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This supplementary material provides regularity assumptions, technical lemmas, proofs for Proposi-

tion[T] Theorems[T] 2} and 3]

S1 Regularity Assumptions

Without loss of generality, let the area of {2 be 1. For the univariate splines,
we consider equally-spaced knots in our theoretical derivation. For a univari-
ate function (), denote ¢'(+), ¥"(-) and ¥)(-) be its first, second and v-th
order derivative, respectively. For any bivariate function g defined on (2, let
lg(8)]lsc.0 = Supgeq |g(s)| be the supremum norm of g, and let |g|, 000 =
max; 4 j— || V4, VI g(8)||s,n be the maximum norms of all the v-th order deriva-

tives of g over (2. Let v be a nonnegative integer, and § € (0, 1] such that p =
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§+v > 1. Let H(®)([a, b]) be the class of functions ¢ on [a, b] whose v-th deriva-
tive exists and satisfies a Lipschitz condition of order d: [1)(")(z) — ™) (2')] <

Cylz — 2'|°, for z, 2’ € [a,b]. Let D°([a, b)) = {g: Fg(Z) = 0,E¢*(Z) < oo}

be the function space defined on [a, b] and W4-°(Q) = {g : |g|r.c00 < 00,0 <
k < d+ 1} be the standard Sobolev space.
The following are the technical assumptions needed to facilitate the techni-

cal details,

(A1) Fork =1,...,p, Bor € H@ N D" and the true bivariate function ag(-) €

Wd"‘lvOO(Q)_
(A2) The density function f(x, 2, s) of (X1, ..., X,, Z, S) satisfies

0<cp< inf f(x,2,8) < sup f(x,2,8) < Cf < o0.
(x,2,8)ERPT1IXQ (x,2,8)ERPT1xQ

The marginal density function f,(-) of Z is twice continuously differen-
tiable and the marginal density function f,(-) of S is bounded away from

zero and infinity on (2.

(A3) Recall that S;;(A) denotes the spline space of degree d and smoothness
over A. For every a € S§,_, and every 7 € A, there exists a positive

constant Fi, independent of o and 7, such that
1/2

F1||a||oo,'r S Z a(‘s’i)Q S F2||a/||oo77'7

S;erie{l,...,n}
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where ||| - denotes the supremum norm of « over triangle 7, F is the

largest among the numbers of observations in triangles 7 € A and Fy/F} =

O(1).
(A4) The errors satisfy
E{e|Xi=x%;,2; = 2,8, =8} =0
and
E{e™X; =%, Z; = 2,8 = 8;} <
for some v € (3,00).

(AS5) For some positive constant 7, (min,ca 75) "' < |A| < 7, where T, is the
p

radius of the largest disk contained in 7.

(A6) The number of knots J,, for the univariate splines and the triangulation
size |/A\| satisfy that .J, — oo, |A| — 0, and J,, < |A|*>nlog™"(n); and the

smoothness penalty parameter \,n~'|A|73 — 0.

(A6) h = o(n~Y/%). Forsome o > landd > 2, |A| < n~2/(4+5) and

||V (et D2/ Getd) « ] < |AlPnlog™ (n) and A\,n~ A 730> = o(1).

(A7) The kernel function K () is a symmetric probability density with bounded

support in [—1, 1].
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(A8) Q(2) = E(X1X/|Z = 2)and T'(2) = E(X,X| X] X |Z = z) are twice

continuously differentiable. C(z) is uniformly bounded in [a, b].

The above assumptions are regularity conditions that can be satisfied in
many practical situations. Assumption (A1) describes the requirement on the
varying coefficient functions, which are frequently used in the literature of non
and semi-parametric estimation. Assumptions (A1) and (A2) are similar to As-
sumptions (A1) and (A2) in Yu et al. (2020). Assumptions (A3) and (AS) are
analogue to Assumptions (A2) and (AS) in Yu et al.| (2020), which has been
widely used in the triangulation based literature (Wang et al., 2020; Lai and
Wang, 2013). Assumptions (A6) and (A6') show the requirement of the number
of interior knots and the size of triangulation to ensure the consistency property
of spline estimator and to obtain the local linear estimator, respectively. Note
that the Assumption (A6') only provides the order of h = o(n~'/°) to be sat-
isfied. This upper bounds on the bandwidth A in Assumption (A6'), is adapted
from Wang et al| (2018)), which is a necessary condition for Proposition[I] The
naive empirical log-likelihood ratio is asymptotically non-central if the optimal
bandwidth is used, which has been discussed in Xue and Zhu| (2007). To make
the likelihood ratio asymptotically parameter free, we adopt the undersmooth-
ing Assumption (A6’). Assumptions (A4), (A7) and (A8) which are analogue to

conditions 1, 2 and 3 in Wang et al.|(2018), are common regularity conditions in
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non-parametric smoothing literature.

