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Abstract: The two-point correlation function (2PCF) is a measure of the second-

order properties of a spatial point pattern and is commonly used in astronomy. We

introduce an asymptotic mean squared error (AMSE) approach to obtain closed-

form expressions of adaptive optimal bandwidths for estimating the two-point cor-

relation function of a homogeneous spatial point pattern. This approach provides

a simple, quick method for optimal bandwidth selection for 2PCF estimation. Us-

ing optimal bandwidths allows more information to be extracted from the data.

Numerical studies suggest that the mean squared error of estimates obtained using

AMSE optimal bandwidths are close to those obtained with the empirical optimal

bandwidths. We illustrate this with an application to a galaxy cluster catalog from

the Sloan Digital Sky Survey.
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1. Introduction

In the analysis of data consisting of the random locations of objects, it is often

of interest to quantify the clustering of the points, which can be thought of as the

degree of clumpiness or regularity observed in the point pattern. The clustering

in the points often reflect the underlying process driving the placement of points.

For example, in astronomy, the clustering of galaxies is believed to be due to the

effects of gravitation on matter over an extremely long period of time. Hence,

the degree and range of galaxy clustering estimated from a catalog or data set of

galaxy locations can help astronomers refine their physical models for, say, the

evolution of the universe (Dodelson (2003)). In ecological studies, the locations of

a species of trees in a forest form a spatial point pattern. Clustering or regularity

in the tree locations may be reflective of the seed dispersal mechanism employed

by the specific tree species (Waagepetersen and Guan (2009)).

The clustering of a spatial point pattern is often studied via the properties

of point pairs, in particular, the distribution of the inter-point distances in the

https://doi.org/10.5705/ss.202015.0426


1402 WONCHEOL JANG AND JI MENG LOH

point pattern. Several related measures can be used to quantify this second-

order property: the second-order product density ρ(2), Ripley’s K function, the

pair correlation function g, and the two-point correlation function (2PCF) ξ; see

Section 1.1.

Each of these quantities is a function of the inter-point distance r, and esti-

mates are obtained by counting the numbers of point pairs in the data that are

separated by distance r. With the exception of the K function, which is an in-

tegral measure, this involves selecting a bin size or bandwidth. In this paper, we

consider the problem of finding an optimal bandwidth for estimating the 2PCF

of an observed spatial point pattern.

Stoyan and Stoyan (1994) introduced a simple rule-of-thumb for selecting the

bandwidth, while Loh and Jang (2010) introduced a computationally intensive

bootstrap procedure for bandwidth selection. Our goal is to introduce a method

that performs better than the simple rule-of-thumb (as measured by mean square

errors of estimates) but does not require a lot of computation.

The rest of the paper is organized as follows. Section 1.1 introduces second-

order properties of a spatial point process, estimation of the 2PCF, and the

bandwidth selection rule of Stoyan and Stoyan (1994). Section 1.2 highlights

key ideas in bandwidth selection for density estimation, including the asymp-

totic mean integrated square error (AMISE) method. In Section 2 we describe

the application of the AMISE approach to the 2PCF, removing the integration

from the original AMISE approach to obtain an AMSE method that allows us to

select adaptive bandwidths depending on r. Section 3 describes the results of a

simulation study comparing the bandwidths obtained using AMSE with empiri-

cally optimal bandwidths. In Section 4 we apply the AMSE method to a Sloan

Digital Sky Survey dataset of galaxy clusters. Section 5 concludes.

