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Abstract: In this study, we investigate varying-coefficient models for spatial data

distributed over two-dimensional domains. First, we approximate the univariate

components and the geographical component in the model using univariate poly-

nomial splines and bivariate penalized splines over triangulation, respectively. The

spline estimators of the univariate and bivariate functions are consistent, and their

convergence rates are also established. Second, we propose empirical likelihood-

based test procedures to conduct both pointwise and simultaneous inferences for

the varying-coefficient functions. We derive the asymptotic distributions of the test

statistics under the null and local alternative hypotheses. The proposed methods

perform favorably in finite-sample applications, as we show in simulations and an

application to adult obesity prevalence data in the United States.
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1. Introduction

Varying-coefficient models (VCMs)’s introduced by Hastie and Tibshirani

(1993), are regression models commonly applied to examine the interactive asso-

ciations between a response and predictors. These models are appealing because

the regression coefficients are allowed to vary as a smooth function of some vari-

ables of interest to detect nonlinear interactions. Because of their flexibility,

VCMs have been widely applied in many scientific areas. See Fan and Zhang

(2008) for a selective overview of the major methodological and theoretical de-

velopments on VCMs. This study focuses on VCMs for spatial data randomly

distributed over an arbitrary geographical region.

Our work is motivated by inference problems examining the effects of the

county-level food retail environment on obesity rates in United States, with the

effect varying over median household income. County food retail environments
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are measured by the availability and healthfulness of their food retail stores.

More detailed information of this data set is provided in Section 6. Based on this

data set, socioeconomists attempt to disentangle how county-level associations

between the food environment and obesity rates change with median household

income levels. This leads to modeling the effect of food retail environments as

functions of household income levels. However, owing to the geographic depen-

dence, the classical VCM is not sufficient.

In this work, we propose the varying-coefficient geo model (VCGM) to solve

the motivating application. Specifically, assume Si = (Si1, Si2)
> is the location

of the ith subject, for i = 1, . . . , n. The location S ranges over a two-dimensional

bounded domain Ω ∈ R2 of any arbitrary shape. We observe data of the form

{Yi, Zi,Xi,Si}, where Yi is a response variable, Xi = (Xi1, . . . , Xip)
> is a vector of

scalar covariates, and Zi is a scalar predictor. Furthermore, {(Yi, Zi,Xi)}ni=1 are

observed at location Si. Suppose that {(Yi, Zi,Xi,Si)}ni=1 satisfies the following

VCGM:

Yi = X>i β(Zi) + α(Si) + εi, Si ∈ Ω, i = 1, . . . , n, (1.1)

where β(Z) = (β1(Z), . . . , βp(Z))>, with each βk(·) as an unknown varying-

coefficient function, α(Si) is an unknown smoothing bivariate function repre-

senting the spatial component, and εi denotes independent and identically dis-

tributed (i.i.d.) random noise, with E(εi) = 0 and V ar(εi) = σ2 independent

of (Zi,Xi,Si). Our primary interest is to estimate and conduct an inference for

β(·) and α(·) based on the given observations {(Yi, Zi,Xi,Si)}ni=1.

In the proposed VCGM, when the spatial component α(·) is ignored, the

model becomes the traditional VCM. Numerous studies have proposed methods

for fitting the VCM, for example, the local linear method Fan and Zhang (1999),

spline method Huang, Wu and Zhou (2002), and two-stage methods Wang and

Yang (2007); Liu, Yang and Härdle (2013). There are also several methods for

estimating bivariate functions defined over 2D domains. Within the nonparamet-

ric framework, these include bivariate P-splines (Marx and Eilers (2005)), thin

plate splines (Wood (2003)), and bivariate splines (Wang et al. (2020); Yu et al.

(2020)). Here, we apply bivariate splines over triangulations (Lai and Schumaker

(2007)), because they can handle irregular 2D domains with complex boundaries

and they are computationally efficient.

This study focuses on proposing pointwise (at a specific z) and simultaneous

(for all z ∈ [a, b]) testing procedures for the following hypothesis under model

(1.1):

H0 : H{β0(z)} = 0 v.s. H1 : H{β0(z)} 6= 0, (1.2)
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where H(b) is a q-dimensional function of b = (b1, . . . , bp) ∈ Rp, such that

C(b) := ∂H(b)/∂b> is a q × p full-rank matrix (q ≤ p), for all b. The above

hypothesis is very general, owing to the choice flexibility of H(b). It includes

many interesting hypotheses as special cases, for instance, H0 : β0,k(z) = 0 for all

k if H(b) = b, a test for any arbitrary linear constraints on β0 if H(b) = Λb−c0
for a q×p known matrix Λ and a known vector c0, and even tests with nonlinear

constraints. See Ashby (2011) for explicit examples of nonlinear hypotheses.

In contrast to estimation, few studies have examined inferences of varying-

coefficient functions. Huang, Wu and Zhou (2002) proposed a goodness-of-fit test

based on a comparison of the weighted residual sum of squares. This is a specific

example of the generalized likelihood ratio studied by Fan, Zhang and Zhang

(2001). More recently, Yu et al. (2020) proposed a spline backfitted local polyno-

mial to estimate and make simultaneous inferences of the univariate components

in a geo-additive model. Although the above-mentioned methods seem useful,

they are not applicable to the general hypothesis in (1.2). Furthermore, the test-

ing procedure involves a plug-in variance estimate, which leads to an unstable

asymptotic distribution of the test statistics.

