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ON SOME CENTRAL AND NON-CENTRAL MULTIVARIATE
CHI-SQUARE DISTRIBUTIONS

Thomas Royen

Fachhochschule Bingen

Abstract. Let R be a non-singular m-factorial correlation matrix, i.e. R = D + AA’
with a diagonal matrix D > 0 and a not necessarily definite matrix AA’ of the minimal
possible rank m. From an expression for the general non-central multivariate x2-
distribution function with the accompanying correlation matrix R some simpler cases
are derived: The p-variate central y>-distribution with g degrees of freedom is given
as a mixture with regard to a Wishart W, (q, I, )-distribution. For m = 2 several
integral and series representations are derived including the limit case with exactly
one zero on the diagonal of D. The two-factorial representation is applied to the
four-variate x?-distribution. Besides, it is used for Taylor approximations if m > 2.
Furthermore, the non-central distribution function is given for m = 1 and applied to
power calculations for some multivariate multiple comparisons with a control.

Key words and phrases: Multivariate chi-square distribution, multivariate gamma
distribution, multivariate Rayleigh distribution, multivariate multiple comparisons
with a control, power.

1. Introduction and Notation

The following notations are used throughout the paper: The spectral norm
of any p x p-matrix A = (a;;) is denoted by [|A||, |A| is the determinant of A, 4 is
defined by A-Diag(a1,...,a,,), A > 0 means positive definiteness, etr(A) stands
for exp(trace(4)) and (a) = A™'. A p X p-unit matrix is always denoted by I,
or I. The Fourier transform (F.t.) or Laplace transform (L.t.) of a function f is
denoted by f . The notation },) means a summation over all decompositions
of a non-negative number n = Y n; (or Y n;;) with nonnegative integers n;,
i=1,...,p (or n;;,1 <i < j < p). Furthermore n; = Y7 n;; with n;; =
n;;. Formulas from the handbook of mathematical functions by Abramowitz and
Stegun (1965) are cited by “A.S.” and their number.

Let R = (r;;) denote a p x p-correlation matrix and ¥ a p x g-matrix with ¢
independent N (u;, R)-distributed columns. The joint distribution of the diago-
nal elements X; of the Wishart matrix YY" is called the p-dimensional chi-square
distribution in the sense of Krishnamoorthy and Parthasarathy (1951) with g de-
grees of freedom, the accompanying correlation matrix R and the non-centrality
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matrix A = MM', where M is the expectation E(Y') (x; (¢, R, A)-distribution).
It is comparatively easy to derive general representations of the corresponding
distribution function (d.f.)

F(z1,...,2p;¢, R, A) =Pr{X; <uy,..., X, <z,} (1.1)

or of the density (p.d.) f, from the characteristic function (ch.f.)

Folts, .. tyiq, Ry A) = |I — 2iRT|™etr(iT(I — 2iRT)™'A),  (1.2)

T = Diag(ty,...,t,), (e.g. Jensen (1969), Sec. 2).

In the central case A = 0 is omitted in the above notations. For general formulas
see Blumenson and Miller (1963), Miller (1964), Jensen (1970), Khatri, Krishna-
iah and Sen (1977) and Royen (1991b, 1992). However, the general expressions
are difficult to compute, and it is the aim of this paper to derive from the general
formula in Theorem 3.1 some simpler cases, where the computation requires no
more than series of uni- or bi-variate integrals and powers of linear or quadratic
forms. The present paper was motivated mainly by the work at programs for
certain multivariate multiple test procedures (cf. Sec. 6).

The following definition is fundamental:

Definition 1.1. Let R be a non-singular p X p-correlation matrix. R is called
m-~factorial if m is the smallest integer allowing a representation R = D + AA