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ON SOME CENTRAL AND NON-CENTRAL MULTIVARIATE

CHI-SQUARE DISTRIBUTIONS
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Abstract: Let R be a non-singular m-factorial correlation matrix, i.e. R = D + AA0

with a diagonal matrixD > 0 and a not necessarily de�nite matrix AA0 of the minimal

possible rank m. From an expression for the general non-central multivariate �2-

distribution function with the accompanying correlation matrix R some simpler cases

are derived: The p-variate central �2-distribution with q degrees of freedom is given

as a mixture with regard to a Wishart Wm(q; Im)-distribution. For m = 2 several

integral and series representations are derived including the limit case with exactly

one zero on the diagonal of D. The two-factorial representation is applied to the

four-variate �2-distribution. Besides, it is used for Taylor approximations if m > 2.

Furthermore, the non-central distribution function is given for m = 1 and applied to

power calculations for some multivariate multiple comparisons with a control.

Key words and phrases: Multivariate chi-square distribution, multivariate gamma

distribution, multivariate Rayleigh distribution, multivariate multiple comparisons

with a control, power.

1. Introduction and Notation

The following notations are used throughout the paper: The spectral norm

of any p�p-matrix A = (aij) is denoted by kAk, jAj is the determinant of A, _A is

de�ned by A-Diag(a11; : : : ; app), A > 0 means positive de�niteness, etr(A) stands

for exp(trace(A)) and (aij) = A
�1. A p� p-unit matrix is always denoted by Ip

or I. The Fourier transform (F.t.) or Laplace transform (L.t.) of a function f is

denoted by f̂ . The notation
P

(n) means a summation over all decompositions

of a non-negative number n =
P
ni (or

P
nij) with nonnegative integers ni,

i = 1; : : : ; p (or nij ; 1 � i < j � p). Furthermore n�j =
Pp

i=1 nij with nij =

nji. Formulas from the handbook of mathematical functions by Abramowitz and

Stegun (1965) are cited by \A.S." and their number.

Let R = (rij) denote a p� p-correlation matrix and Y a p� q-matrix with q

independent N(�j ; R)-distributed columns. The joint distribution of the diago-

nal elements Xi of the Wishart matrix Y Y 0 is called the p-dimensional chi-square

distribution in the sense of Krishnamoorthy and Parthasarathy (1951) with q de-

grees of freedom, the accompanying correlation matrix R and the non-centrality
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matrix � =MM
0, where M is the expectation E(Y ) (�2p(q;R;�)-distribution).

It is comparatively easy to derive general representations of the corresponding

distribution function (d.f.)

Fp(x1; : : : ; xp; q;R;�) = PrfX1 � x1; : : : ;Xp � xpg (1:1)

or of the density (p.d.) fp from the characteristic function (ch.f.)

f̂p(t1; : : : ; tp; q;R;�) = jI � 2iRT j�q=2etr(iT (I � 2iRT )�1�); (1:2)

T = Diag(t1; : : : ; tp); (e.g. Jensen (1969), Sec. 2):

In the central case � = 0 is omitted in the above notations. For general formulas

see Blumenson and Miller (1963), Miller (1964), Jensen (1970), Khatri, Krishna-

iah and Sen (1977) and Royen (1991b, 1992). However, the general expressions

are di�cult to compute, and it is the aim of this paper to derive from the general

formula in Theorem 3.1 some simpler cases, where the computation requires no

more than series of uni- or bi-variate integrals and powers of linear or quadratic

forms. The present paper was motivated mainly by the work at programs for

certain multivariate multiple test procedures (cf. Sec. 6).

The following de�nition is fundamental:

De�nition 1.1. Let R be a non-singular p � p-correlation matrix. R is called

m-factorial if m is the smallest integer allowing a representation R = D + AA
0

with a diagonal D > 0 and a not necessarily de�nite matrix AA0 of rank m.

With D =W
�2 note that

WRW = Ip +BB
0
; (1:3)

where the p � m-matrix B of rank m has without loss of generality pairwise

orthogonal columns b�, some of them possibly imaginary. The char. roots �� 6= 1

of Ip +BB
0 coincide with the m diagonal elements

�� = 1 + b
0
�b� > 0 (1:4)

of Im +B
0
B.

For an m-factorial R the d.f. Fp(�; q;R) is given in Corollary 1a of Theorem

3.1 as a mixture with regard to a Wishart Wm(q; Im)-distribution. The one-

factorial case was treated in Royen (1991a, b). For the two-factorial case several

representations of Fp are given in Corollary 1b of Theorem 3.1. Together with the

limit case with only p� 1 positive elements in D (cf. Theorem 4.2) many four-

variate �2-distributions are covered by these correlation matrices (cf. Sec: 5).
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If there exists a \good" approximation of R by an m-factorial R0 (practically

m = 1 or m = 2) then a Taylor polynomial approximation with R � R0 (or

some transformed deviations) can be derived for the d.f., which generalizes the

corresponding approach for the multivariate normal distribution in Royen (1987).

This method is described concisely at the end of Section 3.

For the non-central case with a one-factorial R and any non-centrality matrix

� a comparatively simple expansion is found in Corollary 2a of Theorem 3.1,

which is simpli�ed further if rank(�) = 1.

2. Some Preliminaries

Let gr(x) be the gamma density x
r�1 exp(�x)=�(r) and Gr(x) the corre-

sponding d.f.. We need the functions

g
(n)
r+n(x) =

d
n

dxn
gr+n(x) = L

(r�1)
n (x)gr(x)

. 
r + n� 1

n

!
(2:1)

and

hr;n(x) = (�1)nL(r�1)
n (2x)gr(x)

. 
r + n� 1

n

!
(2:2)

with the generalized Laguerre polynomials L(r�1)
n (A.S.22.11.6).

An always absolutely convergent expansion for central multivariate �2-proba-

bilities of (bounded or unbounded) rectangular regions was given in Royen (1991

b) using the functions

Hr;n(x) =

Z x

0

hr;n(�)d�: (2:3)

For n!1 its order is

Hr;n(x) = O(n�r=2�1=4) (2:4)

with an O-constant depending on r and x. Also,

G
(n)
r+n(x) =

Z x

0

g
(n)
r+n(�)d� = O(n�r=2�1=4) (2:5)

with an O-constant only depending on r.

