
Statistica Sinica 28 (2018), 1583-1609
doi:https://doi.org/10.5705/ss.202016.0427

DERIVATIVE PRINCIPAL COMPONENT ANALYSIS

FOR REPRESENTING THE TIME DYNAMICS OF

LONGITUDINAL AND FUNCTIONAL DATA

Xiongtao Dai1, Hans-Georg Müller1 and Wenwen Tao2

1University of California, Davis and 2Quora

Abstract: We propose a nonparametric method to explicitly model and represent the

derivatives of smooth underlying trajectories for longitudinal data. This representa-

tion is based on a direct Karhunen-Loève expansion of the unobserved derivatives

and leads to the notion of derivative principal component analysis, which com-

plements functional principal component analysis, one of the most popular tools

of functional data analysis. The proposed derivative principal component scores

can be obtained for irregularly spaced and sparsely observed longitudinal data, as

typically encountered in biomedical studies, as well as for functional data which

are densely measured. Novel consistency results and asymptotic convergence rates

for the proposed estimates of the derivative principal component scores and other

components of the model are derived under a unified scheme for sparse or dense

observations and mild conditions. We compare the proposed representations for

derivatives with alternative approaches in simulation settings and also in a wal-

laby growth curve application. It emerges that representations using the proposed

derivative principal component analysis recover the underlying derivatives more ac-

curately compared to principal component analysis-based approaches especially in

settings where the functional data are represented with only a very small number

of components or are densely sampled. In a second wheat spectra classification ex-

ample, derivative principal component scores were found to be more predictive for

the protein content of wheat than the conventional functional principal component

scores.

Key words and phrases: Best linear unbiased prediction, derivatives, empirical

dynamics, functional principal component analysis, growth curves.

1. Introduction

Estimating derivatives and representing the dynamics for longitudinal data

is often crucial for a better description and understanding of the time dynamics

that generate longitudinal data (Müller and Yao (2010)). Representing deriva-

tives, however, is not straightforward. Efficient representations of derivatives can

be based on expansions into eigenfunctions of derivative processes. Difficulties
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abound in scenarios with sparse designs and noisy data. To address these issues,

we propose a method for representing the derivatives of observed longitudinal

data by directly aiming at the Karhunen-Loève expansion (Grenander (1950))

of derivative processes. Classical methods for estimating derivatives of random

trajectories usually require observed data to be densely sampled. These meth-

ods include difference quotients, estimates based on B-splines (de Boor (1972)),

smoothing splines (Chambers and Hastie (1991); Zhou and Wolfe (2000)), kernel-

based estimators such as convolution-type kernel estimators (Gasser and Müller

(1984)), and local polynomial estimators (Fan and Gijbels (1996)). In the case of

sparsely and irregularly observed data, however, direct estimation of derivatives

for each single function is not feasible due to the gaps in the measurement times.

For the case of irregular and sparse designs, Liu and Müller (2009) proposed

a method based on functional principal component analysis (FPCA) (Rice and

Silverman (1991); Ramsay and Silverman (2005)) for estimating derivatives. The

central idea of FPCA is dimension reduction by means of a spectral decomposi-

tion of the autocovariance operator, which yields functional principal component

scores (FPCs) as coefficient vectors to represent the random curves in the sam-

ple. In Liu and Müller (2009), derivatives of eigenfunctions are estimated and

plugged in to obtain derivatives of the estimated Karhunen-Loève representation

for the random trajectories. While this method was shown to outperform sev-

eral other approaches for recovering derivatives for sparse and irregular designs,

including those using difference quotients, functional mixed effect models with

B-spline basis functions (Shi, Weiss and Taylor (1996); Rice and Wu (2001)), or

P-splines (Jank and Shmueli (2005); Reddy and Dass (2006); Bapna, Jank and

Shmueli (2008); Wang et al. (2008)), it is suboptimal for representing derivatives,

as the coefficients in the Karhunen-Loève expansion are targeting the functions

themselves and not the derivatives.

This provides the key motivation for this paper: represent dynamics by di-

rectly targeting the Karhunen-Loève representation of derivatives of random tra-

jectories. The Karhunen-Loève representation of derivatives needs to be inferred

from available data, which are modeled as noisy measurements of the trajectories.

We then aim to represent derivatives directly in their corresponding eigenbasis,

yielding the most parsimonious representation, and leading to a novel Derivative

Principal Component Analysis (DPCA). In addition, the resulting expansion co-

efficients, which we refer to as derivative principal component scores (DPCs)

provide a novel representation and dimension reduction tool for functional data

that complements other such representations such as the commonly used FPCs.
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The proposed method is designed for both sparse and dense cases and works

successfully under both cases. When the functional data are densely sampled

with possibly large measurement errors, smoothing the observed trajectories and

obtaining derivatives for each trajectory separately is subject to possibly large

estimation errors, which are further amplified for derivatives. In contrast, the

proposed method pools observations across subjects and utilizes information from

measurements at nearby time points from all subjects when targeting derivatives,

and therefore is less affected by large measurement errors. In scenarios where

only a few measurements are available for each subject, the proposed method

performs derivative estimation by borrowing strength from all observed data

points, instead of relying on the sparse data that are observed for a specific

trajectory. A key step is to model and estimate the eigenfunctions of the random

derivative functions directly, by spectral-decomposing the covariance function of

the derivative trajectories.

The main novelty of our work is to obtain empirical Karhunen-Loève rep-

resentations for the dynamics of both sparsely measured longitudinal data and

densely measured functional data, and to obtain the DPCA with corresponding

DPCs. For the estimation of these DPCs, we employ a best linear unbiased pre-

diction (BLUP) method that directly predicts the DPCs based on the observed

measurements. In the special case of a Gaussian process with independent Gaus-

sian noise, the BLUP method coincides with the best prediction. This unified

approach provides a straightforward implementation for the Karhunen-Loève rep-

resentation of derivatives. Under a unified framework for the sparse and the dense

case, we provide convergence rate results for the derivatives of the mean function,

the covariance function, and the derivative eigenfunctions based on smoothing

the pooled scatter plots (Zhang and Wang (2016)). We also derive convergence

rates for the estimated DPCs based on BLUP.

The remainder of this paper is structured as follows: In Section 2, we in-

troduce the new representations for derivatives. DPCs and their estimation are

the topic of Section 3. Asymptotic properties of the estimated components and

of the resulting derivative estimates are presented in Section 4. We compare the

proposed method with alternative approaches in terms of derivatives recovery

in Section 5 via simulation studies and in Section 6 using longitudinal wallaby

body length data. As is demonstrated in Section 6, DPCs can be used to improve

classification of functional data, illustrated by wheat spectral data. Additional

details are provided in the Appendix.



1586 DAI, MÜLLER AND TAO

2. Representing Derivatives of Random Trajectories

2.1. Preliminaries

Consider a ν-times differentiable stochastic process X on a compact interval

T ⊂ R, with X(ν) ∈ L2(T ), mean function E(X(t)) = µ(t), and auto-covariance

function cov(X(s), X(t)) = G(s, t), for s, t ∈ T . The independent realizations

X1, . . . , Xn of X can be represented in the Karhunen-Loève expansion,

Xi(t) = µ(t) +

∞∑
k=1

ξikφk(t), (2.1)

where ξik =
∫

(Xi(t)− µ(t))φk(t)dt are the functional principal component scores

(FPCs) of the random functions Xi that satisfy E(ξik) = 0, E(ξ2ik) = λk,

E(ξikξij) = 0 for k, j = 1, 2, . . . , k 6= j; the φk are the eigenfunctions of the co-

variance operator associated with G, with ordered eigenvalues λ1 > λ2 > · · · ≥ 0.