S2 Preliminaries

In this section, we depict the following bivariate splines properties. We first in-
troduce some notations. For any vector a = (ay, ..., an)T € R", denote the norm

lall, = (laa|"+ - +lan|")V", 1 < v < +o00, |[al|, = max (|a], ..., |an]). For

m,n
1:1)]:

any matrix A = (a;;) 1> denote its L, norm as [|A||, = maXacrn axo ||Aal,
|a|| ", for 7 < 400 and ||A|, = max;<j<n, i1 lail, for 7 = oco. Given se-
quences of positive numbers a,, and b,,, a,, < b, means a, /b, is bounded, and
a, = b, means both a,, < b, and a,, = b, hold. We define the norm on the
space G. For any functions ¢y, ¢, € G, define their theoretical inner product as
(P1,090) = Ep1(X, Z,S)p2(X, Z,S). Define their empirical inner product as
(D1, dohn = 2570 61(Xy, Zi, Si)p2(Xiy Zi, Si). Hence, || @] = /{4, ¢) and

||¢||n =V <¢a ¢>n

Lemma 1. (Theorem 10.2, Lai and Schumaker|(2007)) Suppose that || is a -
quasi-uniform triangleation of a polygonal domain Q, and ¢(-) € WaH1(Q).

(i) For bi-integer(ay, co) with 0 < ay + ay < d, there exists a spline ¢*(-) €
SYA) such that |VEV2(¢ — ¢*)||leo < C|A[TT91792| |44 o where C'is a
constant depending on d and shape parameter .

(ii) For bi-integer(ay, ag) with 0 < aj1+as < d, there exists a spline ¢**(-) €
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Sa(A) (d > 3r +2) such that [V V2 (¢ — ¢™)[lo < CAIIT72 ¢4 00

where C' is a constant depending on d, r and shape parameter .

Lemma 1| shows that S(A) has full approximation power, and SY(A) also

has full approximation power if d > 3r + 2.

Lemma 2. (Lemma B.4, Yu et al|(2020)) For any k = 1,--- ,p, ¢ € H@ N

DY, there exist a constant ¢ and a function ¢j, € Uy such that ||¢r, — ¢fllee <

+1 o
17 St [ s

Lemma 3. Suppose that Assumptions (A2), (AS) and (A6) hold. Then

<¢17 ¢2>n — <¢17 ¢2>
[o1l[l[ 02|

sup
¢1,02€A

= Oy (J,}/2|A\’1n’1/2 log!/? n)

where A = {gb Co(x,2,8)=>"1_, Zjej ki Ukj (2) Tk + 2 e s YmBm(8),

Ty 25 Niejs Ym € Rv EAS Q}
Proof. The proof is similar as the proof of Lemma B.7 in|Yu et al. (2020). [

Lemma 4. Under Assumptions (A2), (A5) and (A6), there exist constants 0 <

ca < Cy < oo, such that c4 < Apin(NA11) < Anaz(nAqy) < Cy, where Ay

is given in (2.2)).

Proof. The proof is similar as the proof of Lemma B.8 in|Yu et al.|(2020). Details

are omitted. O]
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S3 Proof of Theorem 1]

Proof. We first prove the consistency of @. Define H, = I-W(W W) 1WT,
Note that
6 = A»nQJB'H,Y

= ApQ,B'H,(By (2)X + ay(S)) + ApQ, B H,e

= 6,+80..
According to Lemmas [I| and 2] there exist a*(S) = B(S)Q26, and 3*(z) =
U (z)mo, which are the best approximation to o and 3y with the approximation
rate at || — aglloe < CalA|™ ! |aolari,00 and |Bo(2) — U(2) 10l < Cp 07
Hence, it is easy to find that ||3(Z) "X — Wng || = O,(CsJ,, 271). Denote by
~Yo = Q26 the spline coefficients of a*. We have the following decomposition:
0 — 0, = gu — 0y + 55. Note that