With any scale factors vj = w
2
j=2 we de�ne for any real numbers tj, j =

1; : : : ; p:

zj = (1� itj=vj)
�1
; uj = 1� zj = (�itj=vj)zj ;

wj = zj � uj = exp(i�j); �j = 2arctan(tj=vj);
(2:6)

and the diagonal matrices T;W; V = W
2
=2; Z; U;
 with the corresponding ele-

ments tj ; wj ; vj ; zj ; uj and !j . With v = 1, x > 0 and any real or complex y we

obtain, by Fourier transform, the relations



376 THOMAS ROYEN

f̂r;n(t; y) fr;n(x; y)

z
r+n exp(�yu) gr+n(x; y)

z
r
u
n exp(�yu) g

(n)
r+n(x; y)

z
r
!
n exp(�yu) hr;n(x; y)

(2:7a)

(2:7b)

(2:7c)

and

Fr;n(x; y) =

Z x

0

fr;n(�; y)d� =

Gr+n(x; y) = e
�y

1X
m=0

Gr+m+n(x)y
m
=m!; (2:8a)

G
(n)
r+n(x; y) = e

�y
1X

m=0

G
(n)
r+m+n(x)y

m
=m! =

1X
m=0

G
(m+n)
r+m+n(x)(�y)m=m!; (2:8b)

Hr;n(x; y) = e
�y

1X
m=0

Hr+m;n(x)y
m
=m! = e

�y=2
1X

m=0

Hr;m+n(x)(y=2)
m
=m!: (2:8c)

Fr;n(x) is written instead of Fr;n(x; 0). Since the functions Gr+n(x; y), (y 2 R)

are the most important elements in the formulas of the following sections we list

some further representations, as follows:

Gr(x; y) =
1X

m=0

G
(m)
r+m(x)(�y)m=m! = e

�y=2
1X

m=0

Hr;m(x)(y=2)
m
=m! (2:9a)

= e
�y
Z x

0
0F1(r; �y)gr(�)d� = e

�y
1X

m=0

0F1(r + 1 +m;xy)gr+1+m(x) (2:9b)

= (x=�)1=2
Z 1

�1
Gr�1=2((1�c2)x) exp(�(

p
y�c

p
x)2)dc (r�1=2;G0(x)�1) (2:9c)

=

8>>>>>>>>>>>><>>>>>>>>>>>>:

�(
p
2y +

p
2x)� �(

p
2y �

p
2x)� e

�x�y
r�1=2P
k=1

(
p
x=y)r�kIr�k(2

p
xy);

if r = 1=2; 3=2; : : : ; (2:9d)

e
�x�y(x

y
)r=2 1

�

R �
0

y cos(r�)�
p
xy cos((r�1)�)

y�2
p
xy cos(�)+x

exp(2
p
xy cos(�))d� + �(x� y);

if r = 0; 1; 2; : : : ; y > 0; �(x � y) =

8<:
1; y < x,

1=2; y = x,

0; y > x.

(2:9e)

It should be noted that the spherical Bessel functions are elementary. The for-

mulas (2.9a) are veri�ed by characteristic functions and the remaining ones by

A.S.9.6.47, A.S.9.6.18/19, A.S.9.6.33 and A.S.6.5.29.

Now several expressions are summarized for the ch.f: (1.2) with anm-factorial

R. For this we de�ne withB from (1.3) and �� from (1.4) the following quantities:
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eB = eBk =

8<:
B; if k = 1,

BDiag(�
�1=2
1 ; : : : ; �

�1=2
m ); if k = 2,

BDiag((1 + �1)
�1=2

; : : : ; (1 + �m)
�1=2); if k = 3,

(2:10a)

(2:10b)

(2:10c)

C = eB eB0 =

8<:
WRW � I; if k = 1,

I � (WRW )�1; if k = 2,

I � 2(I +WRW )�1; if k = 3,

(2:11)

D =

� 1

2
W�W; if k = 1,

1

2
(I � C)W�W (I � C); if k = 2; 3;

(2:12)

� =

�
1; if k = 1; 2;

1=4; if k = 3;
�
� =

�
1; if k = 1; 2;

1=2; if k = 3;
(2:13)

c =

�
1; if k = 1;

jI �Cj; if k = 2; 3;
c
� =

�
1; if k = 1;

c
retr(��B0

DB); if k = 2; 3;
(2:14)

and with U;Z;
 from (2.6):

Y =

8<:
�U; if k = 1;

Z; if k = 2;


; if k = 3:

(2:15)

Lemma 2.1. For an m-factorial correlation matrix R the ch.f. in (1:2) with

q = 2r is given by

f̂(t1; : : : ; tp; q;R;�) =

c
�

0@ pY
j=1

z
r
j

1A etr(�UD)jIp � CY j�retr(��(Im � eB0
kY

eBk)
�1 eB0

kY DY
eBk);

k = 1; 2; 3: (2:16)

In particular for m = 1, B = b the last factor in (2:16) is simpli�ed to

exp(�(1 + b
0
Ub)�1b0Y DY b) (2:17)

and

cjIp � CY j�1 = jIp + bb
0
U j�1 = (1 + b

0
Ub)�1: (2:18)

If rank(C) = 2 then

jIp � CY j = 1�
X
j

cjjyj +
X
i<j

(ciicjj � c
2
ij)yiyj : (2:19)
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Proof of Lemma 2.1. The formulas for the central case are from Royen

(1991b). With T = Diag(t1; : : : ; tp) we �nd

tr(iT (I � 2iRT )�1�) =
1

2
tr(2iTW�2(I �WRW2iTW�2)�1W�W )

= tr((I � Z
�1)(I � (I + C1)(I � Z

�1))�1D1)

= tr((Z � I)(Z � (I + C1)(Z � I))�1D1)

= � tr(U(I + C1U)
�1
D1) (2:20)

= � tr(UD1) + tr(U(I +C1U)
�1
C1UD1): (2:21)

With C1 = BB
0 and (Ip + BB

0
U)�1B = B(Im + B

0
UB)�1 it follows that the

second term in (2.21) is equal to tr((Im +B
0
UB)�1B0

UD1UB).

To show the second formula with Y = Z we start from (2.20) with U = I�Z
and C2 = I � (WRW )�1. It is

� tr((I � Z)(I + (WRW � I)(I � Z))�1D1)

=� tr((I � Z)(WRW � (WRW � I)Z)�1D1)

=� tr((I � C2Z � (WRW )�1Z))(I � C2Z)
�1(WRW )�1D1)

=� tr(BB0
D2)� tr(D2) + tr(Z(I � C2Z)

�1
D2)

=� tr(B0
D2B)� tr(UD2) + tr(Z(I � C2Z)

�1
C2ZD2):

With C2 = eB2
eB0
2 and

eB2(Im � eB0
2Z
eB2)

�1 = (Ip � eB2
eB0
2Z)

�1 eB2 the last trace is

equal to tr((Im � eB0
2Z
eB2)

�1 eB0
2ZD2Z

eB2):

In a similar way the formula with Y = 
 is shown, starting again from (2.20)

with 2U = I � 
.

In the proof of Theorem 3.1 we have to justify a change of the order of

integration over R
p
+ and fSm�m > 0g using the following lemma:

Lemma 2.2. Let S be Wm(2r; Im)-distributed (r � 1), b1; : : : ; bp the rows of

the matrix B in (1:3) and �1; : : : ; �m the numbers from (1:4). Then, for any

non-negative numbers xj, djj and any nj 2 N0, j = 1; : : : ; p, the expectation

E

0@ pY
j=1

jgr+nj (xj ; djj +
1

2
b
j
Sb

j0)j

1A (2:22)

is bounded by
Q

��<1 �
�r
� .

Proof. Set S=2 = Y
1=2
CY

1=2, where Y = Diag(Y1; : : : ; Ym) has independent

gamma-distributed elements and C with c�� � 1 is distributed independently of

Y . From the F.t. (2.7c) we obtain

jhr+n;k(x)j � B

�
r � 1 + n

2
;
1

2

�
=(2�) < 1 (r + n � 3=2);
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and from (2.2), A.S.22.14.13 the bound jh1;k(x)j � 1. Now it follows with the

second series in (2.9a), b0�b� =
Pp

j=1 bj�bj� = 0, 1 � � < � � m, and � = 1

2

P
djj

that (2.22) is bounded by

exp(��)
Z
Rm

+

E

� 1X
k=0

X
(k)

pY
j=1

j1
2
djj +

1

2
b
j
Y

1=2
CY

1=2
b
j0 jk=kj !

