer for the SCAD and MCP than it is for the Lasso. Only

on the corresponding segment does the CV average over the same model across

different splits. Unfortunately, the ten-fold CV always selects a model with a

coherent rate equal to zero (marked by the solid vertical line in Figure 3). In the

logistic regression, all penalties lead to a very small coherent rate, even before

the noise variables are selected.

From the path-generating procedure, the estimators and tuning parameters



HIGH-DIMENSIONAL LEAVE-nv-OUT CROSS-VALIDATION 1621

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Linear Regression, LASSO

0 20 40 60 80 100
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Logistic Regression, LASSO

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Linear Regression, SCAD

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Logistic Regression, SCAD

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Linear Regression, MCP

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Logistic Regression, MCP

Figure 3. The coherent rate along the path for the Lasso, SCAD, and MCP penalized
linear and logistic regression estimators in Example 1. x-axis: the location in the collec-
tion of the solutions; y-axis: the coherent rate. The solid line “——” is the selection of
the ten-fold CV, and the dotted line “- - -” is where noises start to be selected.
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can be regarded as functions of each other, given the data. Therefore, the phe-

nomenon noted above is due to the data-driven property of the tuning parameter

selection. When the data change from the complete sample to different subsam-

ple splits, the tuning parameter sequence is usually different, which naturally

leads to possibly distinct models. In order to hold the models the same, very

stringent conditions need to be imposed on the design matrix. However, these

are usually not satisfied, even for the simple simulation settings shown here.

5.2. Linear regression

For the linear regression, we use the same settings as those in Example 1 (i),

with ρ = 0 and ρ = 0.5, and repeat the simulation 100 times. Here, the signal-

to-noise ratios for the two settings are 1.9 and 4, respectively. For the SCAD

and MCP paths, we use the default γ = 3 in the ncvreg package. In Table 1, for

CV(nv), we set nc = dn1/2e = 23 and nv = n−nc = 477. We compare our results

with those of the ten-fold CV in glmnet and ncvreg. We also include a comparison

between the results of the ten-fold CV and those of the 1SE, where λ is chosen

as the maximum result with a loss function value less than the minimum loss

function value plus its standard error. In addition, we report the performance

of popular information criteria, including the AIC, BIC, and EBIC. To compare

these methods, we report the FN, FP and prediction error (PE) evaluated on an

independent test data set of size n.

In Table 1, for the Lasso penalty, the AIC and ten-fold CV have the largest

mean FP, followed by those of the BIC, 1SE, and EBIC. CV(nv) performs best

in terms of the FP, FN and PE in both ρ = 0 and ρ = 0.5.

The SCAD and MCP show similar performance to Lasso-based methods.

The FPs of the ten-fold CV are not as large as those of the Lasso, but CV(nv)

still outperforms the ten-fold CV and AIC in terms of both variable selection

and prediction. Note that the difference is not as significant as that in the Lasso

case, possibly because of the asymptotic unbiasedness property of the SCAD

and MCP (Zhang (2010)). Similarly, when using BIC and EBIC, the SCAD and

MCP outperform the Lasso method.

We also compare the λ-values derived from the universal thresholding

(Donoho and Johnstone (1994)) λuniv = σ
√

2(log p)/n, where σ is the error

standard deviation, and the λ-values from various methods (see Table 3) under

the uncorrelated design (ρ = 0). The rationale for the universal thresholding is

a theoretical upper bound of the maximum of all of the errors. Hence, it can be

regarded as a theoretical lower bound of λ for removing all noise variables. We
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Table 1. Comparisons for Example 1(i) with ρ = 0 and ρ = 0.5. Results are reported in
the form of the mean (standard error). For CV(nv), nc = dn1/2e and K = 50; FP, false
positive; FN, false negative; PE, prediction error.