16, — 60l < [A2QIBTH,A](2)X|
+ ||A2:Q; B H, (0 — BQ16y) — A A2Q; PQ16y || .
For any vector a, according to Lemma {4 and the proof of Theorem 2 in Wang
et al. (2020), one has na” Aya < C|A|~2. Hence, we have
|A2Q; BTH,G] (2)X|| < C'2|A[ '™ || BTHL(Wn + O,(h")1) |

1/2
< O, (Je ) A ! [Z {B;Hw1}2] =0, (J;7).
meM
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Similarly,

HA22Q2TBTHw(Oé0 - BQ290)H

IA

1/2
CA [z [B]H, (a0 - BQ200>}2]

memM
= Op (|A|d|a0!d+1,oo) )

and A, ||A22Q2TPQ290|| = n|A|4 (|a0|2,w + ‘A|d71|a0|d+l,oo)-

Thus,
Hg — 60| =0 Joomt An lao|2,00 + | 1+ == An ]A| |0 |d+1,00 ¢ -
" U n|A[* n| AP
For any b with ||b|| = 1, we have 70, = -7 a;¢; and
o? =b' Ay QB H,BQyAyb.

Following the similar argument in Lemma S.7 in |Wang et al. (2020), we have

max<j<n, @i = O, (n"2|A|7?). Thus,

16-] < 1A 6. = A =0, (n™'21A]7?) .

n
E Q&

=1

Hence,
16 — 6o
R S LI 1+ -2 ) |a
= YpYYn +n A ’A’4\040’2<>o+ + 5 NVNE \ | | d+1,00 ¢ -
Observing that a(S) = B(S)y = B(S)Qgé\, we have

~

o = aoll,
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~

< 1@ = poaoll, + 1A 0]at1,00

< C(14118 = 6]l + 121" |aolas1. )

o _ _ An
— Op{JnQ YA +n 1/2\A\ 1+n|A]3‘&0’2’OO

An

Next, we prove the consistency for 3.

Define Hy = T — BQ,{Q] (BTB+A,P)Q,} 'QJBT. Let g —

(o(S1), ..., 0(S,))" and note that
n=AnW'HgY =AW H;z (B) (2)X + ap) + A;1 W 'Hpe = 7, +17..
Note that,

17— ol < ||[AW T Hp(8) (2)X — W) || + | AW "Hpay|
< 0, (777" |ALW THpl || + [[ALnW T Hpay |

= O(l)||A11WTHBa0||

By the Lemma {4} there exist constants 0 < cy < C4 < o0, such that with

probability approaching 1 as n — oo,

ALt ot 1) x (Intot1) < NAL < Cal(g, 4 041)x (Jutot1)-

Hence, we have

172 = 7ol
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< OM)n™"WT (I-BQ2{Q; (B'B+\,P)Q2}'Q;B") v

= OM)|R]],
where R = (R, ..., Ry, 4011)) > With

Rj=n""W] [ag —BQ>{Q, (B'B+\,P)Q.} 'Q; B ]

J

for W]T = (Wi,,...,Wy;). Next we derive the order of R;, j = 1,...,p(J,, +
o+1). Forany o; € S, wehave R; = (w;, 00— pxr,a0)n = (Wj—0, —Prag)nt
At NP ags @j)e, Where py o, = argminges > i {ao(S:) — p(Si)}2 + 5E(p)
is the penalized least-squares splines of a(-, -).

By Assumptions (A1)-(A6) and Lemma S.6 in Wang et al.| (2020), |R;| =
0p(n1/2), for j = 1,...,p(Jo+ 0+1). Therefore, ||7], —nol| = O,(n~Y/2J}?).

