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Abstract: The study considers a vector autoregressive model for high-dimensional

mixed frequency data, where selective time series are collected at different frequen-

cies. The high-frequency series are expanded and modeled as multiple time series to

match the low-frequency sampling of the corresponding low-frequency series. This

leads to an expansion of the parameter space, and poses challenges for estimation

and inference in settings with a limited number of observations. We address these

challenges by considering specific structural relationships in the representation of

the high-frequency series, together with the sparsity of the model parameters by

introducing spike-and-Gaussian slab prior distributions. In contrast to existing

observation-driven methods, the proposed Bayesian approach accommodates gen-

eral sparsity patterns, and makes a data-driven choice of them. Under certain

regularity conditions, we establish the consistency for the posterior distribution un-

der high-dimensional scaling. Applications to synthetic and real data illustrate the

efficacy of the resulting estimates and corresponding credible intervals.

Key words and phrases: High dimensional data, mixed frequencies, nowcasting,

pseudo-likelihood, spike and slab prior, strong selection consistency.

1. Introduction

The monitoring and frequent assessment of macroeconomic indicators is im-

portant for evaluating up-to-date economic conditions and for policymaking. A

key challenge stems from delays in data becoming available. For example, the

gross domestic product (GDP) and its components which summarize the state

of an economy are only available on a quarterly basis. In addition, preliminary

published estimates of GDP are often revised afterwards, especially around the

turning points of the business cycle. However, other important economic indica-

tors are collected at higher frequencies. For example, the unemployment rate and

industrial production are recorded on a monthly basis, and stock market indices

and interest rates are recorded on a daily basis.
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The increasing availability of such “mixed-frequency” data has led to novel

methods for their analysis, as well as providing forecasts/“nowcasts” for key

low-frequency variables. Nowcasting, which refers to predicting the present or

the very near future or past (Banbura et al. (2013)), provides forecasts for low-

frequency series by leveraging higher frequency information, and has become an

important tool for policymakers (see Uematsu and Tanaka (2019); Carriero, Clark

and Marcellino (2015)).

Various modeling approaches deal with mixed-frequency time series data.

A recent strand of inquiry uses vector autoregressive (VAR) models (Lütkepohl

(2005)) for forecasting purposes. However, standard VAR models aim to cap-

ture lead-lag relationships between time series, observed at the same frequency.

Hence, modifications are required to accommodate mixed-frequency data. Three

broad strategies have been developed for this task. The first simply aggregates

the high-frequency data to the coarsest frequency, and then applies a VAR model

that can be estimated using standard frequentist or Bayesian methods (Lütkepohl

(2005)). This strategy discards information contained in the higher frequency

series, and cannot provide nowcasts. Different weighting schemes have been pro-

posed in the literature for aggregation purposes; see, for example, Schorfheide

and Song (2015); Mariano and Murasawa (2003). The second strategy is to

treat the low-frequency series as a high-frequency series with missing observa-

tions. Here, we impute the missing data and estimate the resulting VAR model

at the high frequency. The expectation-maximization algorithm is used to obtain

maximum likelihood estimates of the model parameters in a frequentist setting

(Mariano and Murasawa (2003, 2010); Foroni and Marcellino (2014)), and the

data augmentation algorithm (Eraker et al. (2014); Schorfheide and Song (2015);

Ankargren and Jonéus (2019)) or a variational Bayes approach (Gefang, Koop

and Poon (2020)) is used for inference purposes in a Bayesian setting. Note

that the state-space based approach requires that additional parameters be im-

puted/estimated, which may not be desirable in high-dimensional settings (see

also Remark S2 in the Supplementary Material). The third strategy, proposed in

Ghysels (2016) (see also McCracken, Owyang and Sekhposyan (2015)), adopts an

observation-driven viewpoint and breaks each high-frequency series into an appro-

priate number of low-frequency series. For example, in the presence of monthly

and quarterly variables, each monthly series is expanded to three new variables

for the first, second, and third month in each quarter. Thus, the resulting VAR

model contains k1 + q ∗ k2 time series, where k1 and k2 denote the number of

high- and low-frequency variables, respectively, and the high-frequency data are

sampled q times more often than the low-frequency series. Subsequently, we can
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use standard frequentist or Bayesian techniques to estimate its parameters.

A number of papers (Sims (1992); Leeper et al. (1996); Bańbura, Giannone

and Reichlin (2010); Kilian and Lütkepohl (2017)) have argued for the inclusion

of many time series in VAR models to improve forecasting performance. How-

ever, this renders the problem of estimating the VAR model parameters high

dimensional, because the number of parameters grows quadratically in the num-

ber of time series considered. The problem is compounded in the presence of

mixed-frequency data, under the third strategy discussed above. Regularized es-

timation methods that aim to reduce the effective number of parameters have

recently been developed for VAR models in the statistics and econometrics lit-

erature (Basu and Michailidis (2015); Bańbura, Giannone and Reichlin (2010);

Ghosh, Khare and Michailidis (2021)). However, frequentist/Bayesian regular-

ization techniques for high-dimensional settings have not been applied to mixed-

frequency VAR models, with the exception of Ghysels (2016). The latter study

reduces the number of parameters either by pre-specifying a significant portion

of the q ∗ k1 + k2-dimensional VAR coefficient matrix to zero, or by reducing the

effective dimension of a d ∗ q ∗ k1 ∗ k2 sub-block of parameters to k1 ∗ k2 (d is the

number of lags). The first approach is quite restrictive, and the second leaves a

significant portion of the d∗(q∗k1 +k2)2 parameters unconstrained. Furthermore

the issue of over-parametrization still pertains in high-dimensional settings, when

k1 and/or k2 are comparable to or larger than the sample size; see Remark S1 in

the Supplementary Material.

We develop a novel Bayesian approach for high-dimensional mixed-frequency

VAR models that achieves parameter reduction by combining regularization (spar-

sity) and the structural relationships between relevant parameters. The starting

point is the formulation of the q ∗ k1 + k2-dimensional VAR model, as in Ghy-

sels (2016). However, we use a different approach for parameter reduction that

effectively reduces the parameters from d ∗ (q ∗ k1 + k2)2 to d ∗ (k1 + k2)2; see

Remark S1 for a careful comparison. Another notable feature is that we use a

pseudo-likelihood, based on treating the error covariance matrix as a diagonal

matrix, which speeds up the computation significantly. Finally, simple modifi-

cations enable the proposed approach to provide nowcasts for key low-frequency

variables.

Section 2 introduces the mixed-frequency VAR model, along with the parameter-

reducing structure of its transition matrices. Section 3 motivates and presents

the pseudo-likelihood approach and introduces regularization of the model pa-

rameters. Section 4 establishes the theoretical properties. We investigate the

performance of these models using extensive simulations in Section 6, and apply
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the method to a U.S. macroeconomic data set in Section 7. The proofs of the main

theorems and lemmas, along with auxiliary derivations and additional numeri-

cal results for both synthetic and real data are presented in the Supplementary

Material.

2. A VAR Model for Multivariate Mixed Frequency Data

Suppose data are observed at multiple frequencies. The proposed method-

ology can be adapted to any combination of such mixed-frequency data (e.g.,

daily-weekly or weekly-monthly). However for ease of exposition, we focus on

monthly and quarterly sampled time series. Suppose we have k1 variables ob-

served at a monthly frequency and k2 variables observed at a quarterly frequency.