By taking the νth derivative with respect to t on both sides of (2.1), Liu and

Müller (2009) obtained a representation of derivatives,

X
(ν)
i (t) = µ(ν)(t) +

∞∑
k=1

ξikφ
(ν)
k (t), (2.2)

assuming that both sides are well defined, with corresponding variance

var(X
(ν)
i (t)) =

∑∞
k=1 λk[φ

(ν)
k (t)]2. One can then estimate derivatives by approxi-

mating X
(ν)
i with the first K components

X
(ν)
i,K(t) = µ(ν)(t) +

K∑
k=1

ξikφ
(ν)
k (t). (2.3)

In (2.2) and (2.3), µ(ν) is the ν-th derivative of the mean function µ and

can be estimated by local polynomial fitting applied to a pooled scatterplot

where one aggregates all the observed measurements from all sample trajectories.

The FPCs ξik of the sample trajectories can be estimated with the principal

analysis by conditional expectation (PACE) approach described in Yao, Müller

and Wang (2005). Starting from the eigenequations
∫
G(s, t)φk(s)ds = λkφk(t)

with orthonormality constraints, under suitable regularity conditions, by taking

derivatives on both sides, one obtains targets and respective estimates,

φ
(ν)
k (t) =

1

λk

∫
G(0,ν)(s, t)φk(s)ds, φ̂

(ν)
k (t) =

1

λ̂k

∫
Ĝ(0,ν)(s, t)φ̂k(s)ds,

where G(0,ν)(s, t) = ∂νG(s, t)/∂tν is the (0, ν)th partial derivative, Ĝ(0,ν)(s, t)

is a smooth estimate of G(0,ν)(s, t) obtained by for example local polynomial

smoothing, and φ̂k an estimate of the k-th eigenfunction. The derivative X
(ν)
i is
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thus represented by

X̂
(ν)
i,K(t) = µ̂(ν)(t) +

K∑
k=1

ξ̂ikφ̂
(ν)
k (t),

where the integer K is chosen in a data-adaptive fashion, for example by cross-

validation (Rice and Silverman (1991)), AIC (Shibata (1981)), BIC (Schwarz

(1978)), and fraction of variance explained (Liu and Müller (2009)).

A conceptual problem with this approach is that the eigenfunction deriva-

tives φ
(ν)
k , k = 1, 2, . . . are not the orthogonal eigenfunctions of the derivatives

X
(ν)
i . Consequently this approach does not lead to the Karhunen-Loève expan-

sion of derivatives, and therefore is suboptimal in terms of parsimoniousness.

This motivates our next goal, to obtain the Karhunen-Loève representation for

derivatives.

2.2. Karhunen-Loève representation for derivatives

To obtain the Karhunen-Loève representation for derivatives, consider the

covariance function Gν(s, t) = cov(X(ν)(s), X(ν)(t)) of X(ν), s, t ∈ T , a sym-

metric, positive definite and continuous function on T × T . The associated

autocovariance operator (AGνf)(t) =
∫
T Gν(s, t)f(s)ds for f ∈ L2(T ) is a lin-

ear Hilbert-Schmidt operator with eigenvalues denoted by λk,ν and orthogonal

eigenfunctions φk,ν , k = 1, 2, . . . . This leads to the representation

Gν(s, t) =

∞∑
k=1

λk,νφk,ν(s)φk,ν(t), (2.4)

with λ1,ν > λ2,ν > · · · ≥ 0, and the Karhunen-Loève representation for the

derivatives X
(ν)
i ,

X
(ν)
i (t) = µ(ν)(t) +

∞∑
k=1

ξik,νφk,ν(t), t ∈ T , (2.5)

with DPCs ξik,ν =
∫
T(X

(ν)
i (t) − µ(ν)(t))φk,ν(t)dt, for i = 1, . . . , n, k ≥ 1. For

practical applications, one employs a truncated Karhunen-Loève representation

X
(ν)
i,K(t) = µ(ν)(t) +

K∑
k=1

ξik,νφk,ν(t), (2.6)

with a finite K ≥ 1.

In contrast to (2.2), where derivatives of eigenfunctions are used in conjunc-

tion with the FPCs of processes X to represent X
(ν)
i , the proposed approach is

based on the derivative principal component scores ξik,ν (DPCs) and the deriva-
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tive eigenfunctions φk,ν . The proposed representation (2.6) is more efficient in

representing X
(ν)
i than using (2.3), as

K∑
k=1

λk,ν >
K∑
k=1

λk

∫
{φ(ν)k (t)}2dt, for all K ≥ 1. (2.7)

Thus, for any finite integer K ≥ 1, the representation (2.6) captures at least as

much or more variation than the representation (2.3).

The eigenfunctions of the derivatives can be obtained by the spectral decom-

position of Gν . Let G(ν,ν) = ∂2νG/(∂sν∂tν). Under regularity conditions,

Gν(s, t) = E

[
∂ν

∂sν
∂ν

∂tν
{Xi(s)− µ(s)}{Xi(t)− µ(t)}

]
=

∂ν

∂sν
∂ν

∂tν
E [{Xi(s)− µ(s)}{Xi(t)− µ(t)}]

= G(ν,ν)(s, t). (2.8)

To fully implement our approach, we need to identify the components of the

representation (2.5), as described in the next subsection.

2.3. Sampling model and BLUP

The sampling model needs to reflect that longitudinal data are typically

sparsely sampled with random locations of the design points, while functional

data such as the spectral data discussed in subsection 6.2 are sampled at a dense

grid of design points. Assuming that for the i-th trajectory Xi, i = 1, . . . , n,

one obtains measurements Yij made at random times Tij ∈ T , for j = 1, . . . , Ni,

where for sparse longitudinal designs the number of observations per subject Ni

is bounded, while for dense functional designs Ni = m→∞. For both scenarios

the observed data are assumed to be generated as

Yij = Xi(Tij) + εij = µ(Tij) +

∞∑
k=1

ξikφk(Tij) + εij , (2.9)

where εij are i.i.d. measurement errors with E(εij) = 0 and var(εij) = σ2,

independent of Xi, and the Tij are generated according to some fixed density f

that has certain properties. All expected values in the following are interpreted

to be conditional on the random locations Tij , which is not explicitly indicated

in the following.