In this paper, we propose both pointwise and simultaneous tests for the

hypothesis in (1.2) based on the empirical likelihood (EL). The EL is a nonpara-

metric likelihood, introduced by Owen (1988, 1990). In spite of its nonparametric

construction based on observed data points, the EL shares some convenient mer-

its of the parametric likelihood, and has many desirable advantages in deriving

confidence sets for unknown parameters. Owen (2001) and Chen and Van Kei-

legom (2009) provide an overview of the EL method. The EL method has been

extended to VCMs for various data types; see, for example, Xue and Zhu (2007),

Xue and Wang (2012),Yang, Li and Peng (2014) and Liu and Zhao (2021). Re-

cently, Wang et al. (2018) considered test procedures based on the EL to conduct

inferences for a class of functional concurrent linear models. However, when they

applied the method to Google flu trend data, they ignored the spatial informa-

tion contained in the data set. Bandyopadhyay, Lahiri and Nordman (2015) and

Van Hala, Nordman and Zhu (2015) considered the EL method for inference over

a broad class of spatial data exhibiting stochastic spatial patterns. However, they

did not consider the flexible VCGM, or the spatial information.

In contrast to existing VCMs, our proposed VCGM properly accounts for

all covariates and spatial information, which improves the model flexibility. The

proposed EL-based inference has many advantages over normal approximation-

based methods. First, it does not involve a plug-in estimate for the limiting

variance. Owing to the necessity of estimating the standard errors, which is a
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typical challenge in nonparametric models, the Wald-type simultaneous inference

is not stable in Liu and Zhao (2021). Second, as DiCiccio, Hall and Romano

(1991) proved, the EL is Bartlett correctable and, thus, has an advantage over

the bootstrap method. To the best of our knowledge, this is the first work to

propose a VCGM and conduct an EL ratio test for spatial data, which is a

nontrivial extension.

The rest of the paper is organized as follows. We propose spline estimators for

both univariate and bivariate functions and develop their asymptotic consistency

in Section 2. The pointwise and simultaneous EL tests are presented in Section

3, where we investigate the asymptotic distributions of the test statistics under

both the null hypothesis and local alternatives. In Section 4, we address imple-

mentation issues such as triangulation, the number of univariate spline knots,

and the kernel bandwidth selection. Simulation studies are presented in Section

5, followed by an analysis of a real-data example in Section 6. We summarize

the proposed methodology and discuss future work in Section 7. Major technical

details are included in the Supplementary Material.

2. Univariate and Bivariate Spline Estimations

In the estimation stage, we approximate each varying coefficient using uni-

variate polynomial splines. The geographical function α(·) is approximated using

bivariate penalized splines over triangulation. First, we introduce some notation

for univariate and bivariate splines.

2.1. Setup

Suppose that the covariate Z is distributed on a compact interval [a, b]. Ow-

ing to the simplicity of the computation, we approximate the univariate compo-

nents βk(z) in (1.1) using polynomial splines. Define a partition of [a, b] with Jn
interior knots as v = {a = v0 ≤ v1 ≤ · · · ≤ vJn+1

= b}. For some % ≥ 1, the poly-

nomial splines of order %+ 1 are polynomial functions with %-degree on intervals

[vj , vj+1), for j = 0, . . . Jn− 1, and [vJn
, vJn+1

], and have %− 1 continuous deriva-

tives globally. Let U = U([a, b]) be the space of such polynomial splines. Let

Uj(z), for j = 1, . . . , Jn+%+1, be the original B-spline basis functions for the co-

efficient functions. Suppose for z ∈ [a, b], βk(z) ≈
∑Jn+%+1

j=1 ηkjUj(z) = U(z)>ηk,

where U(z) = (U1(z), . . . , UJn+%+1(z))
> and ηk = (η1k, . . . , ηJn+%+1,k)

>.

It has been proved that the bivariate penalized splines method is efficient in

dealing with data distributed on irregular domains with complicated boundaries

(Yu et al., 2020; Wang et al., 2020)). In the following, we briefly introduce the



VARYING COEFFICIENT GEO MODELS 1097

triangulation techniques and describe the bivariate penalized spline smoothing

method for the VCGM. See Lai and Schumaker (2007) and Wang et al. (2020)

for a detailed introduction of the triangulation technique and how to construct

the bivariate spline basis functions over triangulation.

According to Lai and Schumaker (2007), let τ = 〈s1, s2, s3〉 be a nonempty-

area triangle with three vertices, s1, s2, and s3. There is a unique representation

in the form for any point s ∈ R2, s = b1s1 + b2s2 + b3s3, with b1 + b2 + b3 = 1,

and b1, b2, and b3 are the barycentric coordinates of the point s relative to the

triangle τ . We define the Bernstein polynomials of degree d relative to triangle