Similarly to Ghysels (2016), the proposed approach “breaks” each monthly time

series into three quarterly series, and considers a joint VAR model for all the

resulting quarterly time series in the data.

Specifically, let T be the number of quarters for which data are available.

For every 1 ≤ i ≤ k1, the data for the ith monthly (high-frequency) variable

are broken into three quarterly series, as follows: (a) {yti,H}Tt=1 represents the

quarterly time series consisting of the ith monthly variable values at the end

of the last month of each quarter; (b) {yt−1/3
i,H }Tt=1 represents the quarterly time

series consisting of the ith monthly variable values at the end of the second month

of each quarter; and (c) {yt−2/3
i,H }Tt=1 represents the quarterly series consisting of

the ith monthly variable values at the end of the first month of each quarter.

For every 1 ≤ j ≤ k2, the data for the jth quarterly (low-frequency) variable are

represented by the single quarterly series {ytj,L}Tt=1. We can model the resulting

(3k1 +k2) quarterly (centered) time series jointly through the VAR model of lag-d

ȳt =

d∑
u=1

W̄uȳ
t−u + ε̄t, where (2.1)

ȳt =
[
y
t−2/3
1,H y

t−1/3
1,H yt1,H y

t−2/3
2,H y

t−1/3
2,H yt2,H · · · y

t−2/3
k1,H

y
t−1/3
k1,H

ytk1,H yt1,L · · · ytk2,L
]′
,

and the errors {ε̄t}Tt=1 are assumed to be independent and identically multivariate

normally distributed with mean zero and covariance matrix Σ̄ε. The temporal

dependence structure of the model is characterized by the (3k1 + k2)× (3k1 + k2)

transition matrices W̄1,W̄2, . . . ,W̄d.

To account for the fact that some of the (3k1 + k2) quarterly time series

are chunks of the same monthly time series, and for parameter reduction in

high-dimensional settings, in which (3k1 + k2) is comparable to or larger than
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T , we impose the following structure on each VAR transition matrix W̄u. The

primary purpose of this structure is to reduce the dimensionality of the parameter

space. We specify W̄u = ((wurs))1≤r,s≤(3k1+k2), for every 1 ≤ r ≤ (3k1 + k2) and

1 ≤ j ≤ k1, as follows:

wur,3j−1 = θwur,3j and wur,3j−2 = θwur,3j−1 = θ2wur,3j , (2.2)

with θ ∈ (0, 1). Note that for 1 ≤ j ≤ k1, the entries wur,3j , w
u
r,3j−1 and wur,3j−2

capture the (linear) effect of yt−uj,H , y
t−u−1/3
j,H and y

t−u−2/3
j,H , respectively, on the

rth quarterly time series at time t. Thus, the effect of the jth high-frequency

variable is dampened by a factor of θ when moving back one month (or a third

of a quarter) in time, as expressed in mathematical terms in (2.2). Similarly, for

every 1 ≤ i ≤ k1 and 1 ≤ s ≤ (3k1 + k2), we specify

wu3i−1,s = θwu3i,s and wu3i−2,s = θwu3i−1,s = θ2wu3i,s. (2.3)

Note that for 1 ≤ j ≤ k1, the entries wu3i,s, w
u
3i−1,s and wu3i−2,s capture the (linear)

effect of the uth lagged value of the sth quarterly time series on yti,H, y
t−1/3
i,H and

y
t−2/3
i,H respectively. We assume that the effect of the value of any of the (3k1 +k2)

quarterly time series at time t−1 on y
t−1/3
i,H is equal to the corresponding effect on

yti,H dampened by the same factor θ, and this is expressed in mathematical terms

in (2.3). Note that the dampening rate is the same when comparing the effect of

yt−1
i,H on y

t−2/3
i,H with the effect of y

t−4/3
i,H on y

t−2/3
i,H , or when comparing the effect

of yt−1
i,H on y

t−2/3
i,H with the effect of yt−1

i,H on y
t−1/3
i,H . It can be seen that the effects

are dampened at the same rate when moving one month back, are invariant to

the specific time instance, and depend only on the time difference.

To further illustrate the effect of this structural relationship, we consider the

one-step-ahead forecasts generated by this model for lag d = 1. Suppose we have

data until quarter t−1. The model can be used to simultaneously generate up to

three-month-ahead forecasts for each monthly variable, as follows: for 1 ≤ i ≤ k1,

the forecasted values of the ith monthly variable at time t− 2/3 (end of the first

month of quarter t) can be expressed in terms of the available lagged values of

the other monthly and quarterly variables, as follows (see similar expressions for

y
t−1/3
i,H and yti,H in the Supplementary Material (Sec. S2.1)):

ai,1θ
2y
t−5/3
1,H + ai,1θy

t−4/3
1,H + ai,1y

t−1
1,H︸ ︷︷ ︸

effect of lagged values (yt−5/3
1,H ,y

t−4/3
1,H ,yt−1

1,H )
on yti,Hwith dampening by θ as time gap increases

+ · · ·+
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ai,k1θ
2y
t−5/3
k1,H

+ ai,k1θy
t−4/3
k1,H

+ ai,k1y
t−1
k1,H︸ ︷︷ ︸

effect of lagged values (yt−5/3
k1,H ,y

t−4/3
k1,H ,yt−1

k1,H)
on yti,Hwith dampening by θ as time gap increases

+

ai,k1+1y
t−1
1,L + · · ·+ ai,k1+k2y

t−1
k2,L︸ ︷︷ ︸

effect of lagged values of low-frequency variables on yti,H

+ ε
t−2/3
i,H , (2.4)

where ai,j represents the effect of yt−1
j,H on y

t−2/3
i,H for 1 ≤ i ≤ k1 and 1 ≤ j ≤ k1,

and ai,k1+j represents the effect of yt−1
j,L on y

t−2/3
i,H for 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2.

In other words, ai,j represents the effect of the value of the jth monthly variable at

the current month on the value of the ith monthly variable in the next month, for

1 ≤ iandj ≤ k1, and ai,k1+j represents the effect of the value of the jth quarterly

variable at the current quarter on the value of the ith monthly variable in the

next month for 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2. Note that these forecasts are all based

on data up to time t − 1 and use all the latest values for all the variables. For

mid-quarter forecasts, when data are available until the end of the first/second

month of the next quarter, a modification of this approach is proposed in Section

5.

Now, for 1 ≤ j ≤ k2, the forecast for the jth quarterly variable at quarter t

can be expressed in terms of the lagged values of the other monthly and quarterly

variables, as follows:

ak1+j,1θ
2y
t−5/3
1,H + ak1+j,1θy

t−4/3
1,H + ak1+j,1y

t−1
1,H︸ ︷︷ ︸

effect of lagged y1,Hvalues (yt−5/3
1,H ,y

t−4/3
1,H ,yt−1

1,H ) on ytj,L
with dampening by θ as time gap increases

+ · · ·+

ak1+j,k1θ
2y
t−5/3
k1,H

+ ak1+j,k1θy
t−4/3
k1,H

+ ak1+j,k1y
t−1
k1,H︸ ︷︷ ︸

effect of lagged yk1,Hvalues(yt−5/3
k1,H ,y

t−4/3
k1,H ,yt−1

k1,H)
on ytj,Lwith dampening by θ as time gap increases

+

ak1+j,k1+1y
t−1
1,L + · · ·+ ak1+j,k1+k2y

t−1
k2,L︸ ︷︷ ︸

effect of lagged values of low-frequency variables on ytj,L

+ εtj,L, (2.5)

where ak1+j,i represents the effect of yt−1
i,H on ytj,L for 1 ≤ j ≤ k2 and 1 ≤ i ≤ k1,

and ak1+j,k1+j′ represents the effect of yt−1
j′,L on ytj,L for 1 ≤ j, j′ ≤ k2 and 1 ≤ i ≤

k1. Equations (2.4) and (2.5) are visualized in Figure 1 of the Supplementary

Material (Sec. S2.2).