Method ρ = 0 ρ = 0.5
Lasso FP FN PE FP FN PE
CV(nv) 0.01(0.01) 0.00(0.00) 1.01(0.01) 0.07(0.03) 0.04(0.02) 1.02(0.01)
ten-fold 48.39(3.99) 0.00(0.00) 1.12(0.01) 30.72(3.04) 0.00(0.00) 1.09(0.01)
1SE 3.31(0.81) 0.00(0.00) 1.19(0.01) 1.51(0.37) 0.00(0.00) 1.16(0.01)
AIC 497.32(1.23) 0.00(0.00) 1.38(0.01) 471.54(1.36) 0.00(0.00) 1.37(0.01)
BIC 2.04(0.21) 0.00(0.00) 1.16(0.01) 1.75(0.15) 0.00(0.00) 1.12(0.01)
EBIC 0.58(0.08) 0.00(0.00) 1.18(0.01) 0.90(0.09) 0.00(0.00) 1.13(0.01)
SCAD FP FN PE FP FN PE
CV(nv) 0.02(0.01) 0.00(0.00) 1.01(0.01) 0.05(0.02) 0.00(0.00) 1.01(0.01)
ten-fold 24.50(2.80) 0.00(0.00) 1.03(0.01) 21.74(2.37) 0.00(0.00) 1.03(0.01)
1SE 0.48(0.12) 0.00(0.00) 1.08(0.01) 0.21(0.05) 0.00(0.00) 1.08(0.01)
AIC 42.19(2.60) 0.00(0.00) 1.03(0.01) 27.02(1.89) 0.04(0.02) 1.07(0.02)
BIC 0.94(0.11) 0.00(0.00) 1.04(0.01) 0.77(0.11) 0.04(0.02) 1.08(0.02)
EBIC 0.30(0.05) 0.00(0.00) 1.05(0.01) 0.22(0.05) 0.04(0.02) 1.09(0.02)
MCP FP FN PE FP FN PE
CV(nv) 0.04(0.02) 0.00(0.00) 1.01(0.01) 0.06(0.02) 0.01(0.01) 1.01(0.01)
ten-fold 4.87(0.66) 0.00(0.00) 1.02(0.01) 5.25(0.66) 0.00(0.00) 1.02(0.01)
1SE 0.01(0.01) 0.00(0.00) 1.07(0.01) 0.02(0.02) 0.01(0.01) 1.07(0.01)
AIC 87.14(0.45) 0.00(0.00) 1.18(0.01) 80.23(0.75) 0.00(0.00) 1.16(0.01)
BIC 1.20(0.90) 0.00(0.00) 1.02(0.01) 1.43(0.94) 0.00(0.00) 1.02(0.01)
EBIC 0.05(0.02) 0.00(0.00) 1.02(0.01) 0.06(0.02) 0.00(0.00) 1.02(0.01)

observe from the table that only CV(nv) yields a λ-value larger than λuniv. On

the other hand, note that the lowest signal level in this example is 0.4, which

can serve as an upper bound of λ in order to retain all important variables. This

analysis explains the good performance of CV(nv).

Next, we consider an additional simulation setting, described in the following

example.

Example 2. Linear regression. For i = 1, . . . , n, let yi = x>i β
o + εi, where

xi
i.i.d.∼ N (0p,Σ), with 0p a length-p vector with all-zero entries and Σj,k = ρ|j−k|,

εi
i.i.d.∼ N (0, 1), ρ = 0 or 0.5, and (n, p) = (500, 10,000). In addition, βo ∈ Rp for

the first seven coordinates (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4), and is zero elsewhere.

Note that this is a more challenging scenario than that in Example 1(i)

because there are more signal variables, and the correlations between the signal

variables are stronger when ρ = 0.5. The results for Example 2 are shown in

Table 2. For ρ = 0 with the Lasso penalty, CV(nv) performs significantly better
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Table 2. Comparisons for Example 2 with ρ = 0 and ρ = 0.5. Results are reported in
the form of the mean (standard error). For CV(nv), nc = dn1/2e and K = 50; FP, false
positive; FN, false negative; PE, prediction error.