Let ΣYi
be an Ni×Ni matrix representing the covariance of Yi with (j, l)-th

element (ΣYi
)j,l = cov(Yij , Yil) = G(Tij , Til) + σ2δjl, where δjl = 1 if j = l and 0

otherwise. In addition, µi is a vector obtained by evaluating the mean function
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at the vector (Ti1, . . . , TiNi) of measurement times, and ζik,ν is a column vector

of length Ni with j-th element cov(ξik,ν , Yij), j = 1, 2, . . . , Ni, where

cov(ξik,ν , Yij) = E

[∫
{X(ν)

i (s)− µ(ν)(s)}φk,ν(s)ds {Xi(Tij)− µ(Tij)}
]

=

∫
E
[
{X(ν)

i (s)− µ(ν)(s)}{Xi(Tij)− µ(Tij)}
]
φk,ν(s)ds

=

∫
G(ν,0)(s, Tij)φk,ν(s)ds. (2.10)

For the prediction of the DPCs ξik,ν , we use the best linear unbiased predictors

(BLUP, Rice and Wu (2001))

ξ̃ik,ν = ζTik,νΣ
−1
Yi

(Yi − µi) (2.11)

that are always defined without distributional assumptions. In the special case

that errors ε and processes X are jointly Gaussian, ξ̃ik,ν is the conditional expec-

tation of ξik,ν given Yi, which is the optimal prediction of ξik,ν under squared

error loss.

3. Estimation of Derivative Principal Components

For estimation, we provide details for the most important case of the first

derivative, ν = 1. Higher order derivatives are handled similarly. By (2.5),

approximate derivative representations are given by

X
(1)
i,K(t) = µ(1)(t) +

K∑
k=1

ξik,1φk,1(t), (3.1)

with approximation errors
∫

(X
(1)
i,K(t) − X

(1)
i (t))2dt =

∑∞
k=K+1 λk,1, the con-

vergence rate of which is determined by the decay rate of the λk,1. We then

obtain plug-in estimates for X
(1)
i,K , i = 1, 2, . . . , n, by substituting µ(1), φk,1,

and ξik,1 in (3.1) with corresponding estimates, leading to X̂
(1)
i,K(t) = µ̂(1)(t) +∑K

k=1 ξ̂ik,1φ̂k,1(t). Here we obtain µ̂(1)(t) by applying local polynomial smooth-

ing to a pooled scatterplot that aggregates the observed measurements from all

sample trajectories, and λ̂k,1 and φ̂k,1(t) by spectral decomposition of Ĝ(1,1),

where Ĝ(1,1) is the estimate for the mixed first-order partial derivative of G(s, t),

obtained by two-dimensional local polynomial smoothing. For more details and

related discussion about these estimates of µ(1)(t) and G(1,1)(s, t) we refer to

Appendix A.1.

Estimating the DPCs ξik,1 is an essential step for representing derivatives

as in (3.1). From the definition ξik,ν =
∫
{X(ν)

i (t) − µ(ν)(t)}φk,ν(t)dt, it seems
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plausible to obtain ξ̂ik,1 using plug-in estimates and numerical integration, ξ̂ik,1 =∫
{X̂(1)

i,K(t) − µ̂(1)(t)}φ̂k,1(t)dt. However, this approach requires that one already

has derivative estimates X̂
(1)
i,K(t), which is not viable, especially for sparse/long-

itudinal designs.

An alternative approach is to construct BLUPs ξ̃ik,ν from the observed mea-

surements Yi that were made at time points Ti = (Ti1, Ti2, . . . , TiNi)
T as in

(2.11), where ξ̃ik,ν can be consistently estimated. Applying (2.11) for ν = 1, the

BLUP for ξik,1 given observations Yi is

ξ̃ik,1 = ζTikΣ
−1
Yi

(Yi − µi), (3.2)

where ζik is the covariance vector of ξik,1 and Yi, with length Ni and j-th element

ζikj =
∫
G(1,0)(s, Tij)φk,1(s)ds, as per (2.10). Estimates ξ̂ik,1 for the ξ̃ik,1 are then

obtained by substituting estimates for ζik, ΣYi
, and µi in (3.2),

ξ̂ik,1 = ζ̂TikΣ̂
−1
Yi

(Yi − µ̂i), (3.3)

where ζ̂ikj =
∫
Ĝ(1,0)(s, Tij)φ̂k,1(s)ds and (Σ̂Yi

)j,l = Ĝ(Tij , Til) + σ̂2δjl.

When the joint Gaussianity of ε and X holds, ξ̃ik,1 is the conditional expec-

tation of ξik,1 given Yi, the best prediction. The required estimates Ĝ(1,0)(s, Tij)

of the partial derivative of the covariance function and estimates Ĝ(Tij , Til) can

be obtained by local polynomial smoothing (Liu and Müller (2009) equation (7)).

Estimate σ̂2 of the error variance σ2 can be obtained using the method described

in equation (2) of Yao, Müller and Wang (2005).

In practice, the number of included components K can be chosen by a va-

riety of methods, including leave-one-curve-out cross-validation (Rice and Sil-

verman (1991)), pseudo-AIC (Shibata (1981)), or pseudo-BIC (Schwarz (1978);

Yao, Müller and Wang (2005)). Another fast and stable option that works quite

well in practice is to choose the smallest K so that the inclusion of the first K

components explains a preset level of variation, which can be set at 90%.

4. Asymptotic Results

We take a unified approach in our estimation procedure for the DPCs and

other model components that encompasses both the dense and the sparse case.

Estimation of the derivatives of the mean and the covariance function, and the

derivative eigenfunctions are based on smoothing the pooled scatter plots (Zhang

and Wang (2016)); the estimation for the DPCs is based on best linear unbiased

predictors as in (3.3). We derive convergence rate results that make use of a novel

argument for the dense case. Consistency of the estimator X̂
(1)
i,K for X

(1)
i,K can be
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obtained by utilizing the convergence of estimators µ̂(1)(t), Ĝ(1,1)(s, t), and ξ̂ik,1 to

their respective targets µ(1)(t), G(1,1)(s, t), and ξik,1 as in Theorems 1 and 2 below.

Regularity conditions include assumptions on the number and distribution of the

design points, smoothness of the mean and the covariance functions, bandwidth

choices, and moments for X(t), are detailed in Appendix A.2.

We present results on asymptotic convergence rates in the supremum norm

for the estimates of the mean and the covariance functions for derivatives and

the corresponding estimates of eigenfunctions. Our first theorem covers the case

of sparse/longitudinal designs, where the number of design points Ni is bounded,

and the case of dense/functional designs, where Ni = m → ∞. For convenience

of notation, let

an1 = h2µ +

√
log(n)

nhµ
, bn1 = h2G +

√
log(n)

nh2G
, (4.1)

an2 = h2µ +

√(
1 +

1

mhµ

)
log(n)

n
, bn2 = h2G +

(
1 +

1

mhG

)√
log(n)

n
. (4.2)

Theorem 1. Suppose (A1)–(A8) in Appendix A.2 hold. Setting an = an1 and

bn = bn1 for the sparse case when Ni ≤ N0 <∞, and an = an2 and bn = bn2 for

the dense case when Ni = m→∞, for i = 1, . . . , n,

sup
t∈T
|µ̂(1)(t)− µ(1)(t)| = O(an) a.s., (4.3)

sup
s,t∈T

|Ĝ(1,1)(s, t)−G(1,1)(s, t)| = O(an + bn) a.s., (4.4)

sup
t∈T
|φ̂k,1(t)− φk,1(t)| = O(an + bn) a.s. (4.5)

for any k ≥ 1.