Let Au = ((aui,j))1≤i,j≤k1+k2 , where aui,j ’s are as described in (2.4), (2.5) and

(S2.1) and (S2.2) of the Supplementary Material, and Au
11,A

u
12,A

u
21 and Au

22 are
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submatrices of Au, such that

Au =

[
Au

11k1×k1 Au
12k1×k2

Au
21k2×k1 Au

22k2×k2

]
, and

yt =
[
yt1,H yt2,H · · · ytk1,H y

t−1/3
1,H y

t−1/3
2,H · · · yt−1/3

k1,H
y
t−2/3
1,H y

t−2/3
2,H

· · · yt−2/3
k1,H

yt1,L y
t
2,L · · · ytk2,L

]′
denotes a permuted version of ȳt. After straightforward calculations, the VAR

model in (2.1) can be equivalently represented as

yt =

d∑
u=1

Wuy
t−u + εt, where (2.6)

Wu =


θ2 θ3 θ4

θ θ2 θ3

1 θ θ2

⊗Au
11

θ2

θ

1

⊗Au
12(

1 θ θ2
)
⊗Au

21 Au
22

 (2.7)

and {εt}Tt=1 are independent and identically distributed (i.i.d.) multivariate nor-

mal with mean zero and covariance matrix Σε, with εt, {Wu}du=1 and Σε being

permuted versions of ε̄t, {W̄u}du=1 and Σ̄ε, respectively. The model is extended

in Section 5 to incorporate nowcasts of quarterly variables across the monthly

horizon.

3. Regularized Bayesian Inference

The likelihood of A, θ,Σε using the model (2.6) is given by

L
(
{Au}du=1 ,Σε | yt, t = d, . . . , T

)
=

1√
2π|Σε|(T−d+1)

exp

−1

2
tr

T∑
t=d

(yt − d∑
u=1

Wuy
t−u

)′
Σ−1

ε

(
yt −

d∑
u=1

Wuy
t−u

). (3.1)

Our main interest is in estimating the transition matrices Wu (which are func-

tions of Au and θ), and thus we treat Σε as an unknown nuisance parameter. To

that end, we define a pseudo-likelihood function that is equal to the joint density

of the data under the assumption that Σε (up to permutation) is block diagonal.
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In particular, suppose that Σε is given by

Σε = Q′diag
(
Σ1,H, . . . ,Σk1,H, σ

2
1, . . . , σ

2
k2

)
Q, (3.2)

where Σi,H is the 3 × 3 variance-covariance matrix of (εti,H ε
t−1/3
i,H ε

t−2/3
i,H )′, and

σ2
j is the variance of εtj,L, for 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2, and Q is a permutation

matrix such that

yt = Q
[
yt1,H y

t−1/3
1,H y

t−2/3
1,H · · · ytk1,H y

t−1/3
k1,H

y
t−2/3
k1,H

yt1,L y
t
2,L · · · ytk2,L

]′
.

The above form for Σε captures correlations only between the monthly compo-

nents of each high-frequency variable, and essentially ignores the cross-correlations

between the high- and low-frequency variables. Our pseudo-likelihood function

Lpseudo is defined as the joint density of the data, with Σε structured as in (3.2).

In addition, based on the block diagonal structure of Σε, the function can be

shown to have the form

Lpseudo

(
{Au}du=1 , θ, {Σi,H}k1i=1 ,

{
σ2
j

}k2
j=1
| yt, t = d, . . . , T

)
∝

k1∏
i=1

{
exp

[
− 1

2

T∑
t=d

(
yti,H −

(
d∑

u=1

Wuy
t−u

)
i,H

)′

Σ−1
i,H

(
yti,H −

(
d∑

u=1

Wuy
t−u

)
i,H

)]
× |Σi,H|−(T−d+1)/2

}

×
k2∏
j=1

{
exp

[
− 1

2

T∑
t=d

(ytj,L − (
∑d

u=1 Wuy
t−u)3k1+j,L)2

σ2
j

] (
σ2
j

)−(T−d+1)/2

}
, (3.3)

with yti,H = (yti,H y
t−1/3
i,H y

t−2/3
i,H )′, for 1 ≤ i ≤ k1.

The pseudo-likelihood function Lpseudo has a simpler product form (and sig-

nificantly fewer parameters) than the likelihood function in (3.1), and also has

6k1 + k2 parameters for Σε, as opposed to the (3k1 + k2)(3k1 + k2 + 1)/2 param-

eters for the likelihood function. Consequently, it leads to a significantly simpler

methodology, computation, and theoretical analysis. The latter comes at a cost,

because ignoring the cross-correlations between the error blocks decreases the sta-

tistical efficiency, and raises questions about the validity and consistency of the

resulting estimates. However, our main theoretical results in Section 4 establish

that the pseudo-likelihood-based Bayesian approach leads to consistent estimates

under high-dimensional scaling, even when the true error covariance matrix Σε is

not block diagonal (but satisfies some mild assumptions on the uniform bounded-
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ness of its eigenvalues). This result, together with the significant computational

simplifications, makes the pseudo-likelihood-based approach highly preferable in

high-dimensional settings. A regression interpretation of the pseudo-likelihood

function is provided in the Supplementary Material (Sec. S2.3).

3.1. Specification of prior distributions on the model parameters

Next, we specify the prior distributions for the parameters {Au}du=1, θ, {Σi,H}k1i=1,

and {σ2
j }
k2
j=1. As previously mentioned, we consider a high-dimensional setting,

in which the dimension p = 3k1 +k2 of the VAR model increases with the sample

size T . To that end, we obtain a further parameter reduction in the (k1 + k2)2

parameters in the matrix Au = ((auij))1≤i,j≤k1+k2 , for i = 1, . . . , d, using a spar-

sity-inducing prior distribution. To facilitate its introduction, we define binary

variables γuij = 1au
ij 6=0 ∀1 ≤ i, j ≤ k1 + k2, that indicate which entries of Au

are “active” (nonzero). The matrix Gu =
(
γuij
)

1≤i,j≤k1+k2
captures the pattern of

active entries (nonzeros) in Au. We specify Gaussian mixture prior distributions

for all entries of Au, for u = 1, . . . , d. However, the slightly different nature of the

factors for the high-frequency and low-frequency variables in Lpseudo (see (S2.9)

of the Supplementary Material) leads us to specify different variance terms for

the entries in the first k1 and the last k2 rows of Au, for analytical convenience.