Note that 7. = A;; W' (I - BQ,V5, Q;B") €. For any b with ||b]| = 1,

we have b' 7. = Y7 | a;e; and
o =n7?b" (nAn) (W] = ViV, Q) B;) (Wi — B/ Q2 V3, Vo) (nAn)b,

and conditioning on {(W,, S;),i = 1,...,n}, ase;’s are independent. By Lemma
we have that maxi <;<,, a7 < Cn~? maxi<i<, {||[W;]|* + [|[V12V3,' Qs Bi[|*},

where for any b € R?,

b' V1,V Q,B;b

— n7'b TV, (QIT,2Q.)  QIBib < Cn ' |A|*bTWTBB;b
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and the j-th component of n~'W 'BB; is

Under Assumption (A2), we have

E {nl iWi’j Z Bm(Si’)Bm(Si)} = O(1>7

meM

for large n. Thus with probability approaching 1,

lZV{/i,j Z B (Sir) B (S;)

n-
i'=1 meM

max ViV QI Byl = O,(1A[ )

max
1<i<n

= Op(l),

Therefore, max;<j<, @2 = O {n"2(|A|72 + J,)} and ||7:]| = O,(n7'|A|7F +
nt V). Letsi = (1, ..., 1) 18o(2)—U(2)10lloe < C5J;72~* and observing
that 34(Z) = U[L(Z)f, we have || B, — Boxl|z, < C (| — moll + J7¢™) =

0, <n‘1/2J$/2 +n7 AT+ Jn‘@_l), and the consistency of 3 is proved. [

S4  Proof of Proposition ]|

Proof. Recall that Q(z) = E (X;X/[|Z = 2),T(2) = E (X, X/ X[ X;|Z = ).
By the definition of ¢;{8y(2)} , we have the following decomposition,
9:{Bo(2)} = {Yi—By ()X —a(S)} XiKn(Zi — 2)
= {Yi =By (Z)Xi — ao(S;) + By (Z:)X; — By (2)X;
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= {a+18u2) = Bu(2)]T Xi + [ao(S) — a(S)]}
xX; K (Z; — 2)
= & XiKn(Zs — 2) + XiX] [Bo(Z:) — Bo(2)]) Kn(Z: — 2)
+ [ (S;) — a(S;)] XiKn(Z; — 2)
= & + Ly; + Lo,
Denote B (2) = (Bb1(21), Bia(22), - - Byy(2,)) - By the smoothness of Soy
k=1,2,...,p,wehave 8\"(z) = O(1)1,,, forall z.
It is clear that E€; = 0, and we have
B(Ly) = B{EXX|Z) |8 ()2 ~2)] Ki(Zi - 2)}
= B (2)EUZ)(Z: — 2)Kn(Zi = 2)))
= 3 [ 00 - - 7
= BNz [h / bv(Q(z) + Q' (2)ho + 1720 (2)h*0*) K (0) (f(2)
Ff(2)ho + 1/2f"(2)h%0?)dv]

= O(hH)1,x1.
According to the proof of Theorem[I], we also have
E(Ly) = E{X;Ky(Z;— z)(a(S;) —a(S;))}
= E{XiKn(Zi = 2)E[(o0(Si) — a(S:)) [{Xi, Zi, Si}isal}

= E{X:Kn(Z; — 2) (a(8S:) — E[a(S)| {Xs, Zi, Si}i- )}
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= E{XiK(Z - 2) (a0(S) — B(S)Q:6,) |

IN

E{XiEKn(Z: = 2)[}

< ([[ao(S0) — o () + B(S)Q: (60— 6,.)

)

S EAXiEn(Z = )} E (Jlao — ol + 011180 — 8,z)

where by Theorem|[I], we have

B (Hao(S) = all + |AI160 - 8,12) = O (57161 + 2 + 141+,
and E{|X;K,(Z; — 2)|} = E [E{|Xi||Z}Kn(Z; — 2)] < E[Kn(Z; — 2)] x
11 = O(f(2))1px1- If b = o(n=Y/%), when |A| < n~%0G45) and J, >
| A (etD)n2/Ge+5)  we have ELy; = O(h?)1,x; by Assumption (A6'). There-
fore, we have F{g;{B0(2)}} = O(h?*)1,x;. In the following, we calculate the
variance of ¢;{30(z)}. Firstly, we have
E(&E) = E{eXX/Ki(Z —2)}

— B [F (XX]|Z) K27 - 2)]