This result provides the basis for the convergence of the DPCs. We write

αn � βn if K1αn ≤ βn ≤ K2αn for some constants 0 < K1 < K2 < ∞. In

the sparse case, the optimal supremum convergence rates for Ĝ(1,1) and φ̂k,1
are of order O((n/ log(n))−1/3) almost surely, achieved for example if hµ �
(n/ log(n))−1/5, hG � (n/ log(n))−1/6, α > 5/2, and β > 3 as in (A6) and

(A8). In the dense case, if the number of observations per curve m is at least of

order (n/ log(n))1/4, then a root-n rate is achieved for our estimates if hµ, hG �
(n/ log(n))−1/4, α > 4, and β > 4.

Using asymptotic results in Liu and Müller (2009) for auxiliary estimates of

the mean and the covariance functions and their derivatives or partial derivatives,

we obtain asymptotic convergence rates of ξ̂ik,1 toward the appropriate targets,
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ξ̃ik,1, as in (3.2) for the sparse case and ξik,1 in the dense case.

Theorem 2. Under the conditions of Theorem 1,

|ξ̂ik,1 − ξ̃ik,1| = Op{N2
i (an + bn)}. (4.6)

If furthermore (A9) holds, (X, ε) are jointly Gaussian, and Ni = m→∞, then

|ξ̃ik,1 − ξik,1| = Op(m
−1/2). (4.7)

For example, in the sparse case if we choose hµ � {n/ log(n)}−1/5 and

hG � {n/ log(n)}−1/6, then |ξ̂ik,1 − ξ̃ik,1| = Op{(n/ log(n))−2/5}. In the dense

case, the ξik,1 can be consistently estimated if mhµ → 0, mhG → 0, and m =

o{(n/ log(n))1/4}, with the optimal rate for |ξ̂ik,1−ξik,1|=Op[{n/ log(n)}−1/3m4/3

+m−1/2], achieved when hµ, hG = {n/ log(n)}−1/6m−1/3.
Here, we define X̂

(1)
i,K similarly to X

(1)
i,K in (3.1), except that we replace the

population quantities by their corresponding estimates, and X̃
(1)
i,K by replacing

ξik,1 with ξ̃ik,1 in (3.1).

Theorem 3. Assume the conditions of Theorem 1 hold. For all i = 1, 2, . . . , n,

and any fixed integer K,

sup
t∈T
|X̂(1)

i,K(t)− X̃(1)
i,K(t)| = Op{N2

i (an + bn)}. (4.8)

If furthermore (A9) holds, (X, ε) are jointly Gaussian, and Ni = m→∞, then

sup
t∈T
|X̂(1)

i,K(t)−X(1)
i,K(t)| = Op{m2(an + bn) +m−1/2}. (4.9)

If we choose the bandwidths as described after Theorem 2, then in the sparse

case supt∈T |X̂
(1)
i,K(t) − X̃

(1)
i,K(t)| = Op[{n/ log(n)}−2/5], and in the dense case

supt∈T |X̂
(1)
i,K(t)−X(1)

i,K(t)| = Op[{n/ log(n)}−1/3m4/3 +m−1/2].

5. Simulation Studies

To examine the practical utility of the DPCs, we compared them with various

alternatives under different simulation settings, which included a dense and a

sparse design. To evaluate the performance of each method in terms of recovering

the true derivative trajectories, we examined the mean and standard deviation

of the relative mean integrated square errors (RMISE), defined as

RMISE =
1

n

n∑
i=1

∫ 1
0 {X̂

(1)
i (t)−X(1)

i (t)}2dt∫ 1
0 {X

(1)
i (t)}2dt

. (5.1)

We compared the proposed approach based on model (2.5), referred to as DPCA,

and a PACE method (Yao, Müller and Wang (2005)) followed by differentiating
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the eigenfunctions of observed processes as in Liu and Müller (2009), correspond-

ing to (2.2), referred to as FPCA. Each simulation consisted of 400 Monte Carlo

samples with the number of random trajectories chosen as n = 200 per simulation

sample.

While our methodology is intended to address the difficult problem of deriva-

tive estimation for the case of sparse designs, the Karhunen-Loève expansion for

derivatives is of interest in itself and is also applicable to densely sampled func-

tional data. The proposed method also has advantages for densely sampled data

with large measurement errors. For the case of dense designs, another straight-

forward approach to obtain derivatives is LOCAL, a method that corresponds to

local quadratic smoothing of each trajectory separately, then taking the coeffi-

cient at the linear term as estimate of the derivative; and SMOOTH-DQ, where

difference quotients are smoothed with local linear smoothers. These methods

are obvious tools to obtain derivatives, but their application is only reasonable

for densely sampled trajectories.

All simulated longitudinal data were generated according to the data sam-

pling model described in Section 2, with mean function µ(t) = 4t + (0.02π)−1/2

exp[−(t−0.5)2/{2(0.1)2}]; five eigenfunctions φk, where φk is the kth orthonormal

Legendre polynomial on [0, 1]; eigenvalues λk = 3, 2, 1, 0.1, 0.1 for k = 1, . . . , 5;

and FPC scores ξik distributed as N (0, λk), k = 1, 2, . . . , 5. The additional mea-

surement errors εij were i.i.d N (0, σ2), where the value of σ varied for different

simulation settings.

Simulation A – Sparsely Sampled Longitudinal Data. The number of ob-

servations for each trajectory, denoted by Ni, was generated from a discrete

uniform distribution from 2 to 9. The measurement times of the observations

were randomly sampled in [0, 1] according to a Beta(2/3, 1) distribution with

mean 0.4 and standard deviation 0.3, so that the design is genuinely sparse and

unbalanced. Measurement errors were generated by a Gaussian distribution with

standard deviation σ = 0.5 or σ = 1.

Simulation B – Densely Sampled Functional Data. Each random trajectory

consists of 51 equidistant observations measured at the same dense time grid

on the interval [0, 1]. In this setting, the proposed DPC method is compared

with FPC, LOCAL, and SMOOTH-DQ. In LOCAL, we estimate the derivatives

by applying local quadratic smoothing to individual subjects, with bandwidth

selected by minimizing the average cross-validated integrated squared deviation

between the resulting derivatives and the raw difference quotients formed from

adjacent measurements. In SMOOTH-DQ, individual derivative trajectories were



1594 DAI, MÜLLER AND TAO

estimated by local linear smoothing of the difference quotients, with smoothing

bandwidth chosen by a similar strategy as for LOCAL. Gaussian measurement

errors were added with standard deviation σ = 1 or σ = 2.

For the smoothing steps, Gaussian kernels were used and the bandwidths

hµ, hG were selected by a generalized cross-validation method (GCV). For DPC,

we took the partial derivative of Ĝ(0,0) to obtain Ĝ(1,0), which was superior in

performance compared to smoothing the raw data directly, and then we applied a

one-dimensional smoother on Ĝ(1,0) to obtain Ĝ(1,1), where the smoothing band-

width was chosen to be the same as hG. The smoothers for Ĝ(1,0) and Ĝ(1,1) enjoy

better finite sample performance than two-dimensional smoothers due to more

stable estimates and better boundary behavior. We let the number of components

K range from 1 to 5 for estimating the derivative curves, and we also included an

automatic selection of K based on FVE with threshold 90%. The population frac-

tion of variance explained for FPCA is
∑K

k=1 λk
∫
{φ(ν)k (t)}2dt/

∑5
k=1 λk,ν , which

were 0%, 18%, 61%, 74%, 100% for K = 1, . . . , 5, respectively. In contrast, the

FVEs for DPCA are
∑K

k=1 λk,ν/
∑5

k=1 λk,ν , which were 56%, 77%, 92%, 100%,

100% in our simulation. It is evident that DPCA explains more variance than

FPCA, given the same number of components, as expected in view of (2.7).