�

�
mY
�=1

exp(�1

2
b
0
�b�y�)gr(y�)dy� (2:23)

with the expectation E referring to a possibly singular distribution of C. After

the substitution y� = (1 + b
0
�b�=2)y� the inner sum is written as

1

k!

8>>>>>: pX
j=1

j1
2
djj + ebjY 1=2

CY
1=2ebj0 j

9>>>>>;
k

(2:24)

with ebj� = bj�(2 + b
0
�b�)

�1=2
; jeb0�eb�j = jb0�b�j=(2 + b

0
�b�) < 1 (2:25)

since �� = 1 + b
0
�b� > 0. For a pure imaginary or real B it is

pX
j=1

j1
2
djj + ebjY 1=2

CY
1=2ebj0 j � � +

mX
�=1

jeb0�eb�jy� (2:26)

since Y 1=2
CY

1=2 � 0 and eb0�eb� = 0, (� 6= �). If B contains real and imagi-

nary columns the quadratic form Qj = ebjY 1=2
CY

1=2ebj0 can be written as Qj =

Qj11 � Qj22 + 2iQj12 with real forms. Then Qj11Qj22 � Q
2
j12 � 0 follows from

Y
1=2
CY

1=2 � 0 and therefore jQj j � Qj11+Qj22, which leads again to the bound

(2.26).

Now it follows from (2.24), (2.25) and (2.26) that (2.23) is bounded by

mY
�=1

(1 +
1

2
b
0
�b�)

�r
Z 1

0

exp(jeb0�eb�jy�)gr(y�)dy� = Y
��<1

�
�r
� :

3. The Main Results

Even for the central general �2p(q;R)-density \simple" formulas are only avail-

able in a symbolic form (cf. also Blumenson and Miller (1963)). With the oper-

ator

@
�1 = Diag

�
(
@

@x1
)�1; : : : ; (

@

@xp
)�1
�
;
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any scale factors vj = w
2
j=2 and C = Ip� (WRW )�1, the series derived from the

ch.f. (2.16) with � = 0 and k = 2 can be written as

fp(x1; : : : ; xp; 2r;R) = jWRW j�r
0@ pY

j=1

v
r
j exp(�vjxj)

�(r)

1A jIp � CV @
�1j�r

pY
j=1

x
r�1
j :

Using the formula for Laplace transforms of zonal polynomials (Johnson and Kotz

(1972), Chap: 38, Sec: 4) the operator is easily shown to coincide with the gen-

eralized hypergeometric function 1F0(r;CV @
�1); (2r � p). Zonal polynomials

however do not seem to be useful for a direct representation of the �2p(2r;R)-

distribution. With the central functions Fr;n(x) in (2.8), c from (2.14) and all

principal minor arrays CJ of C = Ck in (2.11) with row and column indices

j 2 J � f1; : : : ; pg, (J 6= ;), we have the following expansions for the d.f.:

Fp(x1; : : : ; xp; 2r;R) = c
r

1X
n=0

X
(n)

c(n1; : : : ; np; r)

pY
j=1

Fr;nj (vjxj); (3:1)

c(n1; : : : ; np; r) =
s
n

�(r)

X
�(r+

X
nJ)

Y
J

(�jCJ j)nJ=nJ !; s=
�
1; if k = 1;

�1; if k = 2; 3;

where the last sum extends over the nJ with
P

j2J nJ = nj , j = 1; : : : ; p. The

series with Laguerre polynomials (fr;n = g
(n)
r+n, cf. (2.1), (2.5)) are absolutely

convergent if kCk < 1. This can always be achieved by suitable factors vj . The

remaining series are always absolutely convergent. For more details see Royen

(1991b) and (1992).

For the actual computation of probabilities simpler formulas are desirable.

For the integration over a density separated arguments xj are preferable as given

in the following, not necessarily real, mixture representation of Fp.

With the notations (2.10)�(2.15) we de�ne the polynomials P (Y ) by

c
P (Y ; eB;D)

jIp � eB eB0Y j
= �

�tr((Ip � CY )�1CYDY ) = �
�tr(( eB(Im � eB0

Y eB)�1 eB0
Y DY )

and

Qn =

�
P
n
=n!; if Y = �U

etr(��B0
DB)P n

=n!; if Y = Z; Y = 


�
=
X

qn(N1; : : : ; Np)

pY
j=1

y
Nj
j :

With the functions Fr;n from (2.8) and the diagonal elements djj of D in

(2.12) the following theorem holds:
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Theorem 3.1. The d.f: of the �2p(q;R;�)-distribution with an m-factorial R =

W
�1(Ip +BB

0)W�1 is given by

Fp(x1; : : : ; xp; q;R;�)

=

1X
n=0

E

�X
qn(N1; : : : ; Np)

pY
j=1

Fr;Nj
(vjxj ; djj +

1

2
b
j
S2(r+n)b

j0)
�

(3:2)

(r = q=2; vj = w
2
j=2)

with the expectations referring to the Wm(2(r + n); Im)-distributed Wishart ma-

trices S2(r+n).

Corollary 1a.

Fp(x1; : : : ; xp; q;R) = E

0@ pY
j=1

Gr(vjxj ;
1

2
b
j
Sqb

j0)

1A : (3:3)

If m = 2 we write

1

2
b
j
Sqb

j0 = b
2
j1Y1 + b

2
j2Y2 + 2bj1bj2(Y1Y2)

1=2 cos �; (3:4)

where the independent random variables Yi and � have the densities gr(yi) and

fr(�) = (sin2 �)r�1=B(1=2; r � 1=2); (0 � � � �; r � 1): (3:5)

Corollary 1b. If R is two-factorial then the central d.f. F is given by any of

the following representations (3:6) � (3:8):

1X
n=0

 
r � 1 + n

n

!Z 1

0

Z 1

0

�
(2n)!

X
(2n)

pY
j=1

Gr+nj (vjxj; b
2
j1y1 + b

2
j2y2)(bj1bj2)

nj=nj !
�

� gr+n(y1)gr+n(y2)dy1dy2: (3:6)

With C = B(Diag(�1; �2))
�1
B
0, tr(C) < 1 (always satis�ed if at least one

�� = 1 + b
0
�b� < 1) and 
ij = �(ciicjj � c

2
ij), (i 6= j):

(�1�2)
�r(�(r))�1

1X
n=0

�(r + n)=(1 � tr(C))r+n (3:7)

�
Z 1

0

�X
(2n)

� X
n�j=nj

Y
i<j



nij
ij =nij !

� pY
j=1

Gr+nj

�
vjxj; cjjy=(1� tr(C))

��
gr+n(y)dy:

c
r

1X
n=0

X
(n)

c(n1; : : : ; np; r)

pY
j=1

Fr;nj (vjxj) (3:8)
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with

c = ck =

8>><>>:
1; if Fr;n = G

(n)
r+n; k = 1,

(�1�2)
�1
; if Fr;n = Gr+n; k = 2,�

(1 + �1)(1 + �2)=4
��1

; if Fr;n = Hr;n; k = 3,

and

c(n1; : : : ; np; r) = (�(r))�1
X

n�j=nj

�(r +
1

2
(n+

pX
j=1

njj))
Y

1�i�j�p



nij
ij =nij !;


jj =

��cjj ; if k = 1,

cjj ; if k = 2; 3,

ij as in (3.7) (i 6= j); C = (cij) from (2.11).