1.1. Second-order property in spatial point patterns

LetN represent a spatial point process, say in R2. For an observation window

W with area |W |, a realization of N consists of a random number of points within

W . The intensity function, λ(s), for s ∈W is defined as

λ(s) = lim
|dS|→0

N(dS)

|dS|
,

where dS represents a small region centered at s and N(dS) the number of points

in dS (see e.g. Diggle (2003)). It can also be characterized in integral form as

E [N(B)] =

∫
B
λ(s) ds,
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for Borel sets B. In this work we assume that N is stationary, so that λ(s) ≡ λ,

with an estimate of λ given by N(W )/|W |.
For a stationary spatial point process, the second-order product density, ρ(2),

is defined as

ρ(2)(r) = lim
|dS|→0

N(dS)N(dS + r)

|dS|2
,

where dS denotes a small region in W and dS+ r represents dS shifted by r, or,

equivalently,

E [N(B)(N(B)− 1)] =

∫
B

∫
B
ρ(2)(s1 − s2) ds1 ds2.

We assume isotropy, so ρ(2)(r) = ρ(2)(r), where r = |r|. Intuitively, ρ(2)(r)|dS1||dS2|
can be thought of as the probability of finding a pair of points, one in each of

the two small regions dS1 and dS2 separated by distance r.

There are other second-order quantities of spatial point processes. The pair

correlation function, g, is ρ(2) normalized by the intensity,

g(r) =
ρ(2)(r)

λ2
,

the K function is an integrated version of g,

K(r) =

∫ r

0
2πu g(u) du, for a process in R2,

and the two-point correlation function (2PCF) is the “overdensity” relative to

the unclustered Poisson process,

ξ(r) = g(r)− 1,

so that ξ ≡ 0 for the Poisson process, and ξ(r) > 0 or ξ(r) < 0 indicates

respectively clustering or regularity at scale r, compared to the Poisson.

We focus on bandwidth selection for estimating the 2PCF. The 2PCF is

routinely used by astronomers to quantify the clustering of astronomical ob-

jects such as galaxies and quasi-stellar objects (Mart́ınez and Saar (2001)), and

new catalogs of astronomical objects routinely contain estimates of the 2PCF.

Cosmological models describing the evolution of the universe link the two-point

correlation of astronomical objects, such as galaxies, to cosmological parameters

that affect the early universe’s evolution. The prediction of a bump in the 2PCF

due to an event called “recombination”, which occurred shortly after the universe

began, was subsequently observed in the empirical 2PCF estimated from data

(Ryden (2003)).

Estimating the two-point correlation function from data requires the count-
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ing of pairs of points that are distance r apart. This requires specifying a band-

width, and effects of the observation region boundary also has to be taken into

account. There are several analytical methods for dealing with edge effects (Bad-

deley et al. (1993); Illian et al. (2008)). Astronomers deal with edge effects by

using pair counts with a second, randomly generated dataset R, in what Kerscher,

Szapudi and Szalay (2000) refers to as pairwise estimators.

Specifically, let D and R represent the data and a randomly generated set

of points, with ND and NR numbers of points, respectively. Define, for r0 > h,

DD = DD(r0) =
∑
x∈D

∑
y∈D

y 6=x

1{r0 − h ≤ |x− y| ≤ r0 + h},

DR = DR(r0) =
∑
x∈D

∑
y∈R

1{r0 − h ≤ |x− y| ≤ r0 + h},

RR = RR(r0) =
∑
x∈R

∑
y∈R

y 6=x

1{r0 − h ≤ |x− y| ≤ r0 + h}.

Hence DD counts the number of point pairs that are within r0 − h and r0 + h

apart, while RR and DR have the same interpretation, with both points from R

and one each from D and R, respectively. In the definitions of DD,DR, and RR,

a boxcar kernel is used. We consider the choice of optimal bandwidths assuming

the boxcar kernel. It is known (Silverman (1986)) that the choice of bandwidth

is more important than the choice of kernel.