τ as Bτ,d
ijk(s) = (d/i!j!k!)bi1b

j
2b
k
3. The spatial domain Ω is a polygon of arbitrary

shape, which can be partitioned into finitely many triangles. Let a collection

4 = {τ1, . . . , τN} of N triangles be a triangulation of Ω = ∪Ni=1τi, provided that

any nonempty intersection between a pair of triangles in 4 is either a shared

vertex or a shared edge. For any triangle τ ∈ 4, denote Tτ as the radius of the

largest disk contained in τ . Let |τ | be the length of the longest edge. Denote the

size of 4 as |4| = max{|τ | : τ ∈ 4}. For any integer d ≥ 1 and triangle τ , let

Pd(τ) be the space of all polynomials of degree less than or equal to d on τ . Then,

any polynomial ζ ∈ Pd(τ) can be uniquely written as ζ|τ =
∑

i+j+k=d γ
τ
ijkB

τ,d
ijk,

where the coefficients γτ = {γτijk, i+ j+ k = d} are called B-coefficients of ζ. For

any integer r ≥ 0, let Cr(Ω) be the collection of all rth continuously differentiable

functions over Ω. Given a triangulation 4, define the spline space of degree d

and smoothness r over 4 as Srd(4) = {ζ ∈ Cr(Ω) : ζ|τ ∈ Pd(τ), τ ∈ 4}. Let

{Bm}m∈M be the set of bivariate Bernstein basis polynomials for Srd(4), where

M is an index set with cardinality |M| = N(d+1)(d+2)/2. Then, we rewrite any

function ζ ∈ Srd(4) using the basis expansion ζ(s) =
∑

m∈MBm(s)γm = B(s)>γ,

where s ∈ Ω and γ = (γm,m ∈M)> is the bivariate spline coefficient vector.

2.2. Penalized least-squares estimators

In general, there are three approaches to conduct a spline estimation: smooth-

ing splines, regression splines, and penalized splines. Smoothing splines request as

many parameters as the number of observations. Regression splines need only a

small number of knots, placed judiciously, but appropriate algorithms are needed

to select the knots. Penalized splines combine the features of smoothing splines

and regression splines. A roughness penalty is incorporated with relatively large

number of knots. Wang et al. (2020) and Yu et al. (2020) discuss the advantages

and necessity of penalized bivariate spline smoothing. Note that, given some

suitable smoothness conditions, βk(·) and α(·) can be well represented by a uni-

variate spline basis expansion and the Bernstein basis polynomials introduced in
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Section 2.1. It is well known that increasing the number of triangles may overfit

the data and increase the variance, while decreasing the number of triangles may

result in a rigid and restrictive function that has more bias. Consequently, to

improve the data fitting efficiency, reduce the computation complexity, and avoid

over fitting, we consider the following penalized least-squares problem:

n∑
i=1

Yi −
p∑

k=1

Jn+%+1∑
j=1

ηjkUj(Zi)Xik −
∑
m∈M

Bm(s)γm


2

+
λn
2
E(α), (2.1)

where

E(α) =
∑
τ∈4

∫
τ

∑
i+j=2

(
2

i

)
(∇is1∇

j
s2α)2ds1ds2

is the roughness penalty for α(·), λn is the roughness penalty parameter, and ∇vsq
is the vth order derivative in the direction sq at the point s, for q = 1, 2.

For a smooth join between two polynomials on adjoining triangles, we impose

some linear constraints on the spline coefficients γ : Ψγ = 0, where Ψ is the

matrix that collects the smoothness conditions across all the shared edges of

triangles. An example of Ψ can be found in Yu et al. (2020). Thus, the penalized

least-squares problem (2.1) becomes

n∑
i=1

Yi −
p∑

k=1

Jn+%+1∑
j=1

ηj,kUj(Zi)Xik −
∑
m∈M

Bm(s)γm


2

+
1

2
λnγ

>Pγ, (2.2)

subject to Ψγ = 0, where P is the block diagonal penalty matrix satisfying

γ>Pγ = E(Bγ). In the following, let Y = (Y1, . . . , Yn)> be collections of Yi.

Denote

W =

U(Z1)
>(X11) · · · U(Z1)

>(X1p)
...

. . .
...

U(Zn)>(Xn1) · · · U(Zn)>(Xnp)


as an n × p(Jn + % + 1) matrix. To solve the constrained minimization problem

(2.2), we first remove the constraint using a QR decomposition of the transpose of

the constraint matrix Ψ. Specifically, we have Ψ> = QR =
(
Q1 Q2

)(
R1 0

)T
,

where Q is an orthogonal matrix, R is an upper-triangle matrix, the submatrix

Q1 is the first r columns of Q, where r is the rank of the matrix Ψ, and 0 is

a matrix of zeros. According to Lemma 1 in Wang et al. (2020), the problem

(2.2) is now converted to the following conventional penalized regression problem
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without any constraints:

min
η,θ

{
‖Y −Wη −BQ2θ‖2 + λn(Q2θ)>P(Q2θ)

}
,

where η =
(
η11, . . . , ηp(Jn+%+1)

)
and Q2θ = γ. For a fixed penalty parameter λn,

we have(
η̂

θ̂

)
=

{(
W>W W>BQ2

Q>2 B>W Q>2 B>BQ2

)
+

(
0

λnQ
>
2 PQ2

)}−1(
W>Y

Q>2 B>Y

)
.

Define

V =

(
V11 V12

V21 V22

)
=

(
W>W W>BQ2

Q>2 B>W Q>2 (B>B + λnP)Q2

)
.

It follows from well-known block matrix forms of a matrix inverse that

V−1 := A =

(
A11 A12

A21 A22

)
=

(
A11 −A11V12V

−1
22

−A−122 V21V
−1
11 A22

)
,

where

A−111 = V11 −V12V
−1
22 V21 = W>[I−BQ2{Q>2 (B>B + λnP)Q2}−1Q>2 B>]W

A−122 = V22 −V21V
−1
11 V12 = Q>2 [B>{I−W(W>W)−1W>}B + λnP]Q2.