Let, G = (G1, . . . ,Gd) be the collection of all activity matrices. In particular,

given the activity graph G, for u = 1, . . . , d, we specify

auij | σ2
i−k1 ,Gu ∼

(
1− γuij

)
1{au

ij=0} + γuijN (0, σ2
i−k1τ

2)

∀ k1 + 1 ≤ i ≤ k1 + k2, 1 ≤ j ≤ k1 + k2

auij | Σi,H,Gu ∼
(
1− γuij

)
1{au

ij=0} + γuijN (0, σ̃2
i τ

2)

∀ 1 ≤ i ≤ k1, 1 ≤ j ≤ k1 + k2

γuij
i.i.d.∼ Bernoulli(q), (3.4)

where σ2
j is defined in (3.2) for 1 ≤ j ≤ k2, and σ̃2

i is the reciprocal of the (3, 3)

entry of C′Σ−1
i,HC for a nonsingular 3 × 3 matrix C, the last column of which

is δ = (θ2 1 θ)′ and the first two rows of which are arbitrarily fixed. While

any reasonable scalar function of Σi,H can potentially be used for σ̃2
i , the choice

C′Σ−1
i,HC leads to closed-form expressions for the computation of the posterior

graph selection probabilities and simplifies both the computations and the the-

oretical analysis. For the variance parameters {Σi,H}k1i=1 and {σ2
j }
k2
j=1 we use

independent inverse-Wishart(ω,V) and independent inverse-gamma(α, β) priors,

respectively. These are standard conditionally conjugate choices for the variance
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parameters in Bayesian regression problems. A Uniform[0, 1] prior is used for θ.

Our default choice of hyper-parameters is q = 1/p (based on Assumption A3 in

the Supplementary Material, which is needed for the theoretical results), α, β,

and ω = 1, τ2 = 0.5, and V a small multiple of I. This choice can be mod-

ified appropriately if prior information is available. If computational resources

and time are available, another option is to choose the hyper-parameters using

cross-validation.

A recent empirical study (Cross, Hou and Poon (2020)) suggests that a purely

sparse model may not be most appropriate for macroeconomic data. Giannone,

Lenza and Primiceri (2021) propose a variant of the spike-and-slab priors that

combines both sparsity and shrinkage by using Uniform[0, 1] priors on q and

R2 := qpτ2/(qpτ2 + 1). This leads to a negative correlation between the inclusion

probability q and the slab variance τ2, which provides a desirable balance between

sparsity and shrinkage. However, one needs discretization to sample from the

highly nonstandard conditional posterior distributions of q and τ2. We do not

explore this approach here, owing to the additional computational burden in high-

dimensional settings. However, note that such priors and the relevant additional

sampling steps for the posterior computation can be incorporated easily in our

framework.

3.2. Computation of the posterior distribution

Let us denote A = {A1, . . . ,Ad}. The joint posterior of A, θ, {Σi,H}k1i=1,

{σ2
j }
k2
j=1 turns out to be intractable for closed-form computations or direct i.i.d.

sampling. However, the full conditional posterior distributions of all the param-

eters (except θ) are standard and easy to sample from, as shown in the Supple-

mentary Material (Sec. S3). While the full conditional posterior distribution of θ

is not standard, given that θ is a scalar with a bounded range (0, 1), we generate

samples from the full conditional posterior distribution of θ using an efficient

discrete approximation (see Supplementary Material Section S3). We then use

a Gibbs sampling algorithm to generate approximate samples from the posterior

distribution. The details of the Gibbs sampler are provided in the Supplementary

Material (Sec. S2.4). The Markov chain output of this algorithm can be used to

approximate the posterior quantities.

4. High-Dimensional Theoretical Results

For simplicity of exposition, we consider a d = 1 VAR model. The exten-

sion to VAR(d) models is straightforward. We let the dimension p = pn of the
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VAR model vary with the sample size n, where p = 3k1 + k2. We assume that

the data are generated according to the following true VAR model. For a sam-

ple size n ≥ 1, let Yn := (yn,0, . . . ,yn,n) be the set of observations obtained

from yn,k = W0ny
n,k−1 + εn,k for 1 ≤ k ≤ n. The errors {εn,k}nk=1 are i.i.d.

Npn(0,Σε,0n). Let {W0n}n≥1 denote the sequence of true coefficient matrices,

and {Σε,0n}n≥1 denote the sequence of true error covariance matrices. Let P0

denote the probability measure underlying the true model described above, and

G0 = G0,n be the true underlying activity graph for the sparse coefficient matrix

W0. The quantities µmin(A) and µmax(A) are defined in the Supplementary Ma-

terial, Section S2.8, and CX is defined in (S2.4) of the Supplementary Material,

with W0n and Σε,0n as the underlying parameter values. For 1 ≤ i ≤ k1 + k2,

let νi = νi(G) denote the number of nonzero/active entries in the ith row of G.

Then, the maximum number of nonnull entries within the rows of A0n is given

by bn = max1≤i≤k1+k2 νi(G) + 1. The minimum signal strength of A0n is given

by s2
n := inf(i,j):aij 6=0 |aij |. The total number of nonzero entries in A0n is denoted

by δn =
∑k1+k2

i=1 νi(G). For ease of exposition, we henceforth denote W0n as W0,

A0n as A0, and Σε,0n as Σε,0, and highlight their dependence on n as needed.

Standard regularity assumptions on the true model parameters are provided and

discussed in the Supplementary Material (Sec. S2.9).

Let πpseudo(· | Y) denote the (pseudo) posterior probability mass function on

the space of activity graphs, the expression of which is derived in the Supplemen-

tary Material (Sec. S4). Next, we establish that under high-dimensional scaling

and with the assumptions stated in the Supplementary Material (Sec. S2.9), the

posterior distribution of the activity graph concentrates around the true activity

graph.

Theorem 1 (Strong Model Selection Consistency). For the mixed-frequency VAR

model posited in (2.6), with lag d = 1 and the prior distributions on A,G and Σε

specified in Section 3.1 and fixed θ, satisfying Assumptions A1–A4 (provided in the

Supplementary Material), the following holds: the (pseudo) posterior probability

assigned to the true activity graph G0 converges to one as the sample size increases

to ∞:

πpseudo(G0 | Y)
P0→ 1 as n→∞.

The above result can be leveraged immediately to obtain the following estimation

consistency result.

Theorem 2 (Estimation Consistency Rate). For the mixed-frequency VAR model

posited in (2.6), with d = 1 and the prior distributions on A,G and Σε specified

in Section 3.1 and fixed θ, satisfying Assumptions A1–A4, there exists a constant
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K (not depending on n), such that

E0

[
Πpseudo

(
‖A−A0‖F > K

1 + µmax(A)

µmin(A)

√
δn log p

n

∣∣∣∣Y
)]
→ 0 as n→∞,

where Πpseudo refers to the (pseudo) posterior probability distribution.

The proofs of Theorems 1 and 2 are provided in the Supplementary Ma-

terial, Sections S5.2 and S5.3, respectively. The proof of Theorem 1 involves

a careful analysis of the ratio πpseudo(G | Y)/πpseudo(G0 | Y), for G 6= G0, that

can be written as a product of (k1 + k2) terms (see equation (S5.2) in the

Supplementary Material). The main challenge and novelty in the proof is the

analysis of the k1 terms {B(mi, ti)}k1i=1 corresponding to the multivariate re-

sponse high-frequency regressions. See Remark S3 in the Supplementary Ma-

terial for a detailed discussion. We also examine the behavior of the quantity

((1 + µmax(A))/µmin(A))
√

(bn log(3k1 + k2))/n from Assumption A1 under dif-

ferent asymptotic regimes for k1 = k1,n and k2 = k2,n in Remark S4 of the

Supplementary Material.