If we set DD∗ = 2DD/(ND(ND − 1)), RR∗ = 2RR/(NR(NR − 1)) and

DR∗ = DR/(NDNR), then a simple estimator of the 2PCF at r0 is

ξ̂(r0) =
DD∗

RR∗
− 1. (1.1)

The quantity DD is related to the second-order product density (see Section 2)

and DD∗ to the pair correlation function. The role of RR∗ in (1.1) is to empir-

ically account for the edge effect. The analytical corrections (see e.g. Baddeley

et al. (1993)) account for edge effects of each point pair individually, while RR∗

provides an average correction for the edge effect. This might be less effective

than using individual analytical corrections, though Kerscher, Szapudi and Sza-

lay (2000) did not find it so. It has the advantage of being straightforward to

apply in the context of astronomy where the observation windows can be com-

plex.

The estimator (1.1) can be improved to provide lower mean square errors.

Kerscher, Szapudi and Szalay (2000) compares the pairwise estimators used by

astronomers, as well as kernel-type estimators with analytical edge corrections.



BANDWIDTH SELECTION FOR SPATIAL POINT PATTERNS 1405

Labatie, Starck and Lachièze-Rey (2012) studied the bias and uncertainty of

these estimators. The Landy-Szalay estimator (Landy and Szalay (1993)) and

the Hamilton estimator (Hamilton, 1993) are the best pairwise estimators of the

2PCF, with the Landy-Szalay estimator being slightly more popular:

ξ̂LS(r0) =
(DD∗ − 2DR∗ +RR∗)

RR∗
. (1.2)

Its standard error is reduced compared with the other estimators because the

−2DR∗ + RR∗ term is negatively correlated with DD∗. Stein (1993) used a

similar idea to reduce the variance of estimators of the K function. In principle,

analytically edge-corrected estimators of the 2PCF can be similarly improved,

though we are not aware of any work on this.

We propose a method to obtain optimal bandwidths for estimating the 2PCF

using (1.2), by adapting an asymptotic mean integrated squared error (AMISE)

bandwidth selection method used in density estimation.

Third and higher-order measures of clustering are now more commonly stud-

ied in astronomy and in other areas (e.g. Szapudi et al. (2001); Kim et al. (2011)),

but second-order measures, and especially the 2PCF in astronomy, are still the

norm. Our method for finding the optimal bandwidth can be extended to apply

to third and higher-order measures if necessary.

1.2. Bandwidth selection for density estimation

We give an overview of bandwidth selection in density estimation here. Given

n independent identically distributed random variables, X1, . . . , Xn with an un-

known density function f , the kernel density estimator of f(x) is

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

where h is the bandwidth and K is a kernel function. We assume that K satisfies∫
K(x) dx = 1,

∫
xK(x) = 0, and

∫
x2K(x) <∞.

For choosing the bandwidth in density estimation, a common criterion is the

mean integrated square error (MISE) of an estimator f̂ ,

MISE(f̂) = E

∫ (
f̂(x)− f(x)

)2
dx.

Then the asymptotic mean integrated square error (AMISE) is

AMISE(f̂) =
1

nh

∫
K(t)2 dt+

1

4
h4µ2(K)2

∫
f ′′(x)2 dx,

where µ2(K) =
∫
t2K2(t) dt. See Silverman (1986) for details.
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With simple algebra, the bandwidth that minimizes the AMISE is

hopt =

(
R(K)

µ2(K)2R(f ′′)n

)1/5

,

where R(g) =
∫
g2(x) dx. As R(f ′′) is unknown, this cannot be calculated in

practice. Popular bandwidth selectors include least squares cross-validation and

likelihood cross-validation (Silverman (1986)). One can choose a plug-in band-

width selector based on assuming f is Normal that provides a closed form of the

optimal bandwidth and plug-in methods have an advantage in computation over

cross-validation-based bandwidth selectors.

2. AMSE for the 2PCF

To estimate the 2PCF, we need a bandwidth h for computing DD,DR, and

RR. Stoyan and Stoyan (1994) proposed using the bandwidth h = cλ−1/d for

the Epanechnikov kernel, where d is the dimension of the observational area

and c is a constant. For planar point patterns with about 50-300 points, they

suggested c ∈ (0.1, 0.2) with c = .15 being a common choice (Guan (2007)).