Hence, η̂ = A11W
> {I−BQ2{Q>2 (B>B + λnP)Q2}−1Q>2 B>

}
Y and θ̂ = A22

Q>2 B>{I−W(W>W)−1W>}Y. Thus, the estimators of βk(·) and α(·) are

β̂k(z) = U(z)>η̂k and α̂(s) = B(s)>γ̂, respectively, where γ̂ = Q2θ̂. (2.3)

We now investigate the asymptotic properties of the spline estimates β̂k(z)

and α̂(s). To avoid confusion, let β0,k(·) and α0(·) be the true functions of βk(·)
and α(·) in model (2.3). For any Lebesgue measurable function φ(s) on a domain

D, where D = [a, b] or Ω ⊆ R2, let ‖φ‖2L2
=
∫
D φ

2(s)ds.

Theorem 1 (Rate of Convergence). Suppose that Assumptions (A1)–(A6) in the

Supplementary Material hold. Then the spline estimators β̂k and α̂ satisfy

‖α̂− α0‖L2

= Op

{
J−%−1n |4|+ n−1/2|4|−1 +

λn
n|4|3

+

(
1 +

λn
n|4|5

)
|4|d+1

}
,

p∑
k=1

‖β̂k − β0,k‖L2
= Op

(
n−1/2J1/2

n + n−1|4|−1 + J−%−1n

)
.
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Remark 1. This consistency result echoes similar phenomena discovered by

other nonparametric regression literature. In fact, when only spatial information

is available and no other scale covariates are included, the model (1.1) reduces

to the same model in Lai and Wang (2013). When the varying coefficients re-

duce to linear coefficients, model (1.1) reduces to the same model in Wang et al.

(2020). In these two reduced models, the above convergence rate of α̂ is the

same as those given in Lai and Wang (2013) and Wang et al. (2020), that is,

Op{n−1/2|4|−1 + λn/(n|4|3) + (1 + λn/(n|4|5))|4|d+1}. When the geo func-

tion α(·) is excluded from model (1.1), the convergence rate of β̂k reduces to

Op(n
−1/2J

1/2
n + J−%−1n ). If β0,k have bounded second-order derivatives (% = 1)

and Jn � n1/5, we have ‖β̂k − β0,k‖L2
= Op(n

−2/5), achieving the optimal non-

parametric rate Stone (1982).

Given these consistency results of the proposed univariate and bivariate spline

estimators, we can now build hypothesis testing statistics based on these estima-

tors.

3. Empirical Likelihood Ratio Tests for Varying Coefficients

It is challenging to derive the asymptotic distribution and the measure of

variability for the spline estimators introduced in Section 2. Similar findings

have been discussed in Liu, Yang and Härdle (2013) and Yu et al. (2020). To

investigate the uncertainty in the estimation of the varying effect of the covariates,

we propose an inference for hypothesis (1.2) using the EL method, with bivariate

penalized spline estimators plugged in for the geo function.

To test (1.2) and construct an EL ratio function for β(z), we first introduce

an auxiliary random vector

gi{β(z), α0} =
(
Yi − β(z)>Xi − α0(Si)

)
XiKh(Zi − z),

where K(·) stands for a continuous kernel function, h is a bandwidth, and Kh(·) =

K(·/h)/h is a rescaling of K. Note that Egi{β(z), α0} is close to zero if β(z) =

β0(z). Hence, the problem of testing whether β(z) is the true function β0(z) is

equivalent to testing whether Egi{β(z), α0} is close to zero, for i = 1, 2, . . . , n.

According to Owen (2001), this can be done by using the EL; that is, we can

define the profile EL ratio function

R{β(z), α0} = max
pi:1≤i≤n

{
n∏
i=1

npi : 0 ≤ pi ≤ 1,

n∑
i=1

pi = 1,

n∑
i=1

pigi{β(z), α0} = 0

}
.
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The rich EL literature has shown that −2 logR{β0(z), α0} is asymptotically

chi-squared with p degrees freedom. However, R{β(z), α0} cannot be used di-

rectly to make a statistical inference on β(z), because R{β(z), α0} contains the

unknown function α0(·). A natural way is to replace α0(·) with the estimator

α̂(Si) given in (2.3), that is,

gi{β(z)} := gi{β(z), α̂} =
(
Yi − β>(z)Xi − α̂(Si)

)
XiKh(Zi − z).

Note that the solution to
∑n

i=1 gi{β(z)} = 0 corresponds to the local constant

estimator

β̌(z) =

{
n∑
i=1

XiX
>
i Kh(Zi − z)

}−1{ n∑
i=1

(Yi − α̂(Si))XiKh(Zi − z)

}
. (3.1)

After replacing the true function α0(·), we show that the discrepancy between

gi{β0(z)} and gi{β0(z), α0} is asymptotically negligible in the following proposi-

tion. Let µjj′ =
∫
uj

′
Kj(u)du and Ω(z) = E(X1X

>
1 |Z = z).

Proposition 1. Under Assumptions (A1)—(A5), (A6′), (A7), and (A8) in the

Supplementary Material, we have

E[gi{β0(z)}] = O(h2)

and

V ar[gi{β0(z)}] = σ2Ω(z)f(z)µ20h
−1 {1 + o(1)} ,

where f(z) is the probability density function of Z.