Method ρ = 0 ρ = 0.5
Lasso FP FN PE FP FN PE
CV(nv) 0.02(0.01) 0.01(0.01) 1.01(0.01) 0.03(0.02) 0.07(0.03) 1.02(0.01)
ten-fold 73.56(5.13) 0.00(0.00) 1.17(0.01) 32.47(3.33) 0.00(0.00) 1.09(0.01)
1SE 7.44(0.83) 0.00(0.00) 1.23(0.01) 0.99(0.36) 0.00(0.00) 1.15(0.01)
AIC 484.59(1.39) 0.00(0.00) 1.41(0.01) 402.84(1.19) 0.00(0.00) 1.31(0.01)
BIC 3.41(0.26) 0.00(0.00) 1.24(0.01) 1.10(0.14) 0.00(0.00) 1.11(0.01)
EBIC 0.76(0.10) 0.00(0.00) 1.28(0.01) 0.26(0.05) 0.00(0.00) 1.12(0.01)
SCAD FP FN PE FP FN PE
CV(nv) 0.01(0.01) 0.01(0.01) 1.01(0.01) 0.04(0.02) 0.07(0.03) 1.02(0.01)
ten-fold 19.80(2.35) 0.00(0.00) 1.02(0.01) 22.99(1.78) 0.00(0.00) 1.03(0.01)
1SE 0.20(0.06) 0.00(0.00) 1.08(0.01) 1.13(0.23) 0.02(0.01) 1.07(0.01)
AIC 214.58(1.31) 0.00(0.00) 1.49(0.02) 34.73(2.48) 0.00(0.00) 1.03(0.01)
BIC 0.82(0.11) 0.00(0.00) 1.04(0.01) 1.05(0.16) 0.01(0.01) 1.05(0.01)
EBIC 0.19(0.04) 0.00(0.00) 1.04(0.01) 0.30(0.06) 0.02(0.01) 1.06(0.01)
MCP FP FN PE FP FN PE
CV(nv) 0.01(0.01) 0.01(0.01) 1.01(0.01) 0.04(0.02) 0.07(0.03) 1.02(0.01)
ten-fold 6.46(1.01) 0.00(0.00) 1.02(0.01) 7.16(0.76) 0.00(0.00) 1.03(0.01)
1SE 0.01(0.01) 0.00(0.00) 1.07(0.01) 0.05(0.03) 0.06(0.02) 1.07(0.01)
AIC 102.30(0.48) 0.00(0.00) 1.81(0.02) 46.67(1.04) 0.00(0.00) 1.06(0.01)
BIC 100.72(1.13) 0.00(0.00) 1.80(0.02) 0.66(0.19) 0.01(0.01) 1.03(0.01)
EBIC 0.06(0.03) 0.00(0.00) 1.02(0.01) 0.07(0.03) 0.02(0.01) 1.03(0.01)

Table 3. Comparison of λ-values derived from various methods for Example 2 (i) with
ρ = 0. Results are presented in the form of the mean (standard error).

Universal CV(nv) ten-fold 1SE AIC BIC EBIC
0.19 0.20(0.02) 0.12(0.02) 0.18(0.02) 0.01(0.00) 0.17(0.01) 0.18(0.01)

than all competing methods in terms of both the FP and the PE. We observe

similar results for the other settings.

5.3. Logistic regression

For the logistic regression, we use the setting in Example 1 (ii) with ρ = 0

and ρ = 0.5, and repeat the simulation 100 times. In Table 4, for CV(nv), we

set nc = dn3/4e = 106, following the results in Section 3.2. In contrast to the

linear case, instead of reporting the PE, we report the classification error (CE),

which is defined as the average classification error evaluated on an independent

test data set of size n. The remaining settings and packages used are the same
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Table 4. Comparison of logistic regression with ρ = 0 and ρ = 0.5. Results are reported
in the form of the mean (standard error). For CV(nv), nc = dn3/4e and K = 50; FN,
false negative; FP, false positive; CE, classification error.

Method ρ = 0 ρ = 0.5
Lasso FP FN CE(%) FP FN CE(%)

CV(nv) 1.63(0.14) 0.01(0.01) 19.34(0.20) 0.92(0.10) 0.10(0.03) 16.06(0.20)
ten-fold 95.86(4.60) 0.00(0.00) 20.81(0.23) 87.76(4.28) 0.01(0.01) 17.22(0.20)

1SE 21.48(2.05) 0.00(0.00) 19.44(0.20) 15.60(1.67) 0.03(0.02) 16.19(0.18)
AIC 21.63(1.34) 0.00(0.00) 19.50(0.20) 20.01(1.56) 0.02(0.01) 16.28(0.19)
BIC 1.88(0.14) 0.08(0.03) 19.49(0.19) 1.75(0.16) 0.05(0.02) 16.14(0.18)