Stoyan (2006) recommended the boxcar kernel, but did not provide guidelines

on how to select the optimal bandwidth. For three dimensions, Pons-Borderia

et al. (1999) recommended c = 0.05 and 0.1 for clustered and Poisson point

processes respectively. We develop a simple bandwidth selection method that

is less sensitive to assumptions on the underlying process and which allows for

adaptive bandwidth selection depending on r.

Let Kh(t) = 1/2h1{|t| ≤ h}, so that RR = RR(r0) = 2h
∑

x∈R
∑

y∈R:y 6=xKh

(|x − y| − r0), similarly for DR and DD. Here,
∫ h
−hKh(t) dt = 1. Let λR and

λD be the intensities of the point processes generating R and D. For r0 > h, we

have

E (RR) = 2h

∫
W

∫
W
Kh(|x− y| − r0)λ2

R dy dx

= 2hλ2
R

∫
W

∫ ∞
0

∫
Θ
Kh(r − r0)1W {x+ (r, θ)} r2 sin θ dθ dr dx

= 2hλ2
R

∫
W

∫ ∞
0

Kh(r − r0)

[∫
Θ

1W {x+ (r, θ)} r2 sin θ dθ

]
dr dx

= 2hλ2
R

∫
W

∫ ∞
0

Kh(r − r0)Cx(r) dr dx,

wherein we have expressed y in spherical coordinates: y = x + (r, θ), with r ∈
(0,∞), θ ∈ Θ, and included the indicator function 1W {x+ (r, θ)} to ensure that
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y ∈ W . The quantity Cx(r) represents the edge effect due to the boundary of

W . It is equal to 4πr2 in three dimensions if x is more than r away from the

boundary of W . For given r0, take

|W0| =
∫
W
Cx(r0) dx, |W ′0| =

∫
W
C ′x(r0) dx, |W ′′0 | =

∫
W
C ′′x(r0) dx.

We need some regularity conditions similar to the conditions in kernel density

estimation (Silverman (1986)):

(C1) C ′′x and g′′ are absolutely continuous and C ′′′x , g
′′′ ∈ L2.

(C2) |W0|, |W ′0| and |W ′′0 | are of the same order.

Note that C ′′′x = 0 in three dimensions. We also assume h = hn → 0, |W0| =

|Wn,0| → ∞, and |Wn,0|h2
n →∞ as the number of realizations goes to ∞.

For small h, r ≈ r0 and, using a Taylor’s expansion of Cx(r) about Cx(r0),

we obtain

E (RR) = 2hλ2
R

∫
W

∫ 1

−1
K(t)Cx(r0 + th) dtdx

= 2hλ2
R

∫
W

∫ 1

−1
K(t)

{
Cx(r0) + C ′x(r0)th+ C ′′x(r0)

t2h2

2

}
dt dx

= 2hλ2
R

(
|W0|+ |W ′′0 |

h2

3

)
,

where we used
∫∞

0 Kh(r − r0) dr =
∫ r0+h
r0−h 1{|r − r0| ≤ h}/2hdr = 1 if r0 > h,

along with
∫
t2K(t) dt = 2/3. Similarly, since the sets D and R are independent,

we have

E (DR) = 2h

∫
W

∫
W
Kh(|x− y| − r0)λRλD dy dx

= 2hλDλR

(
|W0|+ |W ′′0 |

h2

3

)
,

where the steps from the first and second equality here follow those for E (RR).