For the absolute convergence of (3.8) kB0
Bk < 1 is supposed only if Fr;n =

G
(n)
r+n. Also, the inequalities kC3k < kCkk, (k = 1; 2) and kC3k < 1 hold with

any scale matrix W . Since max("�n
Qp

j=1Gr+nj (xj)j
P
nj = n) ! 0 for every

" > 0 the condition kC2k < 1 is not necessary for the convergence of (3.8) with

Fr;n = Gr+n (Royen (1991b, 1992)).

Corollary 2a. If R =W
�1(Ip + bb

0)W�1 is one-factorial then

Fp(x1; : : : ; xp; q;R;�)

= d
�
1X
n=0

Z 1

0

�X
(2n)

d(n1; : : : ; np)

pY
j=1

Fr;nj (vjxj; djj + b
2
jy)b

nj
j

�
gr+n(y)dy (3:9)

with

d
� = d

�
k=

8<:
1; if k = 1,

(3.10)

exp(��b0Db); if k = 2; 3 (� from (2:13), D = (dij) from (2:12)),

�b
0
Db =

8><>:
1

2
b
0
W�Wb; if k = 1;

1

2
�
�2
b
0
W�Wb; if k = 2;

1

2
(1 + �)�2b0W�Wb; if k = 3;

(� = 1 + b
0
b) (3:11)

and

d(n1; : : : ; np) = �
n
X

n�j+njj=nj
j=1;:::;p

Y
1�i�j�p

d
0nij
ij =nij !; d

0
ij =

�
djj ; if i = j;

2dij ; if i 6= j.
(3:12)

For identical correlations see (6:1). In particular with � = (�i�j), D = (didj)

and fr from (3:5) we obtain
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Corollary 2b. If R is one-factorial and rank(�) = 1 then

Fp(x1; : : : ; xp; q;R;�)

=

Z 1

0

Z �

0

pY
j=1

Gr(vjxj ; vj�
2
j + b

2
jy + 2bj�j

p
vjy cos(�))fr(�)d�gr(y)dy (3:13)

= d
�
1X
n=0

�
n

n!

Z 1

0

�
(2n)!

X
(2n)

pY
j=1

Fr;nj (vjxj ; d
2
j + b

2
jy)(bjdj)

nj=nj !
�
gr+n(y)dy: (3:14)

Proof of Theorem 3.1. The L.t. of

E

0@ pY
j=1

vjgr+nj (vjxj ; djj +
1

2
b
j
Sb

j0)

1A (3:15)

is given by 0@ pY
j=1

z
r+n
j exp(�djjuj)

1AE �etr(�1

2
SB

0
UB)

�
(3:16)

(Wm(�; Im)-distributed S, � = 2(r + n), zj = (1 + tj=vj)
�1
; uj = 1� zj):

The change of the order of integration is justi�ed by Lemma 2.2 for all tj > 0.

Since Re(Im +B
0
UB) > 0 (cf. Anderson (1984), Sec. 7.3, (11)) the expectation

in (3.16) is equal to

jIm +B
0
UBj��=2 = jIp +BB

0
U j��=2:

Since un, !n are �nite linear combinations of powers of z, the identity of

(3.15), (3.16) also holds if the pairs (gr+n; z
r+n) are replaced by (g

(n)
r+n; z

r
u
n) or

(hr;n; z
r
!
n).

For q = 2r > 1 it follows from the central case in (2.16) with k = 3 that

the F.t. f̂p(�; q;R) belongs to the Hilbert space L2(Rp) since k eB3
eB0
3k < 1. This

also holds for f̂p(�; q;R;�) since the exponent tr(�iT (I � 2iRT )�1�) in (1.2)

is bounded according to Lemma 2.1. After having expanded the last factor of

(2.16) into the exponential series it follows with the corresponding partial sums

sn that ksn � f̂pk2 ! 0 and

j
Z
A
(sn � fp)dxj <

�Z
A
dx

�1=2
ksn � fpk2 ! 0

for any bounded region A � R
p
+. In particular with rectangular regions A =

Xp
j=1(0; xj) this entails (3.2).
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Proof of Corollary 1b. From (3.3), (3.4), (3.5) we obtain with the identities

Gr(x; �1 + �2) = exp(��2)
X
n

Gr+n(x; �1)�
n
2=n!; (�2 = 2bj1bj2(y1y2)

1=2 cos(�));

Z �

0

(cos2 �)nfr(�)d� =
�(r)�(n+ 1=2)

�(1=2)�(r + n)

and

22n
�(r)�(n+ 1=2)

�(1=2)�(r + n)
(�(r))�2(y1y2)

r�1+n

=

 
r � 1 + n

n

!
(2n)!(�(r + n))�2(y1y2)

r�1+n

the series (3.6). Because of jGr+n(x; �)j � exp(max(0;��))Gr+n(x); (� 2 R, cf:

A.S.9.1.62) and max("�n
Qp

j=1Gr+nj (xj)j
P
nj = n) ! 0 for every " > 0, the

series (3.6) is majorized by

X
n

 
r � 1 + n

n

!
("
X
j

jbj1bj2j)2n
Y

b0�b�<0

(1 + b
0
�b�)

�r�n
:

The series (3.7) follows by inversion from the L.t.

(

pY
j=1

z
r
j )jI �CY j�r = (

pY
j=1

z
r
j )
X
n

 
r � 1 + n

n

!
Q

n(1� L)�r�n

(L =
X
j

cjjyj; Q =
X
i<j


ijyiyj ; Y = Z)

with

(

pY
j=1

z
r+nj
j )(1� L)�r�n =

Z 1

0

(

pY
j=1

z
r+nj
j ) exp(yL)gr+n(y)dy (Re(L) < 1)

and it is majorized by

X
n

 
r � 1 + n

n

!
("2
X
i<j

j
ij j)n(1�
X
cjj>0

cjj)
�r�n

:

Finally (3:8) follows from the general expansion (3:1) with (2:19).

Proof of Corollary 2a and 2b. The identity (3.9) follows from Lemma

2.1 with m = 1 and (2.18). In particular with dij = didj and b
0
Y DY b =
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(
Pp

j=1 bjdjyj)
2 we obtain (3.14). The identity of (3.13) with (3.14) is veri�ed

with Fr;n = G
(n)
r+n by integration over � using the relation

Gr(x; �1 + �2) =

1X
n=0

G
(n)
r+n(x; �1)(��2)n=n!; (�2 = 2bj�j

p
vjy cos(�))

or directly by the L.t. of the corresponding density.