= *Q(2) f(2)pa0h™t (1 +0(1)) .
Secondly, we have

B (LiL])
= E{XX{ K;i(Zi — 2)X{ (Bo(Z:) = Bo(2))(Bo(Zi) — Bo(2)) ' X, }

- E {Xiij};(z@- ~2) [(ZZ- — 22X 82980 (29X,
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+ o(Z; — 2)*X]! X;] }
= B{B[XXIX[B(=")8)" (=) X.| Z] K} (20— 2)(Z - =)}
x{1+o0(1)}
< FE{E[XXX/X;|Z]| K}(Z; — 2)(Z; — 2)*} (1 4+ o(1))
= E{T(Z)K}(Z — 2)(Z — 2)°} (L4 0(1) = T(2)f()pazh (1 + o(1)) .
Finally,
B(LaL]) = B{XX] (a0(8:) — (S0 K3(Z — )
= E{E[XX] (o) — &(S))*K}(Z = 2)|{X. 2, S} ]}
= E{E [(a0(S) = G(8))* {Xs 2, SHLy | XX KR (Zi - 2)}
= B{B|B(5)Qu(60— 6)(6,— 6) QI B(S))|
x XX, K} (Z; — z)}
= E{XXTK}(Z - 2)|IB(S)Q:(0 — 0,13}
+0? B { XX Kj(Z; - 2)|B(S))QeA»Q; BTHL|I3}

On the one hand, for (k, k')-th entry, k, ¥’ = 1,2,..., p, we have

B { XuXao K (Z: - 2) | B(S:) Qa0 — 6,) 3}

~ 1/2
AP) (BA{XAXRKNZ — 2)})"" (E160 - 6,13)

< B {IAPXu X KR (Z — 2)|Qx(60 — 6,113
< O
(

= o(apr?) (2{j6-8.1}) " (s4.1)
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On the other hand, for (k, k¥')-th entry, k, k' = 1,2, ..., p, we have

E{szsz’Kh( )HB( i)Q2A22Q;—BTHwH§}

IN

ClA|I"'n B { Xy Xiw K (Z; — 2)|B(S:)B ' Ha |3 }

< ClA™n? (B{X2X2EKNZ—2) ) (E{|B(S)B H,||3})"”
= O(n'h%?). (S4.2)
Combining (S4.1) and (S4.2), we have ELy L, = O(|A2h=3/24n"1h=3/2)1,,,.

Hence, we have

Var{g{Bo(2)}} = E{Qz{ﬂo )}9i{Bo(2 )}T}
= E(&¢ +LuL); + LoLy)
= E(&¢)) (1 +0(1))

= 02Q(=) f()uaoh™ (14 0(1))

S5  Proof of Theorem 2

Proof. First, for convenience we suppress the argument z in the functions such
as 3(z), €2(z) and so on, since we fix z € [a, b] in this proof.

For the minimization problem (3.3)), we use the Lagrange multiplier method:

min > log[1487(2)a{B()}] + T () H{B()).
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where v(z) is a ¢ x 1 vector of Lagrange multipliers. Define

B 1l — gi(ﬁ)
Mn(8.9) = 1) T B0 @)

and
n 69; (ﬁ) 6

_1 B T
Vel B0V = 2 T i) T OO

We first obtain their derivatives with respect to the three variables 3, d and v.

agz’ (B) T T 891’ (/8)

OML(B.8) 1 W(lﬂs (8)9:(8)) — 9:(8)d i

0T ni (1457 (B)alB) ’

8M1n(ﬁ,5) _ _li g@(ﬁ)gz—r(ﬁ) aMln(ﬁa 6) —0

007 n < (1+387(8)g:(8))? ov'’ ’
%9/ (B) T g{ (B) 55 09:(B)
3M2n(ﬁ’57’/>:li a7 2L T9 (B)ailB) - —55=00 557

S LT (156 (BgB)
aC’(B)
+ WI/,

aMQn(ﬁ767V) — 1 Z a/BT aﬁT ’ aM2n(ﬁ76’V)

05 nl 115 @e@r o O W
OHB) _ . OHB) . OH(B) _
opr - B e =0 e =0

Hence, we have the following Taylor expansions of the system of equations
at (B, 0, 0). Denote the solution to this equation system as {E(z), 8(2), 17(2)}.