The results for sparse and irregular designs (Simulation A) are shown in

Table 1. For sparse and irregular designs, the sparsity of the observations for

each subject precludes the applicability of LOCAL and SMOOTH-DQ, so we

compared the proposed DPCA only with FPCA, given that the latter was shown

to have much better performance compared to mixed effect modeling with B-

splines in Liu and Müller (2009). We also include the RMISE for the simple

approach of estimating individual derivatives by the estimated population mean

derivative µ̂(1).

As the results in Table 1 demonstrate, given the same number of components

K, the representation of derivatives with DPCA works equally well or better than

FPCA in terms of RMISE where, in the latter, derivatives are represented with

the standard FPCs and the derivatives of the eigenfunctions. DPCA performs

well with as few as K = 2 components, while FPCA performs well only when

K ≥ 3. The performance for individual trajectories when K = 2 is illustrated in

Figure 1, which shows the derivative curves and corresponding estimates obtained

with FPCA and DPCA for four randomly selected samples generated under mea-

surement error σ = 1. We find that in the sparse case the estimated derivatives

using FPCA and DPCA are overall similar.

The results for Simulation B for dense designs are shown in Table 2. We
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Table 1. RMISE for Simulation A, sparse designs, with error standard deviations σ = 0.5
or σ = 1. We report the mean of the RMISE based on 400 Monte Carlo repeats, where
the standard deviations are all between 0.07 and 0.09 (not shown). The first 5 columns
correspond to FPCA and DPCA using different fixed numbers of components K; the
6th column corresponds to selecting K according to FVE, with the mean of the selected
K in brackets.

σ = 0.5 K = 1 K = 2 K = 3 K = 4 K = 5 FVE µ̂(1)

FPCA 0.59 0.53 0.44 0.43 0.44 0.44 (4.6)
0.59

DPCA 0.50 0.44 0.43 0.43 0.43 0.43 (2.2)

σ = 1 K = 1 K = 2 K = 3 K = 4 K = 5 FVE µ̂(1)

FPCA 0.60 0.54 0.46 0.46 0.46 0.46 (4.5)
0.59

DPCA 0.52 0.47 0.46 0.46 0.46 0.46 (2.2)

Table 2. Relative mean integrated squared errors (RMISE) for Simulation B, dense de-
signs, with error standard deviation σ = 1 or σ = 2. We report the mean of the RMISE
based on 400 Monte Carlo repeats, where the standard deviations are all between 0.01
and 0.02 for all except LOCAL. For LOCAL, the derivative of each curve is estimated
individually using local quadratic kernel smoothing; for SMOOTH-DQ, the derivative
of each curve is obtained via smoothing of the difference quotients of the observed mea-
surements. The first 5 columns correspond to FPCA and DPCA using different numbers
of fixed K; the 6th column corresponds to selecting K according to FVE, with the mean
of the selected K in brackets.

σ = 1 K = 1 K = 2 K = 3 K = 4 K = 5 FVE LOCAL SMOOTH-DQ
FPCA 0.51 0.42 0.27 0.2 0.16 0.16 (5.0)

0.23 0.65
DPCA 0.32 0.22 0.16 0.13 0.08 0.13 (3.9)

σ = 2 K = 1 K = 2 K = 3 K = 4 K = 5 FVE LOCAL SMOOTH-DQ
FPCA 0.51 0.43 0.29 0.27 0.26 0.26 (5.0)

0.51 0.76
DPCA 0.34 0.26 0.22 0.19 0.18 0.20 (3.9)

found that under both small (σ = 1) and large (σ = 2) measurement errors, the

proposed DPCA clearly outperforms the other three methods in terms of RMISE.

The runner-up among the other methods is FPCA, but it was highly unstable for

more than five components. Performance for all methods was better with smaller

measurement errors (σ = 1), due to the fact that it is particularly difficult to infer

derivatives in situations with large measurement errors. Also, unsurprisingly,

under the same level of measurement errors, all methods achieve smaller RMISE

for dense designs, compared to their respective performance under sparse designs.

This shows that DPCA has a significant advantage over FPCA in the dense

setting.
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Figure 1. True derivative curves and the corresponding estimates obtained by FPCA and
DPCA, for four randomly selected sparsely sampled trajectories generated in Simulation
A (sparse designs) with σ = 2. Each of the four panels represents an individual derivative
trajectory and consists of the true underlying derivative (solid), the derivative estimates
by FPCA (dashed) and by DPCA (dash-dot).

6. Applications

6.1. Modeling derivatives of Tammar Wallaby body length data

We applied the proposed DPCA for derivative estimation to the Wallaby

growth data, which can be found at http://www.statsci.org/data/oz/wallaby.html,

from the Australian Dataset and Story Library (OzDASL). This dataset includes

body length measurements for 36 tammar wallabies (Macropus eugenii), longi-

tudinally taken and collected from wallabies in their early age. A detailed intro-

duction of the dataset is given by Mallon (1994). To gain a better understanding

of the growth pattern of wallabies, we investigated the dynamics of their body

length growth by estimating the derivatives of their growth trajectories.

http://www.statsci.org/data/oz/wallaby.html
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Figure 2. The trajectory spaghetti plot of body length growth for 36 wallabies. The
recorded measurements over time for each wallaby are quite sparse, with measurement
counts ranging from 1 to 12.

One main difficulty is that the body length measurements are very sparse,

irregular, and fragmentary, as shown in Figure 2, making these data a good test

case to reveal the difficulties in recovering derivatives from sparse longitudinal

designs. The 36 wallabies included in the dataset had their body length measured

from 1 to 12 times per subject, with a median of 3.5 measurements per subject.

Aiming at a number of components with 90% FVE leads to inclusion of

the first K = 3 derivative eigenfunctions. The estimated first derivative of the

mean function, eigenfunctions of the original growth trajectories, and those of

the derivatives by the proposed approach are shown in Figure 3. The average

dynamic changes in body length are represented by the mean derivative function

(upper left panel), which exhibits a monotonically decreasing trend, from greater

than 25 cm/yr at age 1 to less than 10 cm/yr at age 1.8, where the decline rate

of the mean derivative function becomes generally slower as age increases. The

first eigenfunction (solid) of the trajectories reflects overall body length at dif-

ferent ages, the second eigenfunction (dashed) characterizes a contrast in length

between early and late stages, and the third eigenfunction (dotted) corresponds

to a contrast between a period around 1.5 years and the other stages (upper right

panel).