5. Obtaining Mid-Quarter Forecasts (Nowcasts)

In the model development in Section 2, we consider data from Quarter 1 to

Quarter T to predict the monthly variables at time T + 1/3, T + 2/3, and T + 1,

and the quarterly variables at time T + 1, and then do so recursively for future

time points. Next, suppose that new data on the monthly variables arrive at time

T+1/3, which is in the middle of quarter T+1. Then, the model can be modified

to provide a nowcast for the quarterly variables at time T +1 that corresponds to

the forecast horizon h = 2/3. Let us define a new (3k1 + k2)-dimensional process

yt=
[
y
t+1/3
1,H y

t+1/3
2,H · · · yt+1/3

k1,H
yt1,H · · · ytk1,H y

t−1/3
1,H · · · yt−1/3

k1,H
yt1,L y

t
2,L · · · ytk2,L

]′
.

(5.1)

Essentially, we start counting quarters backwards from time T + 1/3. Hence, the

most recent “quarter” covers months T +1/3, T, and T −1/3, the previous “quar-

ter” covers months T −2/3, T −1, and T −4/3, and so forth. Each monthly series

is broken into three quarterly series, and each quarterly series has exactly one ob-

servation in each newly defined “quarter”. A VAR model using the methodology

described in Section 3 can now be estimated to provide nowcasts of the quarterly

variables at time T + 1, and so on. If data on the monthly variables are available

until the second month of the next quarter, that is, at time T +2/3, we can make
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similar modifications to the model by considering

yt=
[
y
t+2/3
1,H y

t+2/3
2,H · · · yt+2/3

k1,H
y
t+1/3
1,H · · · yt+1/3

k1,H
yt1,H · · · ytk1,H yt1,L y

t
2,L · · · ytk2,L

]′
(5.2)

which leads to the nowcasts of the quarterly variables corresponding to the fore-

cast horizon h = 1/3. We demonstrate the performance of the proposed now-

casting methodology on simulated data (Section 6.1), and on real macroeconomic

data (Section 7).

6. Performance Evaluation Based on Simulation Studies

We first illustrate the model selection and estimation performance of the

Bayesian mixed-frequency (BMF) model. We consider five VAR(1) models of

different sizes: Setting 1: k1 = 3, k2 = 30; Setting 2: k1 = 5, k2 = 50;

Setting 3: k1 = 10, k2 = 50; Setting 4: k1 = 20, k2 = 20; and Setting 5:

k1 = 30, k2 = 10, each with three different values of θ: θ = 0.2, θ = 0.5, and

θ = 0.8, over the range (0, 1). We generate n = 100, 150 time points for the

VAR models corresponding to settings 1,4, and 5, and generate n = 200, 400

time points for those in settings 2 and 3.

Data Generation: The true transition matrix A is generated with nonzero

entries drawn from Unif (0, 10) ∪ Unif (−10, 0). The edge density of the activity

graph of A is fixed at 4 % for each VAR model. However for settings 1 and 2,

we do not impose sparsity on the A11 block, because the high-frequency block

is small. Based on the discussion in the Supplementary Material, Section S6.3,

the spectral radius of A is set to 0.8 for θ = 0.2, and to 0.7 for θ = 0.5, 0.8 for

setting 1. To generate Σε as given in (3.3), we generate σ2
j , for j = 1, . . . , k2, from

Unif (0.1, 1). We then generate Σi,H, for i = 1, . . . , k1, with diagonal elements

(Σi,H)ii = σ2
i,H and off-diagonal elements (Σi,H)ij = ρi

|i−j|σ2
i,H, where we generate

σ2
i,H, for i = 1, . . . , k1, from Unif (0.1, 1) and take ρi = 0.1, for all i = 1, . . . , k1.

The error covariance matrix Σε is generated and rescaled to ensure that the

process is stable with a signal-to-noise ratio SNR = 2. For all the models, the

initial activity graph G0 is selected based on an l1-penalized least squares estimate

that does not use Σε.

Algorithm: For each data set generated, we apply the BMF approach described

in the algorithm in the Supplementary Material (Sec. S2.4). To perform Gibbs

sampling, we use 1,000 burn-in and 2,000 further iterations. For entries of A,

those that are estimated as zero more than 1,000 times out of 2,000 main iter-
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ations, are set as zero in the final estimates; otherwise, we use their posterior

mean as the final estimate, which is calculated as the average over iterations with

nonzero estimates.

Model selection results: We use sensitivity (SN) and specificity (SP) as cri-

teria to evaluate the performance of the support recovery for A: Sensitivity (SN)

= True Positive (TP)/(TP + False Negative (FN)); Specificity (SP) = True

Negative (TN)/(TN + False Positive (FP)).

The selection performance of the BMF model under the aforementioned settings is

illustrated in Table 2 of the Supplementary Material (Sec. S6.4). These measures

are also separately reported for each sub-block of A. The results show that both

SN and SP improve as the sample size increases, as expected. Furthermore, for

most settings considered, these metrics take values close to one, except in settings

with a large number of high-frequency variables.

Estimation Consistency: We use relative error ‖A0 − Â‖F/ ‖A0‖F as a mea-

sure of the estimation quality of the transition matrix A and its sub-blocks. We

report the relative errors of A and Σε and the estimated θ for the BMF in Table 3

of the Supplementary Material (Sec. S6.4). The results show that the estimation

error decreases with an increase in the sample size n. Furthermore, the perfor-

mance is better for a smaller model dimension (k1, k2). Finally, the estimates of

θ are well calibrated.

6.1. Nowcasting/forecasting performance in simulations

Next, under different data-generation mechanisms, we compare the BMF

with (a) the state-space model of Schorfheide and Song (2015) (MFBVAR) and

(b) the MIDAS regression models of Ghysels, Sinko and Valkanov (2007) (imple-

mented in the R-packages mfbvar and midasr, respectively) are provided next,

under different data generation mechanisms.

Data generated from the BMF: We first generate data y1, . . . ,yT+H (hence-

forth denoted as y1:T+H) from the BMF, where H denotes the maximum forecast

horizon, under the aforementioned five settings using the data-generation mecha-

nism in Section 6. We use the smallest sample size corresponding to each setting

to perform all the nowcasting/forecasting exercises. The model is trained on data

y1:T until the end of quarter T , and the yT+1:T+H portion is used to evaluate its

predictive ability. The model parameters are estimated using the Gibbs sampler

developed in Section S2.4. We then use the Gibbs sampling draws to compute the

posterior predictive distribution of y, and its median, denoted by ŷT+h, is used as
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an estimate for yT+h for any particular forecast horizon h. To leverage the con-

temporaneous relationships for the posterior predictive distribution evaluation,

we also obtain a sparse estimate of the precision matrix of the errors without any

block-diagonal structure, using the graphical lasso algorithm Friedman, Hastie

and Tibshirani (2008). The procedure is described in the Supplementary Mate-

rial (Sec. S2.6). At the end of the first or second months of quarter T + 1, we use

the fresh information that becomes available for the monthly variables, to obtain

mid-quarter forecasts corresponding to h = 1/3, 2/3, and so on, as described in

Section 5. For the generated data, we can obtain nowcasts/forecasts for MFB-

VAR under the following three choices for the prior distribution of the model

parameters: Minnesota (Minn), Steady-state (SS), and Hierarchical steady-state

(Hier. SS). Because MFBVAR evolves at the monthly level, it can directly gen-

erate mid-quarter nowcasts for h = 1/3, 2/3, and so on. Similarly, we fit MIDAS

regression models to the same data, and estimate them (1) without restricting

the parameters (as in U-MIDAS) and using ordinary least squares (OLS), and

(2) with the exponential Almon lag polynomial constraint on the parameters

and using the nonlinear least squares (MIDAS Res.). The nowcasts/forecasts

of the quarterly variables are obtained using these two variants of MIDAS re-

gression models across the forecast horizon. We consider a random walk model

with drift as the benchmark model. For each of these six models, that is, the

BMF, the three variants of MFBVAR and the two variants of MIDAS, we com-

pute the root mean squared error (RMSE) for the vector of quarterly forecasts

relative to that of the naive VAR model, which is a ratio of the RMSE values

for h = 1/3, 2/3, 1, 4/3, 5/3, 2. For compactness, in Table 1, we report the rela-