Let A, = |18 = Boll + [18]| + |7l

0= M, (B, 5, 17)
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= Mi,(Bo,0) + M1, 0) (5—50) + OMin(Bo, 0) (g— 0)

0BT 007
aMln(Bo, O)
+ a—T

dgi ~ - ~
== Zgl Bo) + — 0 ; %éé()) (ﬁ - 50) - %;gi(ﬁo)g?(ﬂo)(s + 0p(Ay),

(& = 0) + 0p(An)

0= Ms, (8,6,7)
B O Man (8o, 0,0) O Man(Bo, 0,0)
= Mo (80,0,0) + =522 (B o) + =5 2 (8- 0)
+ aM%éﬂf?O D5 -0)+000)
= - Z 89,({)%[30)5 + CT(Bo)¥ + 0,(A,),

=1

and0 = H (B) = H (8)+C"(8:) (B = Bo) +o,(2) = CT(8y) (B By ) +

0p(A,,). Putting the above equations into a matrix form, we obtain

—n T Gi(Bo) + 0p(A) Con™'6
0p(A,) = | B-6,
—H(By) + 0,(Ay) v
where
oy gmo)gi (Bo) n' L %0
>, oty 2 0 C'(Bo)

0 C(Bo) 0
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-2 Y2 0
Then we have X, L 5 Y, 0 XJ|,andX = C(Bo). By
0 Yoz 0

Proposition (I} it is easy to find that
i1 = 05Q(2) f(2) 20, a2 = Q(2) f(2). (S5.3)

By the simple calculation, we have
IS EIELYELYE IS LY ZELST
= T3 Y ST ;
82122;11 S -R

where ¥ = V (I— E;%S), R = (223V22T3)_1, S = RYyV,and V =

(2152;'S15) " . Thus, we have the following

Cin~'6 —n~' 321 9i(Bo)
B-B | = % 0 + 0p(Ay).
v —H(Bo)

By this, under the local alternative hypothesis H;, we could figure out that

1) C2n14
Be=1l1B=Bo[|[=|| B8

174 14
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1 0
=="o {—%Zgi(ﬂo)}—ﬁ‘l 0 [ #(Bo) + 0p(An)
0 1

<0 (n_l/gh_lﬂ) + 0p(An),

which implies that A,, = O, (n=1/2h71/2).

Combining the above results, we have

C2n1s B YU ID ST 1% § J9 Se
pom || e ({3
=1
v SELY
Y ELST
— qT H(Bo) + 0, (020712 (S5.4)
-R

Given the following results —SX L, X' = —~R¥»VV IS = —REpXy)

we have the asymptotic expression for v,

v =-SuL3 {% > gi(ﬁo)} +RH(Bo) + 0, (”71/%71/2)

= -—REx25 {137 6:i(Bo)} + RH(Bo) + 0, (n712h71/2) . (S5.5)
By equation (S5.5), under the null hypothesis Hy : H {B(z)} = 0, we have

U =n""R"’5y555 Y 6i(Bo) + 0, (n2h72).
=1
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Since

—YELY =YV ISy = - VI-3,8) V'S
=X} +VELSV IS = -2+ VELRERVV IS

= -3 + VELRE, X,

for the asymptotic expression of E — Bo, lb together with |i gives

1 n
B=By = (-3 + VERRIy;Y,) {ﬁ Zgi</80)} + o, (nV2R712)
=1

= -3 {% ; gi(ﬁo)} + VZ;?,RE%EEI{% 121 gz'(ﬁo)}

oy (nV2h12)

L)1y . o
= -3 {E Zgi(ﬁo)} — VI5,0 + 0, (n 12p 1/2).
i=1

Using the expression of 5

d = {”1 Zgi(ﬁo)gj(ﬁo)} {nl Zgi(ﬁ())}
S B B b LS g BB
+ { ;%(ﬂo)gz (ﬁo)} { ;gz(ﬂo) T ngz‘(ﬁo) }

= {n‘l Z gi(ﬁo)gf(ﬁo)} {n—l Z gi(ﬂo)} 0, (71217112

and the above asymptotic expression for B — By, the empirical log-likelihood
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ratio statistic can be written as

=nho B3 VE 211 815 VEL,0 + 0,(1) = nhv'R™'0 + 0,(1).