The primary mode of dynamic changes in body length, as reflected by the

first eigenfunction of the derivatives in the lower right panel (solid) of Figure 3,

represents the overall speed of growth which has a decreasing trend as wallabies

get older. The second mode of dynamic variation is determined by the second
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Figure 3. Upper left: estimated mean derivative function of the body length for wallabies;
upper right: estimated first three eigenfunctions of body length trajectories from FPCA,
explaining 97%, 2.4%, and 0.59% of overall variance in the trajectories, respectively;
lower left: estimated derivatives of the eigenfunctions of body length trajectories in the
upper right panel; lower right: estimated eigenfunctions for derivatives from DPCA,
explaining 62.8%, 26.1%, and 10.9% of overall variance in the derivatives. First, second
and third eigenfunctions are denoted by solid, dashed, and dotted lines, respectively.

eigenfunction of the derivatives (dashed) that mainly contrasts dynamic variation

during young age with that of late ages. The third eigenfunction of the derivatives

(dotted) emphasizes growth variation around age 1.38 and stands for a contrast

of growth speed between middle age and early/late ages. The eigenfunctions of

derivatives are seen to clearly differ from the derivatives of the eigenfunctions

(lower left panel) of the trajectories themselves, and are well interpretable.

Figure 4 exhibits the trajectories and corresponding derivatives estimates by

FPCA and DPCA for four randomly selected wallabies, where the derivatives

were constructed using K = 3 components, the smallest number that leads to

90% FVE. Here the DPC-derived derivatives are seen to be reflective of the data
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Figure 4. Data and corresponding estimated derivatives of body length growth for four
randomly selected wallabies. Left panels: original body length data connected by lines;
right panels: the derivative estimates obtained by FPCA (dash-dot) and the proposed
DPCA (dashed).

dynamics.

6.2. Classifying wheat spectra

As a second example we applied the proposed DPCA to the near infrared

(NIR) spectral dataset of wheat, which consists of NIR spectra of 87 wheat

samples with known protein content. The spectra of the samples were measured
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× ×
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Figure 5. Left panel: observed trajectories for the NIR spectra of 87 wheat samples
(high: solid; low: dashed). Right panel: estimated derivatives of the wheat sample NIR
spectra trajectories using DPCA, based on the first four DPCs.

by diffuse reflectance from 1,100 to 2,500 nm with 10 nm intervals, as displayed in

the left panel of Figure 5. For these data, it is of interest to investigate whether

the spectrum of a wheat sample can be utilized to predict its protein content.

Protein content is an important factor for wheat storage, and higher protein

contents may increase the market price. For a more detailed description of these

data, we refer to Kalivas (1997). Functional data analysis of these data has been

studied by various authors, including Reiss and Ogden (2007), and Delaigle and

Hall (2012).

As can be seen from the left panel of Figure 5, the wheat samples are found to

exhibit very similar spectral patterns: the overall trend for all trajectories is in-

creasing, with three major local peaks appearing at wavelengths around 1,200 nm,

1,450 nm, and 1,950 nm. The trajectories are almost parallel to each other, with

only minor differences in the overall level. The response to be predicted is the

protein content of a wheat sample, which is grouped into categories—high if a

sample has more than 11.3% protein, and low if less than 11.3%. From the trajec-

tory graphs it appears to be a non-trivial problem to classify the wheat samples,

since the trajectories corresponding to the high protein wheats are highly spread

out vertically and overlap on the lower side with those corresponding to the low

group.
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Table 3. The mean fraction of misclassified samples, by randomly taking 30 samples as
the training set and the rest 57 samples as the test set. The standard deviations of the
misclassification rates are between 0.05 and 0.07. Classification models were built with
different numbers of FPCs and DPCs, respectively. The first 8 columns are for fixed K
ranging from 1 to 8; the last column corresponds to selecting K by 5-fold CV, with the
mean of the chosen K in brackets.

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 CV
FPCA 0.274 0.253 0.267 0.284 0.293 0.280 0.273 0.280 0.282 (3.5)
DPCA 0.503 0.238 0.249 0.259 0.274 0.284 0.294 0.299 0.264 (3.5)

It has been suggested (Delaigle and Hall (2012)) that derivatives of wheat

spectra are particularly suitable for classification of these spectra. We therefore

applied the proposed DPCA for the fitting of these spectra and this led to the

estimated derivatives of wheat spectra shown in the right panel of Figure 5.

These fits are based on including the first four DPCs, which collectively explain

99.2% of the total variation in the derivatives.

For a comparative evaluation of the performance of using FPCA as opposed

to DPCA for the purpose of classifying protein contents of wheat samples, we

used a logistic regression with one to eight FPCs or DPCs as predictors. We

randomly drew 30 samples as training sets and 57 as test sets, repeated this 500

times, and report the average misclassification rates for the test sets in Table 3, in

which the first eight columns stand for using a fixed number of components, and

the last column for selecting K based on 5-fold cross-validation (CV), minimizing

the misclassification rate. We found that the DPCA-based classifier outperforms

the FPCA-based classifier if two to five predictor components were included, or

if CV was used to select K. The minimal misclassification rate is 23.8% using

two components, while the best FPCA-based misclassification rate is 25.3%. The

poor performance of DPCA when K = 1 indicates the first DPC does not provide

information for classification alone, while the second DPC may be a superior

predictor of interest. While there are some improvements in the misclassification

rates when using DPCs, they are relatively small in terms of misclassification

error.
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Appendix

A.1. Estimating mean function and eigenfunctions for derivatives

To implement (3.1), one needs to obtain µ(1)(t), the first order derivative of

the mean function. Let N =
∑n

i=1Ni, wi = N−1, and vi = {
∑n

i=1Ni(Ni−1)}−1.
Applying local quadratic smoothing to a pooled scatterplot, one can aggregate

the observed measurements from all sample trajectories and minimize

n∑
i=1

wi

Ni∑
j=1

Khµ

(
Tij − t
hµ,1

){
Yij −

2∑
p=0

αp(Tij − t)p
}2

(A.1)

with respect to αp, p = 0, 1, 2. The minimizer α̂1(t) is the estimate of µ(1)(t),

µ̂(1)(t) = α̂1(t) (Liu and Müller (2009, Eq. (5))). Here Kh(x) = h−1K(x/h),

K(·) is a univariate density function, and hµ is a positive bandwidth that can be

chosen by GCV in practical implementation.

In order to estimate the eigenfunctions φk,1 of the derivatives X(1), we pro-

ceed by first estimating the covariance kernel G1(s, t) (in (2.4) with ν = 1),

followed by a spectral decomposition of the estimated kernel. According to

(2.8), G1(s, t) = G(1,1)(s, t) for the case ν = 1; this can be estimated by a

two-dimensional kernel smoother targeting the mixed partial derivatives of the

covariance function. Specifically, we aim at minimizing
n∑
i=1

vi
∑

1≤j 6=l≤Ni

KhG(Tij − t)KhG(Til − s)
{
Gi(Tij , Til)

−
∑

0≤p+q≤3
αpq(Tij − t)p(Til − s)q

}2

, (A.2)

with respect to αpq for 0 ≤ p + q ≤ 3, and set Ĝ(1,1)(s, t) to the minimizer

α̂11(s, t). For theoretical derivations we adopt this direct estimate of Ĝ(1,1)(s, t),

while in practical implementation it has been found to be more convenient to

first obtain Ĝ(1,0)(s, t) and then to apply a local linear smoother on the second

direction, which also led to better stability and boundary behavior.