EBIC 0.46(0.07) 0.16(0.04) 19.72(0.20) 0.60(0.08) 0.11(0.03) 16.25(0.18)
SCAD FP FN CE(%) FP FN CE(%)
CV(nv) 1.84(0.13) 0.02(0.01) 19.48(0.22) 1.17(0.12) 0.08(0.03) 16.21(0.19)
ten-fold 55.05(2.06) 0.00(0.00) 19.22(0.20) 52.40(1.93) 0.02(0.01) 16.72(0.19)

1SE 10.88(0.76) 0.00(0.00) 19.34(0.19) 8.29(0.70) 0.03(0.02) 16.40(0.18)
AIC 31.24(1.25) 0.00(0.00) 19.20(0.20) 23.84(1.34) 0.06(0.02) 16.48(0.19)
BIC 3.23(0.26) 0.03(0.02) 19.61(0.19) 2.17(0.20) 0.08(0.03) 16.41(0.19)

EBIC 0.92(0.10) 0.11(0.03) 19.90(0.19) 0.77(0.08) 0.10(0.03) 16.54(0.19)
MCP FP FN CE(%) FP FN CE(%)

CV(nv) 2.08(0.12) 0.02(0.01) 19.76(0.20) 1.36(0.10) 0.06(0.02) 16.60(0.19)
ten-fold 13.10(0.79) 0.00(0.00) 18.84(0.21) 13.31(0.87) 0.03(0.02) 16.23(0.19)

1SE 0.91(0.14) 0.06(0.02) 19.13(0.19) 1.09(0.22) 0.10(0.03) 16.25(0.19)
AIC 19.38(1.08) 0.00(0.00) 18.92(0.20) 33.39(1.02) 0.03(0.02) 16.86(0.20)
BIC 2.51(0.23) 0.03(0.02) 18.88(0.20) 2.16(0.27) 0.08(0.03) 16.06(0.18)

EBIC 0.49(0.07) 0.07(0.03) 18.97(0.19) 0.32(0.06) 0.13(0.03) 16.16(0.18)

as those in the linear regression case.

In Table 4, CV(nv) significantly outperforms the ten-fold CV and AIC in

terms of FP. The difference is more significant than that in the linear regression

case, which uses the SCAD or MCP. For the 1SE with the Lasso, the logistic re-

gression leads to significantly more FPs than the linear regression. Furthermore,

the EBIC tends to work better than the AIC and BIC do, showing similar per-

formance to the CV(nv) when the SCAD and MCP are applied. When evaluated

using the CE, CV(nv) still performs best in most scenarios.

6. Data Analysis

We now illustrate two applications of the proposed method using data sets

on eye disease gene expressions (Scheetz et al. (2006)) and leukemia (Golub et al.

(1999)).

In the eye disease gene expression data set, in order to harvest tissue from the

eyes for subsequent microarray analyses, 120 12-week-old male rats were selected.
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Table 5. Model size and prediction error for the eye disease gene expression data sets.
Results are reported in the form of the mean (standard error).

Lasso SCAD MCP
Method Size PE Size PE Size PE
CV(nv) 2.46(0.08) 0.01(0.00) 2.23(0.07) 0.01(0.00) 2.36(0.07) 0.01(0.00)
ten-fold 61.18(1.68) 0.01(0.00) 33.54(0.59) 0.01(0.00) 11.12(0.30) 0.01(0.00)

1SE 31.03(1.16) 0.01(0.00) 24.84(0.71) 0.01(0.00) 5.39(0.31) 0.01(0.00)
AIC 103.02(0.48) 0.01(0.00) 0.37(0.05) 0.02(0.00) 5.38(0.25) 0.01(0.00)
BIC 99.99(0.71) 0.01(0.00) 0.17(0.04) 0.02(0.00) 4.65(0.25) 0.01(0.00)

EBIC 1.03(0.24) 0.02(0.00) 0.02(0.01) 0.02(0.00) 1.90(0.13) 0.01(0.00)

Table 6. Model size and test classification error for the leukemia data sets. Results are
reported in the form of the mean (standard error).