Remark 2. To investigate the EL tests for the geo spatial model, the key point is

to check the asymptotic property of gi{β0(z)}. More specifically, if the first and

second moments of gi{β0(z)} have the same orders as those of gi{β0(z), α0}, the

asymptotic distribution of −2 logR{β(z)} is similar to the common VCM cases.

According to Theorem 1, we establish the orders of the first two moments for

gi{β0(z)} as in Proposition 1 by bounding E
{
XiX

>
i (β0(Zi)− β0(z))Kh(Zi − z)

}
and E {XiKh(Zi − z)(α0(Si)− α̂(Si))}, with a careful choice of the lower bound

of Jn and the upper bound of |4|. The details can be found in the proof of

Proposition 1 in the Supplementary Material.

With a slight abuse of notation, we define the EL function

L{β(z)} = max
pi:1≤i≤n

{
n∏
i=1

pi : 0 ≤ pi ≤ 1,

n∑
i=1

pi = 1,

n∑
i=1

pigi {β(z)} = 0

}
. (3.2)



1102 WANG ET AL.

We can maximize (3.2) using the Lagrange multiplier technique, which leads to

the following log-EL:

logL{β(z)} = −
n∑
i=1

log
{

1 + δ>(z)gi{β(z)}
}
− n log n,

where δ(z) is determined by the equation:
∑n

i=1 gi{β(z)}[1 + δ>(z)gi{β(z)}]−1

= 0. Therefore, the negative log-EL ratio statistic for testing H0 : H{β0(z)} = 0

is

`(z) := min
H{β(z)}=0

n∑
i=1

log
{

1 + δ>(z)gi{β(z)}
}
. (3.3)

To investigate the power of the tests, we consider the local alternatives H1 :

H{β0(z)} = bnd(z), where bn is a sequence of numbers converging to zero and

d(z) 6= 0 is a q-dimensional function. For any fixed nonzero function d(z), bn
depicts the order of signals that a test can detect. The smallest order of bn is given

in Chen and Zhong (2010), who show that the EL method can detect alternatives

of order (nh)−1/2 for pointwise tests and order n−1/2h−1/4 for simultaneous tests.

Both orders are larger than the parametric rate n−1/2.

The following theorem summarizes the asymptotic distribution of 2`(z) under

both the local alternative and the null hypothesis H0 for each fixed z.

Theorem 2. Under Assumptions (A1)—(A5), (A6′), (A7), and (A8) in the Sup-

plementary Material, and for each z ∈ [a, b] under the null hypothesis: H{β0(z)} =

0, we have 2`(z)
d−→ χ2

q. For each z ∈ [a, b] and any fixed real vector of function

d(z), under the alternative hypothesis H1 : H{β0(z)} = (nh)−1/2d(z), we have

2`(z)
d→ χ2

q

(
d>(z)R(z)d(z)

)
,

where R(z) = σ2µ20f(z)
{
C(z)Ω(z)C>(z)

}−1
and

C(z) = C (β(z)) =
∂H (β(z))

∂β(z)>
.

According to the Theorem 2, we can construct a pointwise confidence inter-

val for each βj(z). The construction of the confidence interval is based on an

asymptotic α-level test when H{β(z)} = βj(z). We reject H0 at a fixed point

z if 2`(z) > χ2
1,α, where χ2

1,α is the upper α-quantile of χ2
1, and a 100(1 − α)%

confidence interval for βj(z) is given by {βj(z) : 2`(z) ≤ χ2
1,α} .

For the simultaneous test on H0 in (1.2), for all z ∈ [a, b], we consider the

Cramér—von Mises type test statistic. Because 2`(z) can be viewed as the dis-
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tance between H{β(z)} and zero, we propose the following test statistic for H0:

Dn =

∫ b

a
2`(z)w(z)dz, (3.4)

where w(z) is some probability weight function.

Theorem 3. Under Assumptions (A1)—(A5), (A6′), (A7), and (A8) in the Sup-

plementary Material, with the null hypothesis H0 : H{β0(·)} = 0, as n→∞, we

have

h−1/2{Dn − q}
d−→ N

(
0, qσ20

)
,

where σ20 = 2µ−220

∫ b
a w

2(t)dt
∫ 2
−2{K

(2)(u)}2du. When the alternative hypothesis

H1 : H{β0(z)} = n−1/2h−1/4d(z) holds, we have

h−1/2{Dn − q}
d−→ N

(
µ0, qσ

2
0

)
,

where µ0 =
∫ b
a d>(z)R(z)d(z)w(z)dz.

Although the above theorem guarantees the asymptotic normality of Dn, the

convergence rate is h−1/2. According to Assumption (A6′), the rate is o(n1/10),

which is much slower than the classical nonparametric rate n2/5. To obtain ac-

curate type-I and type-II error probabilities in practice, we suggest a bootstrap

procedure to generate the empirical quantile and perform the simultaneous test-

ing. The distribution consistency of this method is discussed in Wang et al.

(2018). The proposed bootstrap procedure consists of the following steps:

Step 1. For each subject, calculate the residual ẽi = Yi−β̌(Zi)
>Xi−α̂i(Si), with

the local constant estimator β̌(z) in (3.1). Compute the sample variance of

ẽi, and denote it as σ̃2;

Step 2. For the bth bootstrapping, for b = 1, . . . , B, construct observation Y
(b)
i =

β̌(Zi)
>Xi+α̂i(Si)+ε

(b)
i , where ε

(b)
i are independently generated from a nor-

mal distribution satisfying E(ε
(b)
i ) = 0 and V ar(ε

(b)
i ) = σ̃2. Apply {Y (b)

i }ni=1

as new observations, and compute the bootstrapped version of Dn, denoted

by D
(b)
n ;

Step 3. Calculate the 100(1− α)% quantile of the bootstrap samples {D(b)
n }Bb=1,

and denote it as d̂α. Reject the null hypothesis if Dn > d̂α.