After obtaining estimates Ĝ(1,1) of G(1,1), eigenfunctions and eigenvalues of

the derivatives can be estimated by the spectral decomposition of Ĝ(1,1)(s, t),

Ĝ(1,1)(s, t) =

∞∑
k=1

λ̂k,1φ̂k,ν(s)φ̂k,1(t).

A.2. Assumptions, proofs and auxiliary results

For our results we require assumptions (A1)–(A8), paralleling assumptions
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(A1)–(A2), (B1)–(B4), (C1c)–(C2c), and (D1c)–(D2c) in Zhang and Wang (2016).

Denote the inner product on L2(T ) by 〈x, y〉.

(A1) K(·) is a symmetric probability density function on [−1, 1] and is Lipschitz

continuous: There exists 0 < L < ∞ such that |K(u) −K(v)| ≤ L|u − v|
for any u, v ∈ [0, 1].

(A2) {Tij : i = 1, . . . , n, j = 1, . . . , Ni} are i.i.d. copies of a random variable

T defined on T , and Ni are regarded as fixed. The density f(·) of T is

bounded below and above,

0 < mf ≤ min
t∈T

f(t) ≤ max
t∈T

f(t) ≤Mf <∞.

Furthermore f (2), the second derivative of f(·), is bounded.

(A3) X, e, and T are independent.

(A4) µ(3)(t) and ∂4G(s, t)/∂p∂4−p exist and are bounded on T and T × T , re-

spectively, for p = 0, . . . , 4.

(A5) hµ → 0 and log(n)
∑n

i=1Niw
2
i /hµ → 0.

(A6) For some α > 2, E(supt∈T |X(t)− µ(t)|α) <∞, E(|e|α) <∞, and

n

{
n∑
i=1

Niw
2
i hµ +

n∑
i=1

Ni(Ni − 1)w2
i h

2
µ

}{
log(n)

n

}2/α−1
→∞.

(A7) hG → 0, log(n)
∑n

i=1Ni(Ni − 1)v2i /h
2
G → 0.

(A8) For some β > 2, E(supt∈T |X(t)− µ(t)|2β) <∞, E(|e|2β) <∞, and

n

{ n∑
i=1

Ni(Ni − 1)v2i h
2
G +

n∑
i=1

Ni(Ni − 1)(Ni − 2)v2i h
3
G

+

n∑
i=1

Ni(Ni − 1)(Ni − 2)(Ni − 3)v2i h
4
G

}{
log(n)

n

}2/β−1
→∞.

(A9) For any k = 1, 2, . . . , there exists J = J(k) < ∞ such that 〈φ(1)j , φk,1〉 = 0

for all j > J .

Note that (A9) holds for any infinite-dimensional processes where the eigen-

functions correspond to the Fourier basis or Legendre basis.

Proof of Theorem 1: We first prove the rate of convergence in the supremum

norm for µ̂(1) to µ(1), following the proof of Theorem 5.1 in Zhang and Wang



1604 DAI, MÜLLER AND TAO

(2016). Denote for r = 0, . . . , 4

Sr =

n∑
i=1

wi

Ni∑
j=1

Khµ(Tij − t)
(
Tij − t
hµ

)r
,

Rr =

n∑
i=1

wi

Ni∑
j=1

Khµ(Tij − t)
(
Tij − t
hµ

)r
Yij ,

S =

S0 S1 S2S1 S2 S3
S2 S3 S4

 ,
 α̂0

hµα̂1

h2µα̂2

 = S−1

R0

R1

R2

 .
For a square matrix A let |A| denote its determinant and [A]a,b denote the

(a, b)th entry of A. Then hµµ̂
(1)(t) = hµα̂0 = |S|−1(C12R0 +C22R1 +C32R2) by

Cramer’s rule (Lang (1987)), where

C12 =

∣∣∣∣∣S1 S3S2 S4

∣∣∣∣∣ , C22 =

∣∣∣∣∣S0 S2S2 S4

∣∣∣∣∣ , C23 =

∣∣∣∣∣S0 S2S1 S3

∣∣∣∣∣
are the cofactors for [S]1,2, [S]2,2, and [S]3,2, respectively. Then

hµ(α̂1 − µ(1)(t))
= |S|−1{(C12R0 + C22R1 + C32R2)− (C12S0 + C22S1 + C32S2)

− (C12S2 + C22S3 + C32S4)µ
(2)(t)h2µ − (C12S1 + C22S2 + C32S3)µ

(1)(t)hµ}

= |S|−1
2∑
p=0

C(p+1),2{Rp − Sp − µ(1)(t)hµSp+1 − µ(2)(t)hµSp+2}

= |S|−1
2∑
p=0

C(p+1),2

{ n∑
i=1

wi

Ni∑
j=1

Khµ(Tij − t)
(
Tij − t
hµ

)p
δij

+

n∑
i=1

wi

Ni∑
j=1

Khµ(Tij − t)
(
Tij − t
hµ

)p
h3µµ

(3)(z)

}

= |S|−1
2∑
p=0

C(p+1),2

{
O

([
log(n)

{ n∑
i=1

Niw
2
i hµ

+

n∑
i=1

Ni(Ni − 1)w2
i h

2
µ

}]1/2)
+O(h3µ)

}
a.s.;

here the first equality is due to the properties of determinants, the third is due

to Taylor’s theorem, and the last is due to Lemma 5 in Zhang and Wang (2016),

(A1), and (A4), where the O(·) terms are seen to be uniform in t ∈ T . By
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Theorem 5.1 in Zhang and Wang (2016), the Sr converge almost surely to their

respective means in supremum norm and are thus bounded almost surely for

r = 0, . . . , 4, so that C(p+1),2 is bounded almost surely for p = 0, 1, 2. Then |S|−1

is bounded away from 0 by the almost sure supremum convergence of Sr and

Slutsky’s theorem. Therefore the convergence rate for µ̂(1) is

sup
t∈T
|µ̂(1)(t)−µ(1)(t)| = O

([
log(n)

{ n∑
i=1

Niw
2
i

hµ
+

n∑
i=1

Ni(Ni−1)w2
i

}]1/2
+h2µ

)
a.s.

The rate (4.3) then follows by replacing Ni by N0 in the sparse case where

Ni ≤ N0 <∞, and by m in the dense case where m→∞, respectively.

The supremum convergence rate for Ĝ(1,1) can be proven similarly, following

the development of Theorem 5.2 in Zhang and Wang (2016). The supremum

convergence rate for φ̂k,1 is a direct consequence of that for Ĝ(1,1); see the proof

of Theorem 2 in Yao, Müller and Wang (2005).

Proof of Theorem 2: For a vector v, let ‖v‖ be the vector L2 norm and, for a

square matrix A, let ‖A‖ = supv 6=0 ‖Av‖ / ‖v‖ be the matrix operator norm.

We start with a proposition that follows from the proof of Corollary 1 in Yao,

Müller and Wang (2005), our Theorem 1, and a lemma from Facer and Müller

(2003).

Proposition 1. Under the conditions of Theorem 1,

sup
t∈T
|µ̂(t)− µ(t)| = O(an) a.s.,

sup
s,t∈T

|Ĝ(s, t)−G(s, t)| = O(an + bn) a.s.,

sup
s,t∈T

|Ĝ(1,0)(s, t)−G(1,0)(s, t)| = O(an + bn) a.s.,

|σ̂2 − σ2| = O(an + bn) a.s.