Furthermore, we have

E (DD) = 2h

∫
W

∫
W
Kh(|x− y| − r0)λ2

D g(|x− y|) dy dx,

for the data set D, since point pairs are correlated, with the correlation repre-

sented by the pair correlation function g. Using a Taylor expansion for both

Cx(r) and g, we obtain

E (DD) = 2hλ2
D

∫
W

∫ 1

−1
K(t)Cx(r0 + th)g(r0 + th) dtdx
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= 2hλ2
D

∫
W

∫ 1

−1
K(t)

{
Cx(r0)g(r0)+th(C ′x(r0)g(r0)+Cx(r0)g′(r0))

}
dtdx

+2hλ2
D

∫
W

∫ 1

−1
K(t)

{
t2h2

2
(C ′′x(r0)g(r0) + 2C ′x(r0)g′(r0)

+Cx(r0)g′′(r0)) +O(h3)

}
dt dx

= 2hλ2
Dg(r0)|W0|+

2h3λ2
D

3

{
|W ′′0 |g(r0) + 2|W ′0|g′(r0) + |W0|g′′(r0)

}
+O(|W0|h5).

It is common in astronomy to take NR = ND. If we set λR = λD, then we

have E(DR) = E(RR), and the difference between E(DD) and E(RR) is due to

the presence of g(r). From

1

E (RR)
=
(
2hλ2|W0|

)−1
(

1 +
|W ′′0 |
|W0|

h2

3

)−1

=
(
2hλ2|W0|

)−1
(

1− |W
′′
0 |

|W0|
h2

3
+O(h4)

)
,

E (DD − 2DR+RR)

E (RR)
=
E(DD)− E(RR) +O(h4)

E(RR)
=
E(DD) +O(h4)

E(RR)
− 1.

Furthermore,

E(DD)

E(RR)

=

(
g(r0) +

1

3
h2

(
|W ′′0 |
|W0|

g(r0) + 2
|W ′0|
|W0|

g′(r0) + g′′(r0)

))(
1− |W

′′
0 |

|W0|
h2

3
+O(h4)

)
= g(r0) +

1

3
h2

(
2
|W ′0|
|W0|

g′(r0) + g′′(r0)

)
+O(h4),

and so

E (DD − 2DR+RR)

E (RR)
= ξ(r0) +

1

3
h2

(
2
|W ′0|
|W0|

g′(r0) + g′′(r0)

)
+O(h4).

We can then express the bias of ξ̂LS(r0) as

Bias(ξ̂LS(r0)) = E (ξ̂LS(r0))− ξ(r0)

= E (ξ̂LS(r0))−E (DD−2DR+RR)

E (RR)
+
E (DD−2DR+RR)

E (RR)
−ξ(r0)

=
1

3
h2

(
2
|W ′0|
|W0|

g′(r0) + g′′(r0)

)
+O(h4) +O

(
1

h2|W0|

)
,

where we also replaced the expected value of the ratio of DD − 2DR + RR to
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RR with the ratio of their expected values,

E (ξ̂LS(r0))− E (DD − 2DR+RR)

E (RR)
= O

(
1

h2|W0|

)
. (2.1)

See the online Supplementary Materials for the derivation of (2.1).

Under the assumption that ξ = o(1), Landy and Szalay (1993) derived an

approximation for the variance of ξ̂LS ,

Var [ξ̂LS(r0)] =
E [1 + ξ̂LS(r0)]2

E (RR)
+ o

(
h−1|W0|−1

)
=

E [1 + ξ̂LS(r0)]2

2hλ2|W0|
(
1 +O(h2)

)
+ o

(
h−1|W0|−1

)
=

g(r0)2

(2hλ2|W0|)
+ o

(
h−1|W0|−1

)
.

Theorem 1. If C ′′x and ξ′′ are absolutely continuously and C ′′′x , ξ
′′′ ∈ L2, and if

ξ = o(1), then

MSE(r0) =
h4

9
A2

0 +

(
1

h

g(r0)2

2λ2|W0|

)
+ o

(
h4 +

1

|W0|h

)
, (2.2)

where A0 = 2|W ′0|g′(r0)/|W0|+ g′′(r0). The optimal bandwidth is

hopt(r0) =

[
9g(r0)2

8λ2|W0|A2
0

]1/5

. (2.3)

The sample size appears in (2.3), through λ|W0|, which is related to the size

of the observation window W and hence the number of points of the point process

observed in W .