Remark 3. In step 1, β̌(z) is the solution to n−1
∑n

i=1 gi (β(z), α̂) = 0. We use

β̌(z) instead of the spline estimator β̂(z) to generate residuals, because β̌(z) is
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the maximum empirical likelihood estimator involved in the construction of `(z)

and Dn.

The following proposition justifies the bootstrap procedure. The proof is

similar to Theorem 4 in Wang et al. (2018). Thus it is omitted.

Proposition 2. Let Xn = {(Yi, Zi,Xi,Si)}ni=1 be the original data, and L(Dn) be

the asymptotic distribution of Dn under the null hypothesis. Under Assumptions

(A1)—(A6), (A6′), (A7) and (A8), the conditional distribution of D
(b)
n given Xn,

L(D
(b)
n |Xn) converges to L (Dn) almost surely.

4. Implementation

In extensive numerical studies, we find that the selections of the knots for the

univariate spline, triangulation, and the choice of bandwidth are crucial, espe-

cially for simultaneous tests. In the following, we discuss the selection procedures

one by one.

4.1. Selection of the tuning parameters in univariate and bivariate

spline smoothing

In this work, we do not directly need the spline estimator β̂(z) for the in-

ference of β(z). However, α̂(s) is essential for constructing the EL ratio tests

(3.3), and its estimating procedure involves β̂(z). Hence, we need to make sure

that β(z) is estimated efficiently. For univariate spline smoothing, we suggest

applying knots on a grid of equally spaced sample quantiles. Assumption (A6′)

in the Supplementary Material suggests that the number of knots Jn needs to

satisfy |4|1/(%+1) n2/(5%+5) � Jn � |4|2n log−1(n). Given the widely used cu-

bic splines, in practice, we suggest the rule-of-thumb number of interior knots

Jn = max
{
bc1n2/(5%+5)c+ 1, 3

}
, where the tuning parameter c1 ∈ [1, 3]. A sim-

ilar is considered in Yu et al. (2020). We also compared the proposed knot

selection method with other data-driven methods, namely, the AIC and BIC.

The well-selected parameters using the AIC and BIC are similar to our proposed

rule-of-thumb choices. Therefore, for the purpose of efficient computation, we

recommend the rule-of-thumb choices for practical applications.

When selecting the number of triangles, we need to balance the computa-

tional burden and the approximation accuracy. According to Yu et al. (2020)

and Assumption (A6′), in practice, when the boundary of the spatial domain

is not extremely complicated, we suggest taking the number of triangles as the

following: N = min
{
bc2n4/(5d+5)c, n/4

}
+1, for some tuning parameter c2. Typ-

ically, c2 ∈ [1, 5] and is chosen using cross-validation. When the boundary of the
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spatial domain looks complicated, we suggest N to be much larger than n, and

the triangulation can approximate the complicated domain precisely. Once N is

chosen, a typical triangulation method, such as Delaunay triangulation, can be

used to build the triangulated meshes. From our numerical experience, when the

smoothness r = 1, compared with the setting d = 2 or 3, using d = 5 requires

too much unnecessary computational time, because its improvement in terms of

accuracy is negligible. We suggest using r = 1 and d = 2 or 3 in practice, because

they provide enough accuracy for smooth functions and reduce the computational

cost. Similar settings are also found in Lai and Wang (2013), Yu et al. (2020)

and Kim, Wang and Zhou (2021).

The generalized cross-validation (GCV) criterion is an efficient method for

selecting the smoothing parameters λn, and also has good theoretical properties

(Wahba (1990)). The fitted values at the n data points are Ŷ = Wη̂ + BQ2θ̂,

and the smoothing matrix is

S(λn) = WA11W
>
{

I−BQ2{Q>2 (B>B + λnP)Q2}−1Q>2 B>
}

+BQ2A22Q
>
2 B>

{
I−W(W>W)−1W>

}
.

We choose the smoothing parameter λn by minimizing

GCV (λn) =
n‖Y − Ŷ‖2

[n− tr {S(λn)}]2

over a grid of values of λn. We use a 10-point grid, where the values of log10(λn)

are equally spaced between −6 and 1 in our numerical studies. The aforemen-

tioned bivariate spline smoothing methods are all implemented using the R pack-

age “BPST” developed by Wang et al. (2020).

4.2. Bandwidth selection

The performance of the EL pointwise and simultaneous tests depends on the

choice of the bandwidth h. We apply the five-fold cross-validation criterion and

choose the bandwidth h by minimizing

CV (h) = 5−1
5∑

k=1

|Fk|−1
∑
i∈Fk

{
Yi − β̌(−k)(Zi)

>Xi − α̂(−k)(Si)
}2
,

where Fk denotes the subject index set for the kth folder and |Fk| denotes the

cardinality of Fk over a grid of values of h. In our numerical studies, we select

the bandwidth h = bc3n1/5c + 0.02 for the pointwise tests, and h = bc3n1/5c for
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the simultaneous tests, where c3 ∈ {0.1, 0.2, . . . , 0.9, 1}.