tive RMSE for the BMF, MIDAS models, and best performing MFBVAR model

corresponding to the Minnesota prior, when θ = 0.5. The results for θ = 0.2

and 0.8 are similar to those for θ = 0.5 for all simulation settings examined here,

and hence are omitted. All forecasting exercises are performed using the smaller

sample size for each setting. The results for the two other priors of MFBVAR

are provided in Table 4 of the Supplementary Material (Sec. S6.5). A relative

RMSE value of less than one implies that the particular model outperforms the

benchmark model. The RMSE values are based on averages over 100 replicates.

Table 1 shows that for all the scenarios, the BMF outperforms the best per-

forming MFBVAR model and MIDAS models, and for the first three settings,

MFBVAR has relative RMSEs at least twice that of the BMF. We also evaluate

the probabilistic forecasts of BMF and MFBVAR in terms of their posterior pre-

dictive distribution by calculating continuously ranked probability scores (CRPS)

and log predictive scores (LPS), implemented in the functions crps.numeric and
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Table 1. Relative RMSE values (benchmarked to a random walk model with drift) using
data generated from the proposed BMF model.

Setting 1 (k1 = 3, k2 = 30) Setting 2 (k1 = 5, k2 = 50)

h = 1/3 h = 2/3 h = 1 h = 4/3 h = 5/3 h = 2 h = 1/3 h = 2/3 h = 1 h = 4/3 h = 5/3 h = 2

BMF 0.54 0.54 0.53 0.66 0.66 0.66 0.55 0.53 0.53 0.65 0.63 0.63

MFBVAR 1.64 1.47 1.36 1.48 1.37 1.22 2.03 2.03 2.02 1.92 1.87 1.83

U-MIDAS 0.92 0.92 0.92 0.96 0.95 0.95 0.93 0.92 0.92 0.91 0.92 0.93

MIDAS(Res.) 0.92 0.91 0.90 0.92 0.93 0.92 0.64 0.63 0.62 0.66 0.65 0.65

Setting 3 (k1 = 10, k2 = 50) Setting 4 (k1 = 20, k2 = 20)

h = 1/3 h = 2/3 h = 1 h = 4/3 h = 5/3 h = 2 h = 1/3 h = 2/3 h = 1 h = 4/3 h = 5/3 h = 2

BMF 0.51 0.49 0.47 0.58 0.58 0.55 0.80 0.64 0.61 0.95 0.70 0.70

MFBVAR 1.39 1.31 1.27 1.12 1.07 1.02 0.99 0.92 0.85 0.87 0.80 0.80

U-MIDAS 0.59 0.57 0.57 0.57 0.56 0.57 1.35 1.38 1.35 1.48 1.41 1.58

MIDAS(Res.) 0.57 0.57 0.55 0.54 0.54 0.54 0.90 0.92 0.86 1.00 0.99 1.00

Setting 5 (k1 = 30, k2 = 10)

h = 1/3 h = 2/3 h = 1 h = 4/3 h = 5/3 h = 2

BMF 0.69 0.67 0.66 0.67 0.68 0.67

MFBVAR 0.92 0.82 0.77 0.71 0.69 0.71

U-MIDAS 1.13 1.18 1.13 0.99 1.09 1.10

MIDAS(Res.) 0.79 0.82 0.81 0.92 0.85 0.86

logs.numeric, respectively, of the R-package scoringRules. These values are

reported in Table 5 of the Supplementary Material (Sec. S6.5). The results show

that BMF performs significantly better than MFBVAR, even in its evaluation for

predictive densities.

We repeat the same forecasting exercise with data generated from the pro-

posed BMF model, but when the true error covariance matrix does not have

a block-diagonal structure. The results (in Supplementary Material Sec. S6.6)

provide empirical evidence of the superior forecasting performance of BMF, even

when the true error covariance does not have a block-diagonal structure.

Data generated by the model of Ghysels (2016): Here we perform the

forecasting exercise under a neutral data-generation setting, in which the data

are generated from a MIDAS model, and the true coefficient matrix W uses the

structure specified in (2.9) of Ghysels (2016). We examine and compare the six

models previously described using data up to time T , together with two other

versions of the BMF that use information on monthly variables until time T+1/3

or T + 2/3 in order to provide nowcasts corresponding to h = 1/3, 2/3, and so

forth, as discussed in Section 5. Using the parameter estimates obtained from

these models, we predict y for the future time points, and subsequently obtain the

RMSE values across the forecasting horizon in a similar manner to that of Table 1.

For compactness of presentation, in Table 2, we report the relative RMSE values

for the BMF and MIDAS models and the best performing MFBVAR model, for
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Table 2. Relative RMSE values (benchmarked to a random walk model with drift) using
data generated under a neutral data-generating setting.

Setting 1 (k1 = 3, k2 = 30) Setting 2 (k1 = 5, k2 = 50)

h = 1/3 h = 2/3 h = 1 h = 4/3 h = 5/3 h = 2 h = 1/3 h = 2/3 h = 1 h = 4/3 h = 5/3 h = 2

BMF 0.68 0.70 0.70 0.73 0.73 0.72 0.73 0.73 0.73 0.70 0.70 0.70

MFBVAR 2.45 2.24 2.27 2.26 2.18 2.16 2.71 2.56 2.52 2.24 2.28 2.20

U-MIDAS 0.90 0.90 0.90 0.90 0.93 0.93 0.83 0.83 0.83 0.90 0.89 0.88

MIDAS(Res.) 0.84 0.83 0.83 0.91 0.91 0.91 0.89 0.88 0.88 0.86 0.85 0.85

Setting 3 (k1 = 10, k2 = 50) Setting 4 (k1 = 20, k2 = 20)

h = 1/3 h = 2/3 h = 1 h = 4/3 h = 5/3 h = 2 h = 1/3 h = 2/3 h = 1 h = 4/3 h = 5/3 h = 2

BMF 0.71 0.71 0.71 0.72 0.72 0.72 0.62 0.63 0.63 0.67 0.67 0.67

MFBVAR 2.36 2.21 2.09 2.12 2.05 1.91 1.24 1.01 0.93 0.89 0.84 0.79

U-MIDAS 0.88 0.89 0.89 0.93 0.92 0.93 1.45 1.70 1.52 1.74 1.64 1.67

MIDAS(Res.) 0.86 0.86 0.85 0.90 0.88 0.89 1.02 1.11 1.04 1.07 1.08 1.13

Setting 5 (k1 = 30, k2 = 10)

h = 1/3 h = 2/3 h = 1 h = 4/3 h = 5/3 h = 2

BMF 0.60 0.60 0.60 0.73 0.73 0.73

MFBVAR 0.73 0.67 0.62 0.77 0.72 0.73

U-MIDAS 1.07 1.09 1.17 1.28 1.24 1.23

MIDAS(Res.) 0.89 0.88 0.83 0.94 0.91 0.92

h = 1/3, 2/3, 1, 4/3, 5/3, and 2. It turns out that for (k1, k2) = (3, 30), the

hierarchical steady state prior works best, whereas for the other settings, the

Minnesota prior performs best. The results show that BMF performs extremely

well compared with the best performing MFBVAR model and MIDAS models,

even in the neutral setting across all combinations of (k1, k2). As before, we

obtain the CRPS and LPS values, and BMF again outperforms MFBVAR. These

results, along with relative RMSE values for MFBVAR with other priors, are

provided in Tables 8 and 9 of the Supplementary Material (Sec. S6.7).