Lasso SCAD MCP
Method Size CE(%) Size CE(%) Size CE(%)
CV(nv) 8.93(0.58) 8.07(0.75) 10.14(0.57) 7.80(0.79) 5.62(0.14) 8.33(0.76)
ten-fold 21.52(0.41) 5.85(0.74) 17.04(0.31) 7.45(0.75) 5.07(0.14) 9.84(0.94)

1SE 12.51(0.46) 8.87(0.93) 11.70(0.43) 9.84(0.92) 2.85(0.16) 14.54(1.25)
AIC 16.17(0.39) 6.65(0.76) 1.00(0.05) 30.59(1.37) 4.14(0.17) 10.02(0.98)
BIC 4.32(0.30) 17.20(1.14) 0.91(0.06) 30.59(1.37) 3.56(0.15) 10.37(1.01)

EBIC 0.48(0.06) 31.29(1.33) 0.37(0.05) 31.56(1.32) 1.46(0.08) 14.72(1.03)

The microarrays used to analyze the RNA from the eyes of these animals contain

more than 31,042 different probe sets (Affymetric GeneChip Rat Genome 230

2.0 Array). The intensity values were normalized using the robust multichip

averaging method (Irizarry et al., 2003) to obtain summary expression values for

each probe set. The gene expression levels were analyzed on a logarithmic scale.

Following Huang et al. (2010) and Fan et al. (2011), we are interested in

identifying the genes related to the TRIM32 gene, which was recently found to

cause Bardet–Biedl syndrome (Chiang et al., 2006), a genetically heterogeneous

disease of multiple organ systems, including the retina. Although more than

30,000 probe sets are represented on the Rat Genome 230 2.0 Array, we focused

on the 18,975 probes expressed in the eye tissue.

This leukemia data set was previously analyzed in Golub et al. (1999). There

are p = 7, 129 genes, and n = 72 samples from two classes: 47 in class ALL (acute

lymphocytic leukemia), and 25 in class AML (acute myelogenous leukemia).

We modeled these two problems using a linear and a logistic regression,

respectively. In the eye gene expression data set, we randomly chose 100 out

of 120 observations from the sample without replacement, which we used as
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training data. We used the remaining sub-sample of size 20 as the test data.

In the leukemia data set, we randomly chose 60 out of 72 observations from

the sample, without replacement, as the training data, and used the remaining

observations as the test data.

We repeated this procedure 100 times. The results are reported in Tables 5

and 6 in the form of the mean (standard error). For each split, we used glmnet and

ncvreg to compute the Lasso and SCAD/MCP collections of solutions, respec-

tively. Then, we compared our proposed CV(nv) with the ten-fold CV, which is

the default tuning parameter selection method in glmnet and ncvreg. In addition,

we investigated the performance of the 1SE, AIC, BIC, and EBIC.

For the eye disease gene expression data sets, Table 5 shows that CV(nv)

performs well compared with the ten-fold CV and the information-type criteria.

In terms of model size, the EBIC leads to the smallest model, on average, when

using the Lasso penalty. However, it probably missed some important predictors

because the prediction error is larger than those of the other methods. Of the

models that give the best prediction error, CV(nv) always selects the sparsest

model. Similar behaviors are evident for the SCAD and MCP, although the

differences in performance are not as pronounced.

For the leukemia data set, we can see from Table 6 that both the BIC and the

EBIC select very small models with a large test classification error for all three

penalties. The CV(nv) tends to provide a reasonably good balance between the

complexity of the model and the test classification error. Although the ten-fold

CV has a smaller test classification error for the Lasso and the SCAD, it selects

many more variables, on average.

7. Discussion

In this study, we applied CV methods to the tuning parameter selection

problem in high-dimensional penalized generalized linear models. For the K-fold

CV, we showed that the mis-alignment for different splits is one possible reason

of over-selection. We advocate using the CV(nv) with a proper choice of nv for

the path algorithms, which was shown to be restricted model selection consistent

in high-dimensional settings.

Future research should examine the theoretical implications of the low co-

herent rate of the CV, as demonstrated in the numerical results, on the model

selection performance. In addition, the proposed algorithm is a general frame-

work, which can be extended to using other methods (e.g., forward regression)
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to generate the collection of solutions. It would also be interesting to extend

the methodology and the associated theory to other models, including additive

models and the Cox proportional hazards models, among others. In addition, we

are interested in selecting the concavity parameter γ in folded-concave penalties

using CV.

An implementation of the CV(nv) method for high-dimensional variable se-

lection is available at https://github.com/statcodes/rccv.

Supplementary Material

The online supplementary material includes all technical details and addi-

tional simulation results.
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