The expression in (2.3) depends on the unknown function g = 1+ξ as well as

its second deriviative. A simple procedure to get an optimal bandwidth is then to

refer to a standard model with a specific form for g (or ξ). For example, we can

choose as g that of the modified Thomas process (Thomas (1949)), a Neyman-

Scott process. With homogeneous parent intensity κ, Poisson mean number of

offspring µ, and standard deviation σ for the Gaussian density of offspring around

parents, the pair correlation function of the 2D modified Thomas process is

g(r) = 1 +
µ

4πλσ2
e−r

2/4σ2

,

with λ = κµ. Using this expression for g, we get

hopt(r0) =

 18σ8

λ2|W0|

[
4πλσ2 + µe−r

2/4σ2

µ(r2 − 6σ2)e−r2/4σ2

]2
1/5

. (2.4)

We use this optimal bandwidth in our simulation study in Section 3.
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Table 1. Parameters used for the Thomas modified process in the simulation study.

Thomas
model

1 2 3 4 5 6 7 8 9 10 11 12

κ 50 50 50 50 50 50 100 100 100 100 100 100
σ 0.05 0.05 0.1 0.1 0.2 0.2 0.05 0.05 0.1 0.1 0.2 0.2
µ 2 8 2 8 2 8 1 4 1 4 1 4

In astronomy, a commonly used functional form for the 2PCF is the power-

law, ξ(r) = (r/s0)−γ that is known to fit a wide range of empirical data well. If

we use this in (2.3), we get

hopt(r0) =

(
9

8λ2|W0|γ2(γ − 1)2

[
1 +

(
r0

s0

)γ]2

r4
0

)1/5

. (2.5)

The modified Thomas process is well-known in the spatial statistics commu-

nity and we recommend using the pair correlation function based on this model,

for clustered point patterns. It may not be ideal for regular point processes, and

there we recommend using (2.3) based on an appropriate regular point model.

In applications, values of the parameters in g have to be estimated from the

point pattern data. We can do this using a minimum contrast method (Diggle

(2003)) with an initial estimate of either the K function (which does not require

a bandwidth), or of ξ using Stoyan’s bandwidth. Instead of λ2|W0|, we can use

the average of RR/2h evaluated over a range of values of h, where RR is as

defined before, using λR = λD.

3. Simulation Study

We performed a simulation study to show the performance of the AMSE

method for bandwidth selection to estimate the 2PCF. We compared it with (a)

the simple rule of thumb cλ−1/d (Stoyan and Stoyan, 1994) for the bandwidth,

using c = .15 and d = 2, and (b) the optimal bandwidths obtained empirically

(described below).

We considered the Thomas modified process with 12 different sets of param-

eters (see Table 1). For each parameter set, we simulated 500 realizations and

estimated the 2PCF, ξ̂ib(r), i = 1, . . . , 500, over a set of values r each using a range

of bandwidths. For each value of r, we found the bandwidth br that minimized

the mean squared error MSE(r) =
∑

i[ξ̂
i
b(r) − ξ(r)]2. The bandwidth br was

then the empirically obtained optimal bandwidth for estimating ξ(r). For each

parameter set, we simulated a new set of 500 realizations and for each realiza-
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Table 2. Parameters used for the Matérn cluster process in the simulation study.

Matérn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
κ 50 50 50 50 50 50 50 50 100 100 100 100 100 100 100 100
R 0.05 0.05 0.1 0.1 0.2 0.2 0.4 0.4 0.05 0.05 0.1 0.1 0.2 0.2 0.4 0.4
µ 2 8 2 8 2 8 2 8 1 4 1 4 1 4 1 4

Table 3. Parameters used for the Log-Gaussian Cox Process model in the simulation
study.