5. Simulation

In this section, we conduct simulation studies to evaluate the finite-sample

performance of the proposed methodology. We generate the data from the fol-

lowing VCGM:

Yi = Xi1β1(Zi) +Xi2β2(Zi) + α(Si) + εi, i = 1, . . . , n, (5.1)

where Xij and εi are independently generated from N(0, 1), and Zi follows

Unif [0, 1] independently. In addition, we choose the Epanechnikov kernelK(x) =

3/4
(
1− x2

)
+

for the local linear estimation, where (a)+ = max(a, 0). The sam-

ple sizes are chosen to be n = 500, 1000, 2000. We consider two spatial domains

for the bivariate function α(·) : 1) a rectangular domain [0, 1]2; and 2) a modified

horseshoe domain used by Sangalli, Ramsay and Ramsay (2013) and Wang et al.

(2020). For each Monte Carlo replication, we randomly sample n locations uni-

formly from the grid points inside the two spatial domains. Under all scenarios,

1,000 Monte Carlo replicates are conducted. For all the univariate splines, we

use cubic B-splines with % = 3. For the bivariate spline smoothing, we consider

d = 3 and r = 1.

To check the accuracy of the proposed spline estimators, we compute the

mean squared error (MSE) for α, β1, and β2. Figure 1 shows the surface and

the contour map of the true bivariate function α(·) and the estimated one when

the sample size n = 2000. The proposed estimates look visually close to the true

functions. Figure 2 shows the box plot of the MSEs of the spline estimators for

both regions, showing that the MSEs and the corresponding standard deviations

decrease as the sample size increases.

We first conduct pointwise hypothesis tests. Let H{(β1, β2)>} = β1 − β2
to test H0 : β1(z) = β2(z) versus H1 : β1(z) 6= β2(z), where we set β1(z) =

(2 + a) sin(2πz) and β2(z) = 2 sin(2πz), for some nonnegative a in model (5.1),

to evaluate the empirical size (when a = 0) and power (when a > 0) at the 5%

nominal level. Figure 3 shows the empirical size and power with two different

domains of α(s) and different z ∈ {0.3, 0.4, 0.6, 0.7}. Given each z, the empirical

size is reasonably controlled around the nominal level of 5% for all sample sizes,

and the power increases with a until reaching one. As expected, a larger sample

size leads to greater power.

Next, we set β1(z) = 1/2 sin(z), β2(z) = 2 sin(z + 1/2) in model (5.1), and

apply the procedure in Section 3 to construct pointwise confidence intervals for
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Figure 1. Contour maps of the true function α0(·) (first column) and the estimators
(second colmun) over the square region (first row) and the horseshoe region (second
row).

β1(z) at the 95% nominal level. Table 1 summarizes the empirical coverage

probability (as percentages) and the average length of the confidence intervals

(in parentheses) for β1(z) at z = 0.3, 0.4, 0.6, 0.7. From the table, we see that for

different z, the coverage rates increase with the sample size, and are around 95%

when n = 2000. Furthermore, the length of the confidence intervals decreases as

the sample size increases.

Finally, we consider simultaneous inference. We test H0 : β1(z) = β2(z)

for all z ∈ [0, 1] versus H1 : β1(z) 6= β2(z), for some z, where we set β1(z) =

(2 + a) sin(2πz) and β2(z) = 2 sin(2πz) for a ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6} in

model (5.1). We evaluate the empirical size (when a = 0) and power (when

a > 0); the results are presented in Table 2. All tests are under two scenarios of

bivariate function regions. In the construction of the test statistics Dn, we choose

the weight function w(z) = 1 for z ∈ (0, 1), and w(z) = 0 otherwise. The critical

value of the test is estimated using 500 bootstrap samples in each simulation run.

From Table 2, we find that the empirical size for each n is around the nominal

level of 5%, and the trend of the power is reasonably controlled.
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Figure 2. Mean squared error of the spline estimators. First column: the square region;
Second column: the horseshoe region.

Table 1. Coverage rate and average length (in parentheses) of confidence intervals.

n z = 0.3 z = 0.4 z = 0.6 z = 0.7
500 0.920 (0.265) 0.935 (0.260) 0.934 (0.308) 0.934 (0.262)

Square 1,000 0.931 (0.234) 0.947 (0.233) 0.959 (0.225) 0.947 (0.224)
2,000 0.949 (0.135) 0.944 (0.134) 0.950 (0.165) 0.959 (0.163)

500 0.938 (0.278) 0.942 (0.272) 0.948 (0.263) 0.945 (0.263)
Horseshoe 1,000 0.940 (0.207) 0.951 (0.208) 0.948 (0.206) 0.949 (0.199)

2,000 0.944 (0.156) 0.949 (0.154) 0.951 (0.154) 0.949 (0.154)

6. Real-Data Analysis

The unequal food retail environment (FRE) has been recognized as a criti-

cal contextual factor contributing to geographic disparities in obesity. However,

there is no clear conclusion on the relationship between the FRE and obesity,
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Figure 3. Empirical size and power for the pointwise test H0 : β1(z) = β2(z) at the 5%
nominal level. : n = 500; : n = 1000; : n = 2000. First column: square
region; Second column: horseshoe region.

owing to diverse measures of the FRE and socioeconomic disparities. In order to

resolve this challenge, we include multiple types of food stores, restaurants, and

