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Abstract: In this paper, we propose a multivariate process capability index (PCI)
over a general tolerance zone which includes ellipsoidal and rectangular solid ones
as special cases. Our multivariate PCI appears to be a natural generalization of the
PCI C, for a univariate process to a multivariate process. Computing aspects of the
proposed multivariate PCI are discussed in detail, especially for a bivariate normal
process. It is noted that its distributional and inferential aspects are difficult to deal
with. Resampling methods and a Monte Carlo procedure are suggested to overcome
this difficulty. Some examples with a set of real data are presented to illustrate and
examine the proposed multivariate PCI.
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1. Introduction

Consider a manufacturing process with a v-dimensional characteristic X =
(X1,...,X,). It is common practice that there are some given engineering speci-
fications on the characteristic. The set of the values of X within the specifications
is called a tolerance zone of the process. For an ellipsoidal tolerance zone, sev-
eral multivariate process capability indices (PCI’s) have recently been proposed
and discussed (e.g., Chan, Cheng and Spiring (1991), Pearn, Kotz and Johnson
(1992), and Littig, Lam and Pollock (1992)). Not much work has been done, how-
ever, for a rectangular solid tolerance zone. This is regrettable, since in spite of
the warning of Alt and Smith (1988), one actually encounters a rectangular solid
zone very often in practice. The specifications for a product generally consist of
a collection of individual specifications for each variable, so that the intersection
of these specifications (the tolerance zone formed) would be a rectangular solid
(see, e.g., Jackson (1991) for a discussion). Our purpose in writing this paper is
to attack this problem.

Original motivation underlying the introduction of PCI’s is to monitor the
proportion of nonconforming products (Kane (1986), and Pearn et al. (1992)).
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An item produced by a process is said to be nonconforming if its characteristic is
not within the tolerance zone assigned in advance. The process is considered to
be capable if the expected proportion of nonconforming products is small enough,
say 0.27%. In the case of a univariate characteristic (v = 1), a unitless PCI (Sul-
livan (1984)) is defined as C, = d/30, where o is the standard deviation of X
and 2d equals the length of the tolerance interval. A variety of PCI’s for a uni-
variate characteristic has then been proposed to deal with various manufacturing
situations. See Kane (1986), Chan et al. (1988), Cheng and Spiring (1989), and
Pearn et al. (1992). For a multivariate process (v > 2), we also try to use a single
quantity (multivariate PCI) to adequately describe the quality of the process;
whereas Hubele, Shahriari and Cheng (1991) suggest a three-component PCI for
a bivariate normal process over a rectangular zone. Motivated by the inspiring
papers of Chan et al. (1991) and Pearn et al. (1992), we propose a multivariate
PCI (as a single scale quantity) over a general tolerance zone that has already
been established in advance by engineers.

2. Multivariate PCI’s

We proceed to deal with a general type of tolerance zones which includes
rectangular solid as a special case. Suppose that a tolerance zone is defined as

V={zeR :h(z—-T) <o}, . (1)

where h(z) is a specific positive function with the same scale as z, T € R” is
a constant vector and ry a positive number. Mathematically, the restriction to
the same scale on h means that h(z) is a positive homogeneous function with
degree one: h(tz) = th(z), for t > 0 and x € R”. A plausible rationale for
this is that the function h is used to specify limits for the X-process. A more
important reason for this requirement is that a multivariate PCI over V' can be
well-defined. The constant vector T' may be a v-dimensional target vector of the
manufacturing process on the v-dimensional characteristic X. As for ry, though
it can be assumed to be equal to 1 without loss of generality, we prefer to retain
its general value since one may endow it with the role of radius of the tolerance
zone.

Let o be the allowable expected proportion of nonconforming products of a
process (conventionally, & = 0.27%). With the tolerance zone V' defined in (1),
a process is capable if P(X € V) > 1 —a, ie, P(A(X =T) <) > 1-a.
Let » = min{c : P(h(X = T) < ¢) > 1 — «}. It is clear that if the cumulative
distribution function of A(X — T') is increasing in a neighborhood of r, the most
common case, then 7 is simply the unique root of the equation P(h(X —T) <
r) = 1 — a. The process is capable if and only if 7 < 7o, Le., ro/r > 1. This
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suggests that the quantity ro/r describes the quality of the process. We therefore
define a multivariate PCI, denoted by M C,, as

MC, =rq/r.

It is noted that M C, is well-defined, since a tolerance zone like V is specified by
a function A uniquely up to a scale constant and since M Cp is scale-invariant.