LGCP 1 2 3 4 5 6 7 8 9 10 11 12
µ 4.5 5.9 4.5 5.9 4.5 5.9 4.4 5.75 4.4 5.75 4.4 5.75
σ2 0.25 0.25 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5
ρ 0.05 0.05 0.1 0.1 0.15 0.15 0.05 0.05 0.1 0.1 0.15 0.15

tion, estimated ξ(r) using the optimal bandwidths br obtained above, the AMSE

bandwidth using (2.4), and Stoyan’s bandwidth. We considered two methods for

obtaining the AMSE and Stoyan bandwidths, one based on the true parameters

of the process, and the other using estimated parameters. For the AMSE band-

width, the thomas.estK function in the spatstat R package was used to obtain

estimates of the parameters. For the Stoyan bandwidth, the estimated intensity

is used. Thus, five bandwidths were used. We computed MSE(r) for each of

them.

We also considered the performance of the method when the underlying

point process was different from the model for the pair correlation function used

to obtain the AMSE optimal bandwidths, so an incorrect g was used in (2.3).

We generated realizations from the Matérn cluster point process model using the

parameters listed in Table 2.

Upon a reviewer’s suggestion, we also considered realizations from a Log-

Gaussian Cox Process (LGCP) model where the random process Λ is such that

log Λ is a Gaussian random field, and, given Λ, the point process N is inhomo-

geneous Poisson with intensity function Λ. The point process is stationary if Λ

is stationary. We used the stationary Gaussian process with mean µ and expo-

nential covariance function C(r) = σ2 exp(−r/ρ), with parameter values given in

Table 3.

We obtained AMSE optimal bandwidths using the optimal bandwidths spec-

ified by (2.4) and by (2.5). These bandwidths were then used to estimate the

pair correlation function and the MSE’s were computed. The parameters in (2.4)

and (2.5) had to be estimated. In each case, we used minimum contrast between

the model and the estimated K functions.
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Figure 1. Plots showing the mean squared error (MSE) of estimates of the two-point
correlation function of the Thomas process using empirically obtained optimal band-
widths (black dashed: ), bandwidths obtained using our AMSE method (gray
thick and thin dashed ) and using the Stoyan’s rule of thumb (gray solid:

). The thick and thin dashed lines represent MSE’s from using, respectively,
the true and estimated model parameters in the AMSE method.

3.1. Results

Figures 1 to 3 show the results of our simulation study. Each figure shows

plots of the mean squared error for estimates of the two-point correlation function

at distancer. The MSE of estimates obtained with the empirically obtained opti-

mal bandwidths are the smallest in each case. When the true model parameters

were used the MSE’s of estimators were close to the MSE’s of estimators based

on the empirically obtained optimal bandwidths. Using estimated parameters

results in a higher MSE, but not by much. MSE’s obtained for estimates using

Stoyan’s simple formula for the bandwidth were the highest.

Results suggest that the performance of our AMSE approach can vary a bit

with the particular formula used for the pair correlation function g, but is not

overly sensitive to the choice. This is encouraging, since the optimal bandwidth
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Figure 2. Plots showing the mean squared error (MSE) of estimates of the two-point
correlation function of the Matérn cluster process using empirically obtained optimal
bandwidths (black dashed: ), bandwidths obtained using our AMSE method based
on the incorrect Thomas model (gray dashed: ), based on the incorrect power
law model (gray long-dashed ) and using the Stoyan’s rule of thumb (gray solid:

).

hopt for the 2PCF using Further, a functional form for g, like the power-law

model, can be used and still achieve reasonable results.

We also did a small study with realizations from a determinantal point pro-

cess and using AMSE optimal bandwidths based on the Thomas model, the
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Figure 3. Plots showing the mean squared error (MSE) of estimates of the two-point
correlation function of the Log-Gaussian Cox Process using empirically obtained optimal
bandwidths (black dashed: ), bandwidths obtained using our AMSE method based
on the incorrect Thomas model (gray dashed: ), based on the incorrect power
law model (gray long-dashed ) and using the Stoyan’s rule of thumb (gray solid:

).

power-law model, and the Stoyan bandwidth. It turned out that the empirically

optimal bandwidths were large, and since we set a maximum bandwidth of 0.3

for the AMSE method, it did fairly well. The Stoyan rule-of-thumb suggested

much smaller bandwidths and did not perform well.