If R is notm-factorial (m � 2) then an approximation of R by anm-factorial

R0 may be useful. Let H = (hij) be the di�erence C � C0 of the corresponding

matrices C and C0 with rank(C0) = m (e.g. C0 = B0B
0
0 =W0R0W0 � I, C =

W0RW0 � I, cf: (2.11)). The Taylor polynomial T2(H;C0) of 2nd degree of the

Taylor expansion with center C0 of the central ch.f. (2.16) is given by

c
r

0@ pY
j=1

z
r
j

1A jI�C0Y j�r+rjI � C0Y j�r�1(L+Q)+
 
r+1

2

!
jI�C0Y j�r�2L2

!
(3:17)

with

L =

pX
i;k=1

(�1)i+kj(I � C0Y )i;kjhikyk;

Q =�
X

i<j;k<`

(�1)i+j+k+`j(I � C0Y )ij;k`j(hikhj` � hi`hjk)yky`;

where (I � C0Y )ij;k` is obtained from I � C0Y by deleting the rows i; j and the

columns k; `. The inversion of (3.17), followed by integration, is a �nite linear

combination of terms of the type

E

0@ pY
j=1

Fr;Nj
(v0jxj ;

1

2
b
j
0S2(r+n)b

j0

0 )

1A ; (n = 0; 1; 2); (3:18)

which is expected to provide a good approximation to the d.f. Fp(�; q;R) if the
deviations hij are su�ciently small. For the corresponding Taylor expansion of

the multivariate normal distribution see Royen (1987).

If there is only one element hij = hji 6= 0 (cf. end of Sec: 5) then the formal

Taylor expansion of f̂ is

c
r

0@ pY
j=1

z
r
j

1A 1X
N=0

X
n1+2n2=N

�(r + n1 + n2)

�(r)n1!n2!

L
n1Q

n2

jI �C0Y jr+n1+n2
(3:19)

with simpli�ed terms L and Q. For approximations only Taylor polynomials of a

low degree are applied with small values of jhij j. Nevertheless, conditions for the
convergence of the inverted expansions are established in the following theorem.
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Theorem 3.2. Let R and R0 be non-singular p� p-correlation matrices where

R0 = W
�2
0 + AA

0 is m-factorial with m < p � 1. Furthermore let be T =

Diag(t1; : : : ; tp) with real tj, Z = (Ip � 2iTW�2
0 )�1 and U = I � Z.

(a) Let be K = R�R0, C =W0RW0� I, C0 =W0R0W0� I and H =W0KW0.

If R0 �K > 0, then the ch.f. f̂p(t1; : : : ; tp; q;R) = (
Qp

j=1 z
r
j )jIp + CU j�r has a

uniformly abs. convergent expansion0@ pY
j=1

z
r
j

1A jIp + C0U j�r
1X
n=0

 n(H;U;C0)

with polynomials  n(H) of degree n and it holds true for the functions sN ,

obtained by Fourier inversion of the partial sums, that

ksN � fpk2 ! 0 and ksN � fpk1 ! 0; (q = 2r > 1): (3:20)

(b) Let be K = R
�1
0 � R

�1, C = I � (W0RW0)
�1, C0 = I � (W0R0W0)

�1 and

H = W
�1
0 KW

�1
0 . If R�1

0 +K > 0, then f̂p has the uniformly abs. convergent

expansion

jI � Cjr
0@ pY

j=1

z
r
j

1A jI � C0Zj�r
1X
n=0

 n(�H;Z;�C0)

and (3:20) holds again.

Proof. Only (b) is shown, since the proof of (a) is very similar.

We have jI � CZj = jI � C0Zj jI � H(Z�1 � C0)
�1j = jI � C0Zj jI �

K(R�1
0 � 2iT )�1j. For any char. root � 6= 0 of K(R�1

0 � 2iT )�1 we obtain with

�
�1 = � exp(i�) the equation

jR�1
0 � � cos(�)K � i(2T + � sin(�)K)j = 0: (3:21)

Because R�1
0 � K > 0 there exists an " > 0 with R�1

0 � � cos(�)K > 0 for all

� < (1 � ")�1. Thus, � � (1 � ")�1 in (3.21) and H(Z�1 � C0)
�1 has a spectral

radius j�jmax < 1.

With C3 = I � 2(I + W0R0W0)
�1 (cf: (2.11)) it follows from (2.16) with

� = 0 that jI � C0j jI � C0Zj�1 = jI � C3j jI � C3
j�1. Since kC3
k � kC3k <
1; jI � C0Zj�1 is uniformly bounded and, besides, we have

R
Rp

Qp
j=1 jzj j2rdtj <

1 for r > 1=2. Thus, by Plancherel's theorem, we get ksN � fpk2 ! 0 andR
A jsN � fpjdx ! 0 by Cauchy's inequality for any bounded A � R

p
+. Now, for

a su�ciently small ", k exp("P xj=2)(sN � fp)k2 ! 0 can be shown as before,

replacing T by T � (i=2)"I and Z
�1 by Z

�1
" = I � "W

�2
0 � 2iTW�2

0 . Then

Cauchy's inequality implies ksN � fpk1 ! 0.
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4. Central Multivariate Chi-Square Distributions Related to Non-

Central Ones with One-Factorial Correlation Matrices

Miller and Sackrowitz (1967) have found a close relation between a�2p(q;R;�)

-distribution with a non-centrality matrix � = q��
0 of rank 1 and a central (p+1)-

dimensional chi-square distribution. A similar relation is given here in Theorem

4.1. The latter provides, in conjunction with (3.13), the result (4.3) in Theorem

4.2 concerning �2p+1(q;R)-distributions with a (p+1)� (p+1)-correlation matrix

R = Diag(w�21 ; : : : ; w
�2
p ; 0) +AA

0
> 0; (4:1)

where rank(AA0) = 2. If the r.v: (Y1; : : : ; Yp+1)
0 has a Np+1(0; R)-distribution

with a one-factorial p�p-correlation matrix R� of the conditional distribution of

(Y1; : : : ; Yp)
0jYp+1 = y then R is of the type (4.1) with A as given in Lemma 4.1.

Theorem 4.1. Let be R a non-singular p � p-correlation matrix and M any

real p� q-matrix of rank 1 with the columns yj� = yj(�1; : : : ; �p)
0. With xp+1 =Pq

j=1 y
2
j , the non-centrality matrix � =MM

0 = xp+1��
0 and

..........................................................................................

.....

.

.....

.

.....

.

.....

.

.....

.

� =

�
R+ ��

0
�

�
0 1

�

the �2p(q;R;�)-density is given by

fp(x1; : : : ; xp; q;R;�) = fp+1(x1; : : : ; xp+1; q;�)=
�1
2
gr(xp+1=2)

�
:

Proof. Note that R > 0 implies � > 0. Let (Y1j ; : : : ; Yp+1j)
0 (j = 1; : : : ; q)

be independent N(0;�)-distributed column vectors and Xi =
Pq

j=1 Y
2
ij . The

conditional distribution of (Y1j ; : : : ; Ypj)
0jYp+1;j = yj is a N(yj�;R)-distribution.

With the joint density f of X1; : : : ; Xp; Yp+1;1; : : : ; Yp+1;q it follows that

(2�)�q=2 exp(�xp+1=2)fp(x1; : : : ; xp; q;R;�) = f(x1; : : : ; xp; y1; : : : ; yq):

Since the left hand side depends on y1; : : : ; yq only by xp+1 (cf: (1.2)) the asserted

result is obtained by integration over the sphere
P

j y
2
j = xp+1.