Our definition of MC, is general in the sense that (i) the specifications can
be as general as given by (1), (ii) its statistical interpretation does not rely
on a particular form, say normality, of the distribution law of X, and (iii) the
arbitrariness of a provides flexibility in setting a criterion for the capability of a
process. Additional comments are as follows:

1. The multivariate PCI M C, identifies capability of the process. The hypoth-
esis Hy: the process is capable, is equivalent to H, : M Cp>1.

2. The value 1 of MC,, indicates that the expected proportion of nonconforming
products of the process is exactly allowable, i.e. equal to a. And the expected
proportion is a decreasing function of MC,. That is, the larger M C,, the less
the expected proportion and the more capable the process is. This ensures
the original motivation of PCI’s. See the discussion by Pearn et al. (1992).

3. Numerically, M C, is the ratio of the radius of tolerance zone to that of actual
zone needed to achieve the desired expected proportion of nonconforming
products. Thus, M C, is a natural generalization of the univariate PCI Cp.

When h(z —T) = [(z — T)A~*(z — T)]*/? with A a v x v positive definite
matrix, V is the ellipsoidal specification given by {z € R” : (z — T)'A~*(z —
T) < r3}. For this ellipsoidal tolerance zone and for o = 0.27% together with
the normality assumption, MC, reduces to the multivariate PCI proposed by
Pearn et al. (1992). An interesting special case mentioned in their paper is X ~
N(T,0%A) with o a free parameter. In this case, MC, = 74/(0X,,o), Where X2 o
is the 100(1 — a)th percentile of the y2-distribution with v degrees of freedom.

Let Xi,...,X, be a sample of size n from X. Then o? can be estimated by
6 = (n - 1)7' (X, — X)’A"Y(X, — X) so that MC, can be estimated by
TO/(&XV,C‘)‘

Another example of the tolerance zone with structure (1) is the Holder-type

specification:
v 1/p
{xeR”:[Zl(wi—Ti)/nlp sTo}
i=1

for any p > 0; and any norm in R” can serve as an h to define a tolerance zone
like (1). Therefore, the general form (1) for defining a tolerance zone is quite
comprehensive and can meet various needs in practice.
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3. MC, over a Rectangular Solid Zone

A rectangular solid tolerance zone is defined by V = {z € R" : |z, — T3] <
ri,i = 1,...,v}, where T; and r; are specific constants. Another expression for
Vis .

V ={z € R : max{|z; — T;|/ri,i=1,...,v} < 1}.
Thus, V has the structure of (1) with h(z) = max{|z;|/ri,i = 1,...,v}. Con-
sequently, the multivariate PCI M C, = 1/r, where r is such that P(max{|X; —
Ti|/ri,i=1,...,v} <7) =1-—ca. Let F be the cumulative distribution function
of (X —T). Then r = F~}(1 — ), i.e., the 100(1 — a)-th percentile of F. It
follows immediately that for any y > 0,

F(y) S mln{P(le“‘ Tz' S Tiy)vi = 11 ttt V}' (2)

So, a necessary condition for a process to be capable over a rectangular solid
zone is that each individual univariate process is capable with the corresponding
specification limits. This seems to be expected. Indeed, this fact is the starting
point of the Kocherlakota and Kocherlakota (1991) bivariate generalizations of
C,. If X ~ N(T,X), then by Theorem 5.1.2 (or Corollary 7.2.1) of Tong (1990),
F(y) > [Ii-, P(|X; — Ti] < r;y). Noting that the rhs is the expected proportion
of conforming products of a normally distributed process with independent com-
ponents, this inequality suggests that correlations between characteristics make
the process more capable over a rectangular tolerance zone.

Now we turn to the issue of actually computing MC,. Assume that X ~
N(p, %) with g and ¥ known. If estimates i and 3 are computed from the
observations of the process, the methods described below will be applied to the
estimates. Besides r; and T;, MC, also depends on the mean vector x and
covariance matrix ¥ of X in a complicated way. In general, computing MC,
may be complicated and one may require a Monte Carlo method to obtain an
estimate. For some special cases, however, a numerical solution to F(y) =1 - «
can be easily obtained.