Lemma 1 (Lemma A.3, Facer and Müller (2003)). Let A ∈Mm(R) be invertible.

For all B ∈Mm(R) such that

‖A−B‖ < 1

2‖A−1‖
,

B−1 always exists and there exists a constant 0 < c <∞ such that

‖B−1 −A−1‖ ≤ c‖A−1‖2‖A−B‖.

To prove the first statement of Theorem 2, note

|ξ̂ik,1 − ξ̃ik,1| = ζ̂TikΣ̂
−1
Yi

(Yi − µ̂i)− ζTikΣ
−1
Yi

(Yi − µi)
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= ζ̂Tik(Σ̂
−1
Yi
−Σ−1Yi

)(Yi − µ̂i) + (ζ̂ik − ζik)
TΣ−1Yi

(Yi − µ̂i)

+ ζ̂ikΣ
−1
Yi

(µi − µ̂i)− (ζ̂ik − ζik)
TΣ−1Yi

(µi − µ̂i)

≤
∥∥∥ζ̂ik∥∥∥∥∥∥Σ̂−1Yi

−Σ−1Yi

∥∥∥ ‖Yi − µ̂i‖+
∥∥∥ζ̂ik − ζik

∥∥∥∥∥Σ−1Yi

∥∥ ‖Yi − µ̂i‖

+
∥∥∥ζ̂ik∥∥∥∥∥Σ−1Yi

∥∥ ‖µi − µ̂i‖+
∥∥∥ζ̂ik − ζik

∥∥∥∥∥Σ−1Yi

∥∥ ‖µi − µ̂i‖ . (A.3)

We bound each term as follows, using the notation . to indicate that the

left hand side is smaller than a constant multiple of the right hand side. We have∥∥∥ζ̂ik − ζik

∥∥∥ ≤ √Ni supj |ζ̂ikj − ζikj |, and

sup
j
|ζ̂ikj − ζikj |

= sup
j

∣∣∣∣ ∫ Ĝ(1,0)(s, Tij)φ̂k,1(s)ds−
∫
G(1,0)(s, Tij)φk,1(s)ds

∣∣∣∣
≤ sup

t∈T

∣∣∣∣∫ {Ĝ(1,0)(s, t)−G(1,0)(s, t)}φ̂k,1(s)ds
∣∣∣∣+ sup

t∈T

∫
G(1,0)(s, t){φ̂k,1(s)−φk,1(s)}ds

. sup
t∈T

[∫
{Ĝ(1,0)(s, t)−G(1,0)(s, t)}2ds

]1/2
+ sup
s,t∈T

|G(1,0)(s, t)| sup
t∈T
|φ̂k,1(t)−φk,1(t)|

= O(sup
t∈T
|Ĝ(1,0) −G(1,0)|) +O(sup

t∈T
|φ̂k,1(t)− φk,1(t)|),

where the last equality is due to (A4). By Proposition 1 we have∥∥∥ζ̂ik − ζik

∥∥∥ = O{
√
Ni(an + bn)} a.s. (A.4)

Similarly, supj |ζikj | ≤ supt∈T |G(1,0)(s, t)φk,1(s)ds| = O(1). Take εi = (εi1, . . . ,

εim)T and Xi = {X(Ti1), . . . , X(Tim)}T . Then∥∥∥ζ̂ik∥∥∥ ≤ ‖ζik‖+
∥∥∥ζ̂ik − ζik

∥∥∥ =
√
Ni{O(1) +O(an + bn)} = O(

√
Ni) a.s.,

(A.5)

‖µi − µ̂i‖ ≤
√
Ni sup

t∈T
|µ̂(t)− µ(t)| = O(

√
Nian) a.s., (A.6)

‖Yi − µ̂i‖ ≤ ‖εi‖+ ‖Xi − µi‖+ ‖µ̂i − µi‖ = Op(
√
Ni), (A.7)

where (A.7) is by the Weak Law of Large Numbers. From the definition of ΣYi

we have
∥∥Σ−1Yi

∥∥ ≤ σ−2. Then∥∥∥Σ̂−1Yi
−Σ−1Yi

∥∥∥ ≤ cσ−4 ∥∥∥Σ̂Yi
−ΣYi

∥∥∥
≤ cσ−4Ni sup

a,b
|[Σ̂Yi

]ab − [ΣYi
]ab|

= O(Ni(an + bn)) a.s., (A.8)
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where the first inequality is by Lemma 1, the second by a property of the matrix

operator norm, and the last relies on supa,b |[Σ̂Yi
]ab − [ΣYi

]ab| ≤ |σ̂2 − σ2| +
sups,t∈T |Ĝ(s, t)−G(s, t)| = O(an + bn) a.s. by Proposition 1. Combining (A.3)–

(A.8) leads to the proof of the first statement.

Under the dense assumption we have Ni = m → ∞. Since ζikl =
∫
T G

(1,0)

(s, Til)φk,1(s)ds =
∫
T
∑∞

j=1 λjφ
(1)
j (s)φj(Til)φk,1(s)ds =

∑∞
j=1 λj〈φ

(1)
j , φk,1〉φj(Til)

for l = 1, . . . ,m, under (A9) we have ζik =
∑J

j=1 λj〈φ
(1)
j , φk,1〉φj , where we take

φj = (φj(Ti1), . . . , φj(Tim))T . Then

ξ̃ik,1 = ζTikΣ
−1
Yi

(Yi − µi) =

J∑
j=1

λj〈φ(1)j , φk,1〉φTj Σ−1Yi
(Yi − µi),

ξik,1 = 〈X(1), φk,1〉 =

〈 ∞∑
j=1

ξijφ
(1)
j , φk,1

〉
=

J∑
j=1

ξij〈φ(1)j , φk,1〉,

so it suffices to prove for j = 1, . . . , J ,

φTj Σ−1Yi
(Yi − µi) =

ξij
λj

+Op(m
−1/2). (A.9)

Under joint Gaussianity of (X, ε), E(ξij | Yi) = λjφ
T
j Σ−1Yi

(Yi −µi) is the poste-

rior mean of 〈Xi, φj〉 given the observations Yi. By the convergence results for

nonparametric posterior distributions as in Theorem 3 of Shen (2002), we have

|E(ξij | Yi)− ξij | = Op(m
−1/2)

as m → ∞, which implies (A.9) and therefore the second statement of Theo-

rem 2.

Proof of Theorem 3: For all i = 1, 2, . . . and any fixed K,

sup
t∈T
|X̂(1)

i,K(t)− X̃(1)
i,K(t)|

= sup
t∈T
|
K∑
k=1

(ξ̂ik,1 − ξ̃ik,1)φ̂k,1(t) +

K∑
k=1

ξ̃ik,1{φ̂k,1(t)− φk,1(t)}|

=

K∑
k=1

|ξ̂ik,1 − ξ̃ik,1|Op(1) +

K∑
k=1

|ξ̃ik,1| sup
t∈T
|φ̂k,1(t)− φk,1(t)|

= Op{N2
i (an + bn) + (an + bn)} = Op{N2

i (an + bn)}.

A similar rate for supt∈T |X̂
(1)
i,K(t)−X(1)

i,K(t)| in the dense case is obtained by

applying Theorem 2 and repeating the previous argument.
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