The following lemma is used for Theorem 4.2:

Lemma 4.1. In the representation of a correlation matrix R = (rij) of the type

(4:1) the matrix A = (aij) can be chosen as a (p+ 1)� 2-matrix with

ap+1;1 = 0; ap+1;2 = 1; ai;2 = ri;p+1; (i = 1; : : : ; p):

Proof. The assumption w�2i = 1 � r
2
i;p+1 for all i = 1; : : : ; p implies for all the

determinants of the 3 � 3 submatrices with row and column indices i < j � p



388 THOMAS ROYEN

the vanishing of rij � ri;p+1rj;p+1 since rank(AA0) < 3. But this would entail

rank(AA0) = 1. Thus, possibly after a suitable permutation of the �rst p rows

and columns of AA0, we assume

a
2
p;1 = 1� w

�2
p � r

2
p;p+1 6= 0; (a2p;1 < 0 admissible):

Now we obtain for the non-singular lower right 2 � 2-submatrix in AA0 the de-

composition �
a
2
p;1 + r

2
p;p+1 rp;p+1

rp;p+1 1

�
=

�
ap;1 rp;p+1

0 1

��
ap;1 0

rp;p+1 1

�
and from rank(AA0) = 2 it follows easily that A has the asserted elements and

ai1 = (ri;p � ri;p+1rp;p+1)=ap;1; (i = 1; : : : ; p� 1):

With wp+1 = 1, the (p+ 1)-column ep+1 = (0; : : : ; 0; 1)0 and the (p+ 1)� 2-

matrix B =WA = (bj`) we get from (4.1):

WRW = Ip+1 � ep+1e
0
p+1 +BB

0
; (bp+1;1 = 0; bp+1;2 = 1): (4:2)

Theorem 4.2. For a correlation matrix of the type (4:1) the �2p+1(q;R)-d.f. is

given by

Fp+1(x1; : : : ; xp+1; q;R)

=

Z 1
2
xp+1

0

Z 1

0

Z �

0

� pY
j=1

Gr(vjxj ; b
2
j1y1 + b

2
j2y2 + 2bj1bj2(y1y2)

1=2 cos(�))
�

� fr(�)gr(y1)gr(y2)d�dy1dy2; (4:3)

(vj = w
2
j=2, r = q=2; w2

j ; bj` from (4.2), fr from (3.5)).

Proof. For the density corresponding to (4.3) we have to verify

fp+1(x1; : : : ; xp+1; q;R)

=
1

2
gr

�1
2
xp+1

� Z 1

0

Z �

0

� pY
j=1

vjgr(vjxj ; b
2
j1y +

1

2
b
2
j2xp+1 + bj1bj2(2xp+1y)

1=2 cos(�))
�

� fr(�)gr(y)d�dy: (4:4)

With

�
2
j = (1� a

2
j2)

�1 (j = 1; : : : ; p; aj2 = rj;p+1); �
2
p+1 = 1

we de�ne
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........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........

......

..

......

..

......

..

......

..

....

� = Diag(�1; : : : ; �p+1)RDiag(�1; : : : ; �p+1) =

� eR+ ��
0
�

�
0 1

�

with �j = aj2�j (j = 1; : : : ; p) and the p� p-correlation matrix

eR = (erij); erij = �iai1aj1�j ; (i 6= j):

Besides, we set

� = (�i�j) with �j = x
1=2
p+1�j :

From the one-factorial eR the following quantities (j = 1; : : : ; p) are derived:

evj = 1

2
ew2
j =

1

2
(1� a

2
j1�

2
j )
�1 =

1

2

1� a
2
j2

1� a2j1 � a2j2

=
1

2
w
2
j=�

2
j = vj=�

2
j ;

ebj = ewjaj1�j = wjaj1 = bj1;

dj = �jev1=2j = aj2(vjxp+1)
1=2 = bj2

�1
2
xp+1

�1=2
:

That, indeed, eR > 0 is recognized from the following implications:

WRW > 0) Ip+1 +BB
0
> 0) I2 +B

0
B > 0

) 1 +

p+1X
j=1

b
2
j1 = 1 +

pX
j=1

eb2j = jfW eRfW j > 0:

Now we �nd with Theorem 4.1 that

fp+1(x1; : : : ; xp+1; q;R)

=

0@ pY
j=1

�
2
j

1A fp(�21x1; : : : ; �2pxp; q; eR;�)gr(xp+1=2)=2

and according to (3.13) the factor fp is given by

Z 1

0

Z �

0

� pY
j=1

evjgr(evj�2jxj ; b2j1y + 1

2
b
2
j2xp+1 + bj1bj2(2xp+1y)

1=2 cos(�))
�

� fr(�)gr(y)d�dy;

which yields (4.4).

A di�erent veri�cation of (4.4) by the L.t. is also possible.
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5. The Four-Variate Chi-Square Distribution

Any irreducible p � p-correlation matrix R = (rij) can be mapped to a

connected graph G(R) with the p vertices 1; : : : ; p and containing the edge [i; j]

i� rij 6= 0 (i 6= j). Let Gi1;:::;ip denote the class of non-singular correlation

matrices corresponding to a graph with the vertex degrees i1 � � � � � ip. In

particular for p = 4 the classes G3111 and G2211 correspond to the spanning trees.

Let Fm (m < p) denote the class of the non-singular irreduciblem-factorial p�p-
correlation matrices R and F0

m (m < p� 1) the set of the ((m + 1)-factorial) R

allowing a representation R = D +AA
0 with a diagonal D � 0 (but not D > 0)

and rank(AA0) = m. Finally let C0 be the class of 4 � 4-correlation matrices R

with at least one vanishing element rij in R�1.

For an N(0; R)-distributed r.v. (U1; : : : ; U4) we obtain for the conditional

covariances �ijjk` = Cov(Ui; Uj juk; u`) from

r
ij = �jRj�1(rij � rijr

2
k` � rikrjk � ri`rj` + rikrj`rk` + ri`rjkrk`); (i 6= j) (5:1)

the relation

�ijjk` = �jRjrij=(1 � r
2
k`); (i; j; k; ` any permutation of 1; 2; 3; 4): (5:2)

Thus, C0 corresponds to the class of N(0; R)-distributions with at least one pair

of conditionally independent components, given the complementary pair. Con-

sequently for any R 2 C0 the �24(q;R)-d.f. is given by

F4(x1; : : : ; x4; 2r;R)

= ((1� r
2
k`)

r
p
��(r)�(r � 1=2))�1

Z 1
2
xk

0

Z 1
2
x`

0

Z �

0

� Y
m=i;j

Gr(
1

2
xm=�

2
m; Qm)

�
�(yky` sin2 �)r�1 exp(�(yk + y`�2rk`(yky`)1=2 cos(�))=(1�r2k`))d�dy`dyk(5:3)

with

�
2
m = �mmjk` = 1� (r2mk + r

2
m` � 2rk`rmkrm`)=(1 � r

2
k`)

and

Qm = (�m(1� r
2
k`))

�2((rmk � rm`rk`)
2
yk + (rm` � rmkrk`)

2
y`

+ 2(rmk � rm`rk`)(rm` � rmkrk`)(yky`)
1=2 cos(�)); (m = i; j):

Let � map R to its standardized inverse, i.e. to the correlation matrix

Q = (qij) = (WRW )�1 with W
2 = Diag(r11; : : : ; rpp). It is R = �(Q) and

F�
m

def
= �(Fm) = Fm. The classi�cation in Table 5.1 of the non-singular irre-

ducible 4 � 4-correlation matrices together with the criterion in Theorem 5.1
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may be helpful for the computation of a �24(q;R)-d.f.. The classes F�
m � Fm

(m = 2; 3) are by de�nition the relative complements of F0
1 [ G3111 [ G2222 and

F0
2 [ G2211 respectively.