3.1. Computing MC,: A special case

Let all 7; be identical, say equal to 7o, and let u = T and £ = o*I, where I is
the v X v unit matrix. It is clear that ¥ = max{|X; —T;|/re,i = 1,...,v} has the
same distribution as (¢/ro)|Z|(,), where |Z|(, is the largest order statistic of the
absolute values |Z:|,...,|Z,| of a standard normal random sample, Z,,...,Z,
of size v. Let r be such that P{(c/ro)|Z|w) < r} = 1 = q, ie., ®(rry/o) =
14 (1 - a)¥¥]/2. Then

MC, =1/r =10/(02,4), (3)
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where z,, is the 100a,-th percentile of N(0,1) and o, = [1 + (1 — a)¥/*]/2.
For o = 0.27%, o = 0.9993 and 2z, = 3.1949, so MC, = ry/(3.19490). For
a = 5%, 22, = 2.2357 and MC, = ry/(2.23570). When « is small, ¢, can be
approximated by 1 — a/(2v).

3.2. Computing MC,: Bivariate normal process

Let v = 2 and £ = (0y;), where 01, = 07,092 = 02 and 0,3 = po,0,. Then
we have (see Tong (1990))

F(y)=P (lX ik
T

with g(u;y) = 72", {®(ai1) — ®(as)}, where

oy = BOTHOV 2ol + (riy = 8)/os - sgn'H(p) V/2plu — (ray + &)/
vaar V1—1pl

and 6; = u; — T;, © = 1,2. Nowadays, programming subroutines and computer
softwares are widely available to handle the numerical integrals (e.g., the IMSL
Library and the software, Mathematica). Therefore, the function F(y) can be
numerically realized by utilizing an appropriate computing facility. Newton-
Raphson’s method can be used to find a numerical solution to the equation
F(y) = 1 — a. From (3), we suggest using zo = (01 A 02)2z24/(r1 V 73) as a
starting point in the iteration, where s At = min(s,t) and sV ¢ = max(s,t). The
derivative of F(y) is F'(y) = [*°_{dg(u;y)/dy}e " du, where

< y) = /oo g(@ y)e ™ du, (4)

-0

'XQ—T2

d 2 (az2> ) Ti
dy )Z — ®(ai2) 051/1 = [p|

=1

3.3. Computing MC,: Arbitrary v with special ¥

For general v (> 2), assume that the correlation coefficient p;; between X,
and X; has the special structure: p;; = \A; for A; € [—1,1], for all ¢ # j. (For
some interesting applications of the model, see Curnow and Dunnett (1962).)

Similarly to the case of bivariate normal, we have F(y) = [ _g,(u;y)e - du,
with g, (u;y) = 7 V2 [[_ {®(bi1) — ®(b;2)}, where by = [Nu+ (riy — 8;)/0:](1 —
AD7V2 by = Nu— (ry+6)/a]/(L =22 and & = — T3, i = 1,...,v.
Since F(y) involves the integral of only one variable, it is rather convenient to
evaluate its values numerically on a computer. The derivative can be obtained
similarly to the case of bivariate normal.
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4. Inference for Capability Based on MC,

Let m,, be the method of moments estimate for MC, based on a random
sample of size n from the process X. Similar to a shortcoming of all existing
multivariate PCI’s, a drawback of M C), is the fundamental difficulty in studying
the distributional and inferential properties of ]V[E’p. Nevertheless, for n large,
resampling methods can be employed to obtain an asymptotic confidence interval
for MC,. Let \/7—1(1\7[\0,, — MC,) have a normal limit distribution. When n is
large, one can have an asymptotic confidence interval for M C, : JVIE',, £ 2,7,
where 27 is the nominal confidence level, z, the 100(1 — v)-th percentile of the
standard normal, and 7, a certain estimate for the standard deviation 7, of
MC p- Lwo popular resampling estimates for 7, are bootstrap and jackknife. For
a general description and discussion about the two resampling methods, we refer
readers to Efron (1982).

When ¥ is known, say %, the p-value can be determined for testing capa-
bility. To test the null-hypothesis Hy : MC, > 1, one would reject Hy if JVIE',, is
small. It can be seen that the expected proportion of nonconforming products
attains its minimum when T = u. Therefore, if the value of MC, with T = u is
greater or equal to 1, in which case the null hypothesis is true, then the p-value
of the test is p = P(A/J?J,, < 7mt,), where mc, is the observed value on MC,, and
the probability is taken under X ~ N(T,%,). The p-value provides meaningful
information about location departure of the process from the target.

Table 1. The data of brinell hardness (H) and tensile strength ()
of output of a bivariate process (Sultan (1986))

143 200 160 181 148 178 162 215 161 141 175 187 187
34.2 57.0 47.5 53.4 47.8 51.5 45.9 59.1 48.4 47.3 57.3 58.5 58.2

186 172 182 177 204 178 196 160 183 179 194 181
57.0 49.4 57.2 50.6 55.1 50.9 57.9 45.5 53.9 51.2 57.5 55.6

v hl|lw

5. Examples

All the computations in this section were carried out on double precision by
a VAX 11/8650 computer at the Bowling Green State University. The numerical
evaluations of the integral (4) are obtained by calling the subroutine DGQRUL
from the IMSL Library with the number of quadratures equal to 50.