Supplemental Nutrition Assistance Program (SNAP) stores to assess the FRE

from two important perspectives: X1, availability, and X2, healthfulness. In par-

ticular, X1 is a composite index of the densities of food stores, restaurants, and



1110 WANG ET AL.

Table 2. Empirical size and power for the simultaneous test H0 : β1(·) = β2(·).

n a = 0 a = 0.1 a = 0.2 a = 0.3 a = 0.4 a = 0.5 a = 0.6
500 0.045 0.091 0.274 0.604 0.868 0.984 1

Square 1,000 0.045 0.136 0.572 0.927 0.997 1 1
2,000 0.050 0.262 0.868 1 1 1 1

500 0.046 0.078 0.280 0.597 0.879 0.975 1
Horseshoe 1,000 0.049 0.140 0.561 0.937 0.999 1 1

2,000 0.052 0.256 0.889 0.999 1 1 1

SNAP stores, and X2 is a composite index of the ratios of healthy to unhealthy

food stores, full service restaurants to fast food restaurants, and healthy to un-

healthy SNAP stores. Data are collected from 3,091 counties in the United States

in 2018. For each county, Si = (Si1, Si2)
> is their geographical location, and Zi

is their median household income. We model the county-level obesity rate (Y )

as the following VCGM:

Yi = β0(Zi) +Xi1β1(Zi) +Xi2β2(Zi) + α(Si) + εi, i = 1, . . . , 3091. (6.1)

To check whether the two covariates X1 and X2 are significant in model (6.1),

we first conduct two simultaneous tests H01 : β1(z) = 0 and H02 : β2(z) = 0,

for all z. For the simultaneous test H01, the test statistic is Dn = 28.888, and

the 95% quantile of the bootstrap samples is d̂0.05 = 11.666; for the simultaneous

test H02, the test statistic is Dn = 85.060, and the 95% quantile of the bootstrap

samples is d̂0.05 = 11.696. Hence, both null hypotheses are rejected, indicating

that at least for some point z, β1(z) 6= 0 and β2(z) 6= 0. Next, we investigate the

pointwise properties for these varying-coefficient functions. Figure 4 shows the

95% pointwise confidence bands and empirical maximum likelihood estimators

for β0(·), β1(·), β2(·), and the penalized bivariate spline estimator α̂(·). From the

pointwise confidence bands, we conclude that food availability (X1) and health-

fulness (X2) have strong nonlinear effects on reducing county obesity rates, given

the higher household income level, especially when the income value is larger

than USD 100,000. Interestingly, the pointwise confidence bands and zero lines

together indicate that for those counties with a median household income less

than about USD 75,000, food availability (X1) has no significant impact on the

obesity rate. However, the composite index of healthfulness (X2) has significant

negative impact on the obesity rate of counties with a median household income

less than about USD 100,000. This finding suggests that increasing the value of

healthfulness can help to reduce adult obesity rates in counties with a median

household income of less than about USD 100,000. Because there are few coun-
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ties with a household income greater than USD 100,000, the confidence bands

are much wider in that region. Given the relatively large variation, food avail-

ability has a negative effect , and the index of healthfulness has no significant

impact on the obesity rate. As expected, Figure 4 also indicates that the tra-

ditional deep-south states have a large positive geo value α(·), suggesting that

these states have higher obesity rates than others with similar FRE values. This

reflects that, in addition to the FRE, local food preference, culture, and other

factors also influenc county obesity rates.

Because social scientists doubt the association between FRE and obesity

may differ with county median household income, z0 = 56,516. We perform the

pointwise hypothesis test H0P : β1(z0) = β2(z0) versus H1P : β1(z0) 6= β2(z0) to

test whether availability and healthfulness have the same contribution to obesity

rates at z0. We use cubic B-splines for three univariate splines, and consider d = 2

and r = 1 for the bivariate spline smoothing. The corresponding pointwise test

statistic based on the data is 0.137, which accepts H0P . Thus, we conclude that

availability and healthfulness do not have significantly different contributions

to obesity rates at the median household income point. For availability and

healthfulness, we derive the pointwise confidence intervals separately, which are

[−0.552, 0.099] and [−0.356,−0.235], respectively. This indicates that at the 95%

significance level, we believe that at z0 = 56,516, availability has no contribution

to obesity rates; however, healthfulness has a negative contribution to obesity

rates. The results reflect that, compared with availability, healthfulness is a more

influential factor shaping the spatial pattern of obesity rates across counties. The

associations between obesity rates and both FRE indicators vary greatly with

changes in the county median household income and across space.

7. Conclusion

In this work, we have proposed both pointwise and simultaneous tests for a

general hypothesis in a spatial VCM. Compared with classical VCMs, the pro-

posed VCGM is able to handle spatial information in any regular or irregular

2D domains. Furthermore, regression coefficients are allowed to vary systemat-

ically and smoothly in some variables. Owing to the advantages over normal

approximation-based methods, the EL method is proposed for conducting the

inference. We argue that the proposed hypothesis testing method for the VCGM

has attractive properties that have not been investigated.
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Figure 4. 95% pointwise confidence bands for β0 (top left), β1 (top right), and β1 (bottom
left) ( : maximum empirical likelihood estimator β̌; : zero line), and the penalized
bivariate spline estimator α̂ (bottom right).

Supplementary Material

Technical assumptions and proofs of Proposition 1, and Theorems 1, 2, and

3 are provided in the online Supplementary Material.
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