Table 5.1. Classi�cation of irreducible 4� 4-correlation matrices

class comment d.f. F4(x1; : : : ; x4; 2r; R)

F1

R1
0

� 4Q
j=1

Gr(vjxj ; b
2
jy)
�
gr(y)dy

F2 containing

F
0
1

R 1
2
x`

0

�Q
j 6=`

Gr

�
1
2
xj=(1�r2j`); r

2
j`y=(1�r2j`)

��
gr(y)dy

G3111 G
�
3111 = F

0
1

R1
0

�Q
j 6=`

Gr(
1
2
xj ;�r

2
j`y)

�
(x`
2y
)r=2Jr((2x`y)

1=2)gr(y)dy

(Royen (1994))

G2222 G
�
2222 � C0 For densities with R 2 G

�
2222 see (4.2) in Miller and

Sackrowitz (1967)

F
�
2 See Corollary 1.b of Theorem 3.1, Theorem 4.2,

Theorem 5.1 and Remark 1 below.

F3 containing

F
0
2 See (5.3) or Theorem 4.2

G
�
2211�F

0
2 �C0

G2211 For bivariate integrals or series belonging to G2211,

G
�
2211 and more generally for correlation matrices

R or Q corresponding to spanning trees see

Royen (1994). For densities fp with a tridiagonal

R�1 see also Blumenson and Miller (1963).

F
�
3 General series expansions (3.1) or Taylor approxima-

tion using (3.19)

In the representation of an irreducible R = D + aa
0 2 F0

1 there is exactly

one index ` with a2` =1. It follows with rij = aiaj from (5.1) that rij =0 (i 6= j,
i; j 6= `) and, besides, ri` 6= 0 because of the irreducibility of R�1. Therefore

�(F0
1 ) � G3111, and G�3111 � F0

1 is also veri�ed by (5.1). The remaining inclusions

of Table 5.1 are veri�ed in the proof of Theorem 5.1.

Remark 1. For any p � 3 the class F2 contains the class of the \formally

one-factorial" R = D + aa
0 with a non-singular inde�nite D = Diag(d1; : : : ; dp),

where, without loss of generality, dj = 1� a
2
j > 0 (j < p), and dp = 1 � a

2
p < 0.

With

w
2
j = j1� a

2
j j�1; bj = ajwj ; C = (cij) = Ip � 2(Ip +WRW )�1
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we obtain

cjk = 0; (j; k < p); cjp = bj=bp; (j < p); cpp = 1�
�
2+

p�1X
j=1

b
2
j

�
b
�2
p ; jcppj+

p�1X
j=1

c
2
jp < 1

and from (2.16) with � = 0; Y = 
; v2j = w
2
j=2 and (r)n = �(r+n)=�(r) the d.f.

Fp(x1; : : : ; xp; 2r;R)

= (vpa
2
p)
�r

1X
n=0

(r)nHr;n(vpxp)
X
(n)

c
np
pp

np!

p�1Y
j=1

c
2nj
jp

nj !
Hr;nj(vjxj):

Remark 2. If R 2 G2222 then k _R�k < 1 and the series derived from the L.t.

0@ 4Y
j=1

z
r
j

1A0@1�X
i<j

r
2
ijuiuj + j _R�ju1u2u3u4

1A�r

; (zj = (1 + 2tj)
�1
; uj = 2tjzj)

also leads to a representation of the corresponding d.f..

Remark 3. From the proof of (d) in Theorem 5.1 also the following equivalence

is recognized: R 2 G�12211 , R 2 F0
2 and

Q
i<j rij 6= 0.

To decide if any R belongs to F�
2 we de�ne the following quantities:

�k` = 1� rikrjk=rij ;

�k` = (rk` � rikrj`=rij)(rk` � ri`rjk=rij) = �`k

and the functions

hk`(x) = �k` + �k`=(x� �`k); (i; j; k; ` any permutation of 1; 2; 3; 4):

Theorem 5.1. Let R be a non-singular irreducible 4� 4-correlation matrix:

(a) R 2 F�
2 is equivalent to the condition

There is an index ` with M` =
T
k 6=`
fd > 0jhk`(d) > 0g 6= ;: (5.4)

(b) If there is an index ` with �k` > 0 for all k 6= ` (i.e. R`` is 1-factorial), then

R 2 F1 [ F�
2 .

(c) G2222 � F2.

(d) G�2211 � F0
2 � C0.

Proof. (a) If R = D + AA
0 2 F�

2 , where D > 0 is diagonal and rank(AA0) = 2,

then there exists a 3�3-submatrix R`` with
Q

i;j 6=` rij 6= 0. Solving the equations
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j(R �D)ij j = 0 for dk we obtain dk = hk`(d`). Thus, (5.4) is satis�ed. Here and

in the following (i; j; k) is any permutation of the indices di�erent from `.

Conversely, if (5.4) holds, then we can choose d = d` 6= 1 from the open set

M`. Besides, rij 6= 0 and d` 6= �`k since hk` has to be well-de�ned. With

a`1 =� (1� d`)
1=2
; ai1 = ri`=a`1;

�ij = rij � ri`rj`=a
2
`1 ( 6= 0 since d` 6= �`k); sij = sgn(�ij); s = sijsjkski

the 2nd column of A is de�ned by a`2 = 0, ai2 = sjk

p
s(j�ij�ik=�jkj)1=2, and

di(d`) = 1 � a
2
i1 � a

2
i2 = 1 � r

2
i`=(1 � d`) � �ij�ik=�jk = hi`(d`) is veri�ed. Hence

R = D +AA
0 2 F�

2 .

(b) If R 62 F1 the assertion is recognized with d` !1.

(c) If R 2 G2222 with rijrjkrk`r`i 6= 0 then for a diagonal D = I � X it can be

veri�ed that rank(R�D) = rank( _R+X) = 2 with

xi = r
2
i`=x` + r

2
ij=xj ; xj = �x`rijrjk=(ri`rk`); xk = r

2
k`=x` + r

2
jk=xj

and D > 0 can always be satis�ed by a suitable x` < 1.

(d) First, show F0
2 � C0:

If R = D+AA0 2 F0
2 with rank(AA0) = 2 then D contains at most two zeros

on its diagonal. If e.g. d1 = d2 = 0, then rank(R�D) =

rank

�
R11 R12

R21 R22 �D2

�
= 2;

which implies R22 � D2 = R21R
�1
11 R12. Thus �34j12 = 0 and R 2 C0 because

of (5.2). Now let D � 0 contain exactly three positive elements. Since F0
2 \

(G3111 [ G2211 [ G2222) = ; there is always an index ` with
Q

i;j 6=` rij 6= 0. Then

dk = hk`(d`) = 0, di; dj ; d` > 0 imply �k` = �k` = 0. Otherwise, a change of

d` would lead to D > 0, which is impossible for R 2 F0
2 . For the same reason

d` = 0, di; dj ; dk > 0 is impossible. The identity

rij(�k` � �k`�`k) = jRjrij (5:5)

implies again R 2 C0.
If R 2 G�2211 then Q = �(R) 2 G2211 with qijqjkqk` 6= 0. Formula (5.1) applied

to Q shows that rij = q
ij(qiiqjj)�1=2 6= 0 for all i 6= j and �j` = �jk = �ki =

�kj = 0. Then, also �j` = �jk = �ki = �kj = 0 because of (5.5). Hence, for every

index `, one of the expressions dj(d`) = hj`(d`) must vanish identically. Since

�j` � 0 for at most one index j 6= ` we �nd di; dk; d` > 0; dj � 0 for all su�ciently

large d` and consequently R 2 F0
2 .
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The free choice of a d` 2M` in the representation D+AA0 of a two-factorial

R can be used to minimize the spectral norm of C = Ck = eBk
eB0
k (k = 1; 2; 3;

cf: (2.11)), which accelerates the rate of convergence in (3.8) (cf. remarks after

Corollary 1b). The equation tr(C) = 0 implies always kCk < 1. Therefore a

solution d` 2M` of one of the following equations (with dj = hj`(d`); �1; �2 from

(1.4)) would be an appealing choice if it exists.