Data generated by the model of Schorfheide and Song (2015): We per-

form a similar forecasting exercise in another neutral setting, where the data are

generated from a state-space model. The details of the data-generation process

and the corresponding results are provided in the Supplementary Material (Sec.

S6.8). The results show that even in this setting, BMF outperforms other com-

peting models significantly across all forecasting horizons. Overall, the proposed

BMF model exhibits strong performance compared with other methods across all

the true data-generation mechanisms considered in the simulation experiments1.

1 The code used for the simulations and empirical data analysis is available at https://github.com/
nchak431/BMF.

https://github.com/nchak431/BMF
https://github.com/nchak431/BMF
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7. Application to Macroeconomic Data

We apply BMF to a macroeconomic data set (Data 3) comprising 77 monthly

and nine quarterly variables on industrial production, the status of the labor

force (participation and unemployment), the price index, the assets and liabili-

ties of households and businesses, monetary policy, and the financial markets of

the Unites States. The 77 monthly variables are obtained from Ankargren and

Jonéus (2019) by discarding monthly variables that were discontinued or that

have significant missing data issues. The data are obtained from the FRED-

MD (McCracken and Ng (2016)) and FRED-QD (McCracken and Ng (2020))

databases for the period January 1960 to December 2016, and the quarterly and

monthly variables used in Data 3 are listed in Tables 13 and 14 of the Supple-

mentary Material. The time series are processed to ensure stationarity, following

the recommendations in McCracken and Ng (2016, 2020) (see Table 15 of the

Supplementary Material).

BMF is fitted with lag d = 1 because the partial autocorrelation functions

(PACFs) of most individual series exhibit strong first lag autocorrelation, and

the higher order autocorrelations are quite weak. We use a noninformative (flat)

prior distribution on the edge selection probability q in the Gibbs sampler, and

then sample q in each iteration from its full conditional beta distribution. The

default values of the other hyper-parameters are as discussed at the end of Sec-

tion 3.1. We used 1,000 burn-in and 2,000 further iterations of the Gibbs sampler

for the posterior computation. The estimated connectivity pattern between the

time series under consideration is presented in Figure 4 of the Supplementary

Material (Sec. S7), with the vertices of the network corresponding to 86 macroe-

conomic indicators, and the edges capturing the Granger causal effects. The edge

density of the estimated transition matrix is given in Table 16 (Sec. S7). Next,

we examine the 95% posterior credible intervals of four selected edges of the es-

timated transition matrix, one from each sub-block of A; see Figure 1. The final

estimates are marked by a circle. The four intervals correspond to the effects of

(i) total reserves of depository institutions on the consumer price index, (ii) total

assets for households and nonprofit organizations on securities in bank credit,

(iii) real personal consumption expenditure on GDP, and (iv) real government

consumption expenditure and gross investment on real hourly compensation for

all employed persons.

The data are also used for forecasting/nowcasting purposes and for compar-

isons with competing models. We first investigate how the forecast of the key

quarterly variables using the proposed BMF model improves as more monthly
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−

Figure 1. 95% posterior credible intervals using the BMF model for four selected edges
of the estimated transition matrix A.

indicators are added to it. To this end, we create two data sets, containing sub-

sets of monthly variables from Data 3 and the same nine quarterly variables.

The smallest subset contains 24 monthly variables (Data 1), and the second sub-

set contains 49 monthly variables (Data 2), obtained after including additional

monthly variables in Data 1. The specific monthly variables present in Data 1

and 2 are indicated in Table 14 of the Supplementary Material (Sec. S7). We use

all three data sets for nowcasting and track their respective performance. For this

exercise, we consider an increasing sequence of estimation samples, starting with

1960Q1–2004Q3 to 1960Q1–2016Q4, with the starting point 1960Q1 being fixed.

Subsequently, we compute forecasts of the quarterly variables across a variety

of forecast horizons, h = 1/3, 2/3, 1, 4/3, 5/3, and 2, using each of the estima-

tion samples. As discussed in Section 5, we modify BMF to obtain nowcasts for

h = 1/3, 2/3, and so on. To evaluate the forecasting performance of the models,

we calculate RMSE values and CRPS and logarithmic score for the fitted BMF

using all three data sets, taking an average over all estimation samples. Table 3

reports these metrics (averaged over all the quarterly variables) across different

horizons h = 1/3, 2/3, 1, 4/3, 5/3, and 2 for the three data sets. Table 3 shows

that the performance of BMF in terms of nowcasting the quarterly variables im-

proves as additional monthly indicators are included, as expected, and hence the

model performs best under Data 3. Next, we compare the forecasting perfor-

mance of BMF with that of (a) the state-space-based MFBVAR model using the

three available prior distributions, (b) an unrestricted and a restricted MIDAS

model, and (c) a quarterly VAR model. Here, we aggregate the monthly data to
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Table 3. RMSE, CRPS and log score values for comparison of the nowcasting performance
of BMF with different numbers of monthly variables.

Data 1 Data 2 Data 3

RMSE CRPS log score RMSE CRPS log score RMSE CRPS log score

h = 1/3 1.00 0.48 1.10 0.98 0.47 1.07 0.96 0.46 1.05

h = 2/3 1.03 0.50 1.13 1.01 0.49 1.12 0.98 0.48 1.09

h = 1 1.24 0.57 1.27 1.14 0.55 1.26 1.05 0.52 1.23

h = 4/3 1.25 0.60 1.36 1.28 0.60 1.38 1.25 0.59 1.37

h = 5/3 1.38 0.62 1.40 1.36 0.62 1.40 1.30 0.60 1.38

h = 2 1.38 0.62 1.40 1.39 0.63 1.42 1.39 0.62 1.40

a quarterly level, and estimate it at that frequency. We study two quarterly level

VAR models that differ in terms of the weighting schemes they use to aggregate

monthly observations; one uses equal weights for all three monthly observations

in each quarter to obtain quarterly averages, and the other uses skewed weights

(1/2, 1/3, 1/6), with higher value assigned to the most recent monthly observation

in each quarter. We estimate the quarterly VAR models using the OLS. As ear-

lier, we consider a random walk model with drift as the benchmark. We perform

this exercise separately for each of the three data sets constructed. For each of

the eight models, that is, BMF, the three variants of MFBVAR, the two MIDAS

models, and the two quarterly VAR models, we obtain forecasts for the quarterly

variables and calculate their relative RMSE values with respect to the benchmark

random walk model, taking the average over all estimation samples for the period

T0 = 2004Q3 to T1 = 2016Q4. Note that the MFBVAR and MIDAS implemen-

tations in R fail to run when the total number of variables (3k1 + k2) is greater

than the sample size n. This also happens when k1 = 77 monthly variables are

used, and hence we cannot obtain results for these models for Data 3. Table 4

shows the aggregate relative RMSE values (averaged over all quarterly variables)

for all models under consideration across horizons h = 1/3, 2/3, 1, 4/3, 5/3, and 2

for Data 1 and Data 2. BMF clearly outperforms the other methods across the

full forecasting horizon and exhibits notably small forecast errors. The results

for Data 3 corresponding to the BMF and quarterly VAR models are provided in

Table 17 of the Supplementary Material.