Chan et al. (1991) use the Sultan (1986) bivariate process data to examine
their definition of a multivariate PCI over an ellipsoidal zone. In this process, the
brinell hardness (H = X;) and the tensile strength (S = X,) of the output of a
process are of interest. We shall also use the same data, but consider rectangular
regions. The data are presented in Table 1. (Sultan (1986) discusses it in the
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context of control chart.) A rectangular tolerance zone is a consequence of spec-
ifying requirements for each individual variable separately. Such a rectangular
zone seems to be a convenient and appropriate choice, especially when there is
no prior information available about associations between the variables.

From the data, we have n = 25, 6, = 18.38, 6, = 5.80, p = 0.8341, 3, = 177.2
and fi; = 52.32. As the first example, we study a rectangular tolerance zone
with the target values T; = 177 for H, T = 53 for S, and r; = 3.56, = 64.33,
re = 3.565 = 20.30, i.e.,

V ={(H,S):112.7 < H < 241.3,32.70 < S < 73.30}. (5)

By taking the range of three and a half standard deviations, we anticipate that
the process will be capable over the zone [see also the comment following the
equation (2)]. Figure 1 presents a portion of F(z) graph. For o = 0.27%,
F(0.9063) = 1 — «, giving J\//I\C’p = 1.103 > 1. The jackknife estimate for the
standard deviation of ]\7[6',, is 0.1454. Figure 2 is a plot of the data with the
rectangular specification boundaries. It is visually evident that the process is
capable since all the observations are clustered around the target, except for the
observation 1 (143, 34.2).

1.00 7

0.98 -

0.96 1

0.94

T LY L2 L) + x
0.6 0.8 1.0 1.2 1.4

Figure 1. A portion of F(z) for the rectangular region (5). The solution of
F(z) =1 —0.0027 is found to be 0.9063, giving MC, = 1.103.
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Figure 2. Observations and the rectangular boundaries with T, = 177, T3 = 53,
and ry; = 3.56, = 64.33, ro = 3.562 = 20.29. (MC)p = 1.103.)

For comparison with the Chan et al. (1991) elliptical specifications, we as-
sume, as they did, that ¥ is known to be Xy = (03;) with o1; = 324,012 = 65
and oy, = 25. The value of MC, for X ~ N(T,Z,) appears to be 1.173. By
running 500 Monte Carlo trials, we found that the value mp = 1.103 is be-
tween the 183th and the 184th smallest Monte Carlo estimates for M C, when
the process is N(7T', y). Thus, with 2 times the maximum standard error of the
500 Monte Carlo trials equal to 1/4/500 = 4.5%, the Monte Carlo p-value is:
p = 183/500 = 37%. This strongly suggests that the process is capable.

By using elliptical specifications, Chan et al. (1991) obtained a more compact
tolerance zone over which the process is still capable with a Type I error of
0.05 in the sense of their multivariate PCI. Their elliptical tolerance zone is
{(z1,22):(x—T)' S5 (x—T)<11.829}, where T} = 177, T, = 53. It is interesting
to note that one observation is even excluded from this tolerance zone. On
the other hand, one may find it not surprising that our rectangular zone (5)
contains all observations. In fact, for a sample size as small as 25; the chance
that at least one observation is excluded from a tolerance zone of a capable
process (with the expected proportion of nonconforming products 0.27%) is just
1 - (0.9973)%® = 6.5%.

As the second example, we again consider the same process, but with a shift
of the target away from fi. Suppose that the target values are 15% less than
those in the first example, i.e., T} = 150.45 and 7> = 45.05. Figure 3 presents
the plot of the rectangular specifications. As evident from this plot, most of the
observations are located in the upper-right quarter of the tolerance region. The
plot suggests the process is not capable. Indeed, we find ]Vj\C/Lz 0.8101 with the
jackknife estimate of 0.0657 for the standard deviation of M C,. This is a clear
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indication that the process is not capable. With an asymptotic confidence level
of 95%, a confidence interval for M C,, is 0.8101+0.1288, the whole interval being
far below 1.

J
|

80

60 1 | ) ,
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+ "
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Figure 3. Observations and the rectangular boundaries with 77 = 150.45, T2 = 45.05,
and 7, = 3.56, = 64.33,72 = 3.562 = 20.29. (M C), = 0.8101.)
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