1

4

4X
j=1

1

dj
= 1 (() (�1 + �2)=2 = 1() tr(C1) = 0)

1

4

4X
j=1

djr
jj = 1 (() (1=�1 + 1=�2)=2 = 1() tr(C2) = 0)

4Y
j=1

dj = jRj (() �1�2 = 1() tr(C3) = 0) :

If R (and consequently Q) belongs to F�
3 then look for an R0 (or Q0) 2

F2 di�ering from R (or Q) only by a single element. E.g. the condition (b)

in Theorem 5.1 can always be satis�ed by increasing the absolute value of the

absolutely smallest correlation inR`` but the conditionR0 > 0 has to be observed.

If such a 2-factorial approximation to R (or Q) is available then the Taylor

approximation (3.19) is applicable besides the general expansions in (3.1).

6. Applications to Some Multivariate Multiple Comparisons

In multiple test procedures, based on union intersection tests, �-level bounds

(or \p-values") are needed for the maxima of several stochastically dependent test

statistics. Conservative bounds are frequently obtained by Bonferroni's inequal-

ity. However, for a larger number of correlated statistics, more accurate bounds

are desirable. Better conservative bounds are found by Bonferroni inequalities

of third order using three-variate marginal distributions of higher dimensional

statistics. E.g. the bounds for the multivariate maximum range test for all

pairwise comparisons of the parameter vectors of several univariate linear mod-

els with identical design matrices { originally computed by large simulations

(Royen (1989, 1990)) { can be approximated by this method. Here several three-

variate F-distributions (or studentized �2-distributions) occur. The error terms

are bounded by a sum of probabilities from four-variate F-distributions.

By studentizing formulas from Sec: 5 exact �-level bounds (p-values) are

computable for simultaneous comparisons of p = 4 stochastically dependent lin-

ear contrasts zi =
P

k 
ikxk of independent Nq(�k; �
2
�kV )-distributed random

vectors xk with covariance matrices �2�kV , known except for �2, which is esti-

mated by s2 (rank(
ik) = p, test statistics z0iV
�1
zi=(s

2
P

k 

2
ik�k); (i = 1; : : : ; p)

and correlations �ij = (
P

k 

2
ik�k

P
k 


2
jk�k)

�1=2P
k 
ik
jk�k):
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Furthermore, for investigations of the power of several competing multiple

test procedures, analytical methods are preferable to simulations if they are avail-

able. As an example the application of (3.9) to simultaneous comparisons with

a control under classical linear model assumptions is given below.

For identical correlations �ij = � we obtain from (3.9)�(3.12) with k = 2

and w2
j = 1=(1 � �), b2j = �=(1 � �), � = 1 + p�=(1 � �) = (1 + (p� 1)�)=(1 � �)

the d.f.

Fp(x1; : : : ; xp; q; �;�) = exp
�
� �

1� �

X
i�j

d
0
ij

� 1X
n=0

�
�

1� �

�n
�
Z 1

0

�X
(n)

Y
1�i�j�p

d
0nij
ij =nij !

pY
j=1

Gr+nj

�
xj

2(1��) ; djj+
�

1��y
��
gr+n(y)dy (6:1)

with r = q=2, nj = njj +
Pp

i=1 nij (nji = nij),
Pp

j=1 nj = 2n,

D = (dij) =
1

2
(1� �)R�1�R�1

=
1

2
(1� �)�1

�
I � �(1 + (p� 1)�)�1110

�
�
�
I � �(1 + (p� 1)�)�1110

�
;

1 = (1; : : : ; 1)0 and d
0
ij =

�
djj ; i = j,

2dij ; i 6= j:

The coe�cients

d(n1; : : : ; np) =
X

njj+n:j=nj

Y
1�i�j�p

d
0nij
ij =nij !

of the
Qp

j=1Gr+nj are recursively computed as the coe�cients of the polynomials

(
P

i�j d
0
ijxixj)

n
=n!. If rank(�) = 1, � = (�i�j), then (6.1) is simpli�ed according

to (3.13).

Now let p+1 independent observation vectors yi = X�i+ei (i = 0; : : : ; p) be

given with identical n�q-design matrices X of rank q and N(0; �2In)-distributed

columns ei. Furthermore let s2� be the usual �
2
�
2
�=�-distributed pooled estimate

of �2 with � = (p+1)(n� q) degrees of freedom. For the tests of the hypotheses

Hi : �i = �0 against H i : �i 6= �0 (i = 1; : : : ; p) at the simultaneous level � we

use the test statistics �2�2i =s
2
� =

1

2
(yi � y0)

0
X(X 0

X)�1X 0(yi � y0)=s
2
� :

With the solution c = c(�; p; q = 2r; �; �) of the equationZ 1

0

Z 1

0

�
Gr

�
cz

2(1 � �)
;

�

1� �
y

��p

gr(y)f�(z)dydz = 1� �;

where f�(z) = 1

2
�(�z=2)�=2�1 exp (��z=2)=�(�=2) is the density of s2�=�

2, we

�nd for the probability of at least one rejection with � = 1=2 the formula
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1� exp

0@�X
i�j

d
0
ij

1A
�

1X
n=0

Z 1

0

Z 1

0

�X
(n)

Y
i�j

d
0nij
ij =nij !�

pY
j=1

Gr+nj (cz; djj+y)
�
gr+n(y)f�(z)dydz; (6:2)

(dij) =

�
I � 1

p+ 1
110
�
�

�
I � 1

p+ 1
110
�
;

� = (�ij) with �ij =
1

2
(�i � �0)

0
X
0
X(�j � �0)=�

2
:

Similar formulas are available for further probabilities related to power.

For large values of � the double integrals over
Q

j Gr+nj in (6.2) can also be

approximated by the asymptotic expansion

�
1 + �

�1 d
2

dz
2 + �

�2
�
4

3

d
3

dz3
+

1

2

d
4

dz
4

�
+ �

�3
�
2
d
4

dz
4 +

4

3

d
5

dz
5 +

1

6

d
6

dz
6

��
Z 1

0

� pY
j=1

Gr+nj (cz; djj + y)
�
gr+n(y)dy

���
z=1

+ O(��4);

obtained from the expectation over a Taylor polynomial of powers of Z � 1 with

a �2�=�-distributed r.v. Z. At least the term of order ��1 is easily computed by

numerical di�erentiation.
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