We also employ the Diebold–Mariano–West (DMW) test (Diebold and Mar-

iano (1995)) to examine the differences in predictive accuracy of the proposed

BMF model with respect to the MFBVAR models for forecasting GDP using

Data 1 and 2. The null hypothesis of the test states that both models have the

same predictive accuracy. The alternative hypothesis states that BMF has bet-
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Table 4. Relative RMSE values comparing the nowcasting/forecasting performance of
competing models.

Data 1 BMF MFBVAR(Minn) MFBVAR(SS) MFBVAR(Hier. SS) U-MIDAS MIDAS(Res.) QVAR(Equal wt.) QVAR(Skewed)

h = 1/3 0.66 1.01 1.22 1.04 1.37 1.21 0.80 0.92

h = 2/3 0.68 0.94 1.01 0.95 1.12 0.89 0.78 0.74

h = 1 0.82 1.00 1.07 1.01 1.28 1.10 0.97 1.04

h = 4/3 0.73 0.81 0.87 0.83 1.24 1.04 0.78 0.78

h = 5/3 0.80 0.89 0.97 0.91 1.04 0.81 0.78 0.78

h = 2 0.80 0.89 0.99 0.93 1.15 0.94 0.94 1.08

Data 2

h = 1/3 0.65 1.02 1.07 1.12 2.22 1.20 0.92 0.93

h = 2/3 0.67 0.95 0.96 1.07 2.06 1.13 0.94 0.87

h = 1 0.75 0.97 1.00 1.03 2.13 1.24 1.04 1.04

h = 4/3 0.74 0.81 0.84 0.87 1.95 1.09 0.87 0.83

h = 5/3 0.79 0.88 0.94 0.94 1.85 1.04 0.85 0.86

h = 2 0.81 0.88 0.92 0.94 1.94 1.09 1.00 1.03

Table 5. Nowcasting/forecasting performance of BMF and MFBVAR using CRPS and
LPS values.

CRPS Log score

Data 1 Data 2 Data 1 Data 2

BMF MFBVAR BMF MFBVAR BMF MFBVAR BMF MFBVAR

h = 1/3 0.48 0.70 0.47 0.73 1.10 1.44 1.07 1.48

h = 2/3 0.50 0.67 0.49 0.68 1.13 1.42 1.12 1.44

h = 1 0.57 0.70 0.55 0.70 1.27 1.47 1.26 1.49

h = 4/3 0.60 0.67 0.60 0.69 1.36 1.48 1.38 1.50

h = 5/3 0.62 0.70 0.62 0.70 1.40 1.48 1.40 1.50

h = 2 0.62 0.70 0.63 0.70 1.40 1.49 1.42 1.49

ter predictive accuracy than that of the MFBVAR model. As mentioned, the

MFBVAR models fail to run for Data 3. Hence, we can not perform the test

for Data 3. The results of the DMW test for Data 1 and 2 are provided in the

Supplementary Material (Sec. S7.1). These results show that for short-term fore-

casting horizons h = 1/3, 2/3, 1, the proposed BMF model shows strong evidence

of superior predictive performance compared with that of the MFBVAR model

with all three choices of prior distributions. We also compute CRPS and LPS

to evaluate the probabilistic forecasts for BMF and MFBVAR using Data 1 and

Data 2. Table 5 shows that BMF significantly outperforms MFBVAR in terms of

evaluating the proposed framework for its posterior predictive distribution. We

also perform a similar forecasting analysis using the first published estimates of

the variables, instead of using the current vintage, to respect the release calendar

as much as possible for the forecasts. The detailed analysis is provided in the

Supplementary Material (Sec. S7.2).
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Table 6. Performance of BMF and MFBVAR in predicting the 2008–2009 recession

Q1 2009(Final Truth=-1.96,Initial Truth=-2.36) Q4 2008(Final Truth=-3.01,Initial Truth=-1.76)

Sep’08 Oct’08 Nov’08 Dec’08 Jan’09 Feb’09 June’08 Jul’08 Aug’08 Sep’08 Oct’08 Nov’08

Prediction by BMF -0.73 -1.61 -1.81 -1.98 -2.72 -3.00 -0.33 -0.30 -0.36 -2.20 -2.31 -0.89

Prediction by MFBVAR -0.78 -1.67 -2.73 -5.26 -6.02 -4.08 -0.68 -0.74 -0.97 -1.48 -1.23 -0.05

Error (BMF, using final truth) 1.52 0.12 0.02 0.0004 0.58 1.08 7.14 7.32 7.02 0.65 0.48 4.46

Error (MFBVAR, using final truth) 1.41 0.09 0.59 10.89 16.46 4.49 5.42 5.16 4.16 2.33 3.14 9.35

Error (BMF, using initial truth) 2.66 0.56 0.30 0.14 0.13 0.41 2.03 2.13 1.97 0.20 0.30 0.75

Error (MFBVAR, using initial truth) 2.51 0.48 0.14 8.42 13.39 2.96 1.17 1.05 0.63 0.08 0.28 3.28

Finally, we investigate the performance of our proposed model in terms of

predicting recession episodes. To this end, we evaluate real-time forecasts of real

GDP for Q4 2008 and Q1 2009 during the 2008–2009 Financial Crisis, using

information on key monthly and quarterly variables from 1960 to 2008. We

discard those monthly variables from Data 3 for which the data for the last

time point in the training data set are not available within two months of the

actual date, for the sake of real-time forecasts. Thus, we have a data set of 42

monthly and seven quarterly variables, and use these to obtain six-month-ahead

to one-month-ahead forecasts of GDP growth for Q4 2008 and Q1 2009. The

main objective is to determine when the models start predicting downturns in

economic activity, as fresh information (initial estimates) becomes available for

the relevant variables. Table 6 provides predictions of the GDP growth by both

BMF and MFBVAR for Q4 2008 and Q1 2009. We compare these forecasts

with the latest available estimate of true GDP growth, and with the initial GDP

estimate published by FRED for these two quarters, and provide squared errors

with respect to both true GDP values in Table 6. For each quarter, the values

corresponding to specific month names in Table 6 denote the prediction/error

from using the training data till the end of that month. The results show that

MFBVAR performs better for four-to-six-month-ahead forecasts, whereas BMF

provides more accurate one-to-three-month-ahead forecasts, as we approach the

time point of interest. Furthermore we observe a consistent decreasing trend in

the predictions as we add new monthly data and the forecast horizon becomes

smaller (for both the Q4 2008 and the Q1 2009 predictions). The only exception

is an increase in the predicted GDP growth (for both BMF and MFBVAR) for Q4

2008 when we add data for November 2008. A closer examination of the November

2008 values for the monthly variables used in the model, shows that the values

of ‘FEDFUNDS’, ‘TB3MS’ and ‘TOTRESNS’ changed significantly in November

compared with their historical values. In addition, the Federal Reserve slashed

its rate to practically zero around this time, and the three-month bill followed

suit. These are probable causes for the above discrepancy.
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Supplementary Material

The online Supplementary Material provides additional methodological de-

tails, proofs of theoretical results and additional simulation and empirical data

analysis results.
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