4. Application to SDSS Data

The Sloan Digital Sky Survey (York et al. (2000)) was a major survey that

began in 2000, covering about 35% of the sky, and collected observations on more

than a million objects consisting of different types of objects such as galaxies

and quasars. Goto et al. (2002) introduced a “cut-and-enhance” method for

selecting clusters of galaxies from raw SDSS data and Basilakos and Plionis

(2004) analyzed a subset of 200 of these galaxies. Loh and Jang (2010) used this

data set in conjunction with a bootstrap bandwidth selection procedure. More
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Figure 4. Plots showing, on the left, the overall (dashed line) and adaptive bandwidths
(clear dots) obtained by a bootstrap bandwidth procedure (Loh and Jang, 2010) and
adaptive bandwidths using AMSE (solid dots), and, on the right, estimates of the two-
point correlation function using these bandwidths, on the log scale.

detailed description of the galaxy catalog, such as the regions in the sky in which

they are located, can be found in Goto et al. (2002), Basilakos and Plionis (2004),

and Loh and Jang (2010).

We obtained results from applying our AMSE bandwidth selection procedure

to this galaxy catalog. We used (2.5) to obtain adaptive bandwidths for obtaining

the Landy-Szalay estimator of ξ. We considered distances from 5 to 100 h−1 Mpc

and used values of 20.7 and 1.6 for s0 and γ, respectively. These values were

obtained as estimates of s0 and γ by Basilakos and Plionis (2004) through fitting

a power-law model for ξ.

Figure 4 shows the bandwidths found from (2.5) and from the bootstrap

bandwidth procedure of Loh and Jang (2010), and estimates of ξ using these

bandwidths. We find that the adaptive bootstrap bandwidths using the method

in Loh and Jang (2010) (black dots in Figure 4) are more variable, but also tend

to be larger, producing much smoother estimates of ξ. The overall bootstrap

bandwidth, represented in the left plot of Figure 4 by a horizontal dashed line, is

a single value applying to all values of r. Its value of 7 is on the lower end of the

range of the adaptive bootstrap bandwidths and produces a more jagged curve

for ξ.

The AMSE bandwidths fall between these two. The bandwidths increase as

r increase, with smaller bandwidths than both the overall and adaptive bootstrap

bandwidths for r < 40h−1 Mpc. For r > 40h−1 Mpc, the AMSE bandwidths

were larger than the overall bootstrap bandwidth, having values comparable to

those of the adaptive bootstrap bandwidths. This behavior in the values of the
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AMSE bandwidths is reflected in the resulting estimate of ξ, shown on the log

scale in the right-hand plot of Figure 4. The estimate is slightly more jagged for

r < 40h−1 Mpc, but still comparable with the estimate obtained with the overall

bootstrap bandwidth. Its smoothness for r > 40h−1 Mpc lies between the two

bootstrap bandwidth versions, closer to the estimate obtained using the adaptive

bootstrap bandwidths.

In all, we find that the procedure performs reasonably well. The AMSE

bandwidths are easy to obtain, unlike the bootstrap optimal bandwidths that

require a more computationally expensive procedure.

5. Conclusion

We introduced the use of the AMSE approach as a method for obtaining

optimal bandwidths for estimating the 2PCF that is widely used in astronomy.

The AMSE optimal bandwidth method introduced here has a closed form solution

that is easily computed. Our simulation studies suggest that it can lead to

estimates of the 2PCF with substantially smaller mean square errors than other

methods.

Supplementary Materials

The online supplementary material contains the derivation of (2.1).
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