We see that £ (RY2553%15 37 | 9i(Bo)) = 0 and as n — oo,

C'Var (Rl/QEggElezgi(ﬂo)> — RY’Z,u3pe S SLRY?
=1
= R1/2223(212211212)712;31%1/2
= RY?3IuVE,LRY?

_ RI/QR—IRI/Q

qxq-

Thus, by the Central Limit Theorem, under the null hypothesis Hy : H{3q(z)} =
0, we have n~ /2R 2RY25,, 30 57 6:(Bo) 4 N(0,1,) which means

VnhR™ V25 4 N(0,1,).

d 2

Thus, 2¢(z) — x;. Under local alternative hypothesis H, : H{Bo(z)} =
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(nh)/2d(z), we have
VnhR™ V25 4 N(RY?d,1,).

Thus, 20(z) = nh " R™'D + 0,(1) % x2(d"Rd). O

S6 Proof of Theorem

Proof. We first prove the asymptotic normality of D,, under the null hypothesis.

We have the decomposition for D,, = D,,;; + D,,», where

no b
Du = 7Y / €7 (2)GT ()G ()& w(z)dz

n b
= C°? Z 612/ Kin(Z; — 2)*X] GT(2)G(2)Xw(z)dz,
i=1 @

D,» = 05222/ £ (2)GT(2)G(2)€r(2)w(2)dz

i=1 k#i V@

n_ b
N / Kn(Zs — 2)Kn(Zn — 2)XTGT ()G (2)X () dz.

i=1 ki

Note that,

E{X!G'(2)G(2)X;|Z; = 2} tr(G(2)Q(2)G ' (2))
= tr [(UQMQOf(Z))_quXq} = q(0*pa0f(2)) ",
and £ D,, = 0. We also have

ED,, = ho® /bE {Kw(Z; — 2)°X] G (2)G(2)X; } w(z)dz
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b
— th/ E{E [X]/GT(2)G(2)X;|Z;] Kn(Z; — 2)*} w(z)dz

— 02/ [E{X] G (2)G(2)X;|Z; = 2} f(2)p20 + O(h*)] w(z)dz

= ¢+ O(Rh).

Define KW (z) = [ K2(y)K? (y — x) dy and I;1(2) = X] G (2)G(2) X
ThUS, X,L—'I—G'T(Zl)G’(Zl)XkX;/rGT(ZQ)G<22)X.k/ = Iik(zl) X[Z'/k/(ZQ). When

1 # k, we have

E(Lij(z1) Luk(22)| Zs = 21, Z), = )
= E(Li(21)|Zi = 21) E(Iu(22) | 21, = 22)
= tr(E [GT(21)X] X;G(21)|Z; = =])
xtr(E [G' (22)X, XkG(22)|Z), = 2])

= Cuyo [ (z0) T (z2)
Thus, we have

ED?,

— hn 222/ / E{& G (21)G(21)€1€),G " (22)G(22) &2}

i=1 ¢/=1"7%

xw(zl) (29)dz1dzo

= > h¥n _2/ / B Kn(Z — 21)* Kn(Zir — 22)* Lis(21) Lir(22) }
1751
xw(z)w(z2)dz1dz
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n b b
+ Z h2n_2/ / E {eth(Zz — 21)2Kh(Zi — 22)2111(2’1)]”(22)}
=1 a a

Xw(z1)w(zg)dz1dz

n bopb
= n" 2ot {E(I“(Zl) X [kk(ZQ)’Zi = 21,4, = zZ)f(Zl)f(ZQ>M§O
Yoot
+O(h2)} X w(z1)w(zz)dz1dze

n b b ==
+Zn2E€;’L/ / {hE(Im(Zl) X I”<22)‘ZZ = Zl) f(Zl)K(4) ( 2 h 1)

+0(h2)} X w(z1)w(zg)dz1dzy

= ¢+0 (hz) .
Next, we calculate £2D?,. Note that
ED?,

— Rhn —QZZZZ/ / E{& G (21)G(21)€01€,G T (22)G(22) &2 }

=1 V=1 k=1 k'=
xw(z1)w(z2)dz1dzs.

When k # i and k' # ', E (e;ep€exer) # 0 only in two cases, the first one is
{i =4,k = k'}, and the second one is {i = k’, k = ¢'}. In particularly, we have
ED;, = h*n=20* 330 370, ff f;(Hl + Tly)w(z1 )w(22)dz1 dzs, Where
I = E{lip(a1)lin(22) Kn(Zi — 210) Kn(Zk — 21) Kin(Zs — 22) Kin(Zy — 22)}
= E{E [Li(21)Lin(22)| Zi, Zi| Kn(Zi — 21) Kn(Zg — 21)
— 22) Kn(Zk — 22) }

_ // w2 I(22)| Z = 2, 2y = y) f(2) f(y)
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X Kp(x — 21) Kn(x — 22) Kn(y — 21) Kn(y — 22)dady
= / {hlE [Iik(zl)fik(zQHZi =21, 2, =y flz)K® (%)
+O(h)} x f(y)EKn(y — 21) Kn(y — 22)dy

= W72E [In(2)Ii(22)| Zs = 21, 21 = 2] F(21) f(22) {K(2) (22 ; Zl) }2

+O(1)
and
My = E{Lp(z0)Iki(2) Kn(Zi — 20) Kn(Z) — 20) Kn(Zi — 22) Kn(Z), — 22)}
= EA{E [Ln(z1)Iki(22)| Zi, Z1) Kn(Zi — 20)Kn(Zi — 20) Kn(Z; — 22)
X Kp(Zy — 22)}

= // zkzljkzz2‘Z_ka_y]

() f () Kn(x — 21) Kp(x — 29) Kp(y — 21) Kp(y — 22)dxdy

= /ab {h-lE (L (21) 1 (22)| Zs = 21, Z = y] f(21) KP (Z2 ; ZI) + O(h)}
X f(y) En(y — 21)Kn(y — 22)dy

= h7E [Li(2)1i(22)|Zi = 21, Zi = 2] f(21) f(22) {K(z) <22 B Zl) }2

h
+O(1).

Since

E [L(21) Lip(22)| Zi = 21, Zi = 22)



Empirical Likelihood Ratio Tests for Varying Coefficient Geo Models

= E{E[X]/G"(21)G(21)X};X] G (22)G(22)Xy] |Zi = 21, Zk = 20}
= E{X,G'(21)G(2)E [XiX]]| G (22)G(22)X|Z; = 21, Zj = 22}
= tr{E[X, G (21)G(21)E (X;X]) G (22)G(22)X| Z; = 21, Zy = 2] }
= tr{E[G(z1)E (XiX]) G (22)G(2) XX, G (21)|Zs = 21, Zy = 2] }
= G(21)E (XiX/|Zi = 21) GT(22)G(2) E (Xi X, |Z), = 22) G (z1)
= G(21)2(21) G (22)G(2)Q (22) G' (21) = q,
and similarly, we have E [I,(21)Ii(22)| Zi = 21, Zy = 23] < q. Combining the
results for II; and II,, we have
ED?, = 4h//f (v + hu)w(v)w(v + hu) (K@ (u))2 dudv
= h/ (K@ (u du/f v)dv + O(h?),
Hence we have Var(D,,1) = o(Var(D,s)), and it follows that
D, — E(D,) = Dp2{1+0(1)}.
We can write Dy, as Dy = = z;,,ékf Z1(2)Z1(2)w(z)dz, where Z;(2) =
VhG(2)&i(2). LetUy, = 15 Dn> = 152 zlgmgn/qzi, Z,), where K(Z;, 2,
= f Z(2)Z,(2)w(z)dz. Define Ag as Axcg(z) = [ K(z,y)g(y)dF (y), where
Fis the distribution of Z;. Then we have the associated eigenvalues and eigen-
functions, denoted as {\, ¢y },-, . The remaining proof for D,, under the null

hypothesis test is analogous to the sparse case in Theorem 2 and Corollary 1 in

Wang et al. (2018]).
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Secondly, we prove the asymptotic distribution for D,, under alternative hy-
pothesis. Notice that 2((z) = nho' R™'D + 0,(1) as shown in Theorem and

by (S5.5)) under local alternative,

v =-REu%,) {% ;gi(ﬁo)} +RH(Bo) + 0, (n 20717

The remaining proof is the same as the sparse case in Theorem 3 in Wang et al.

(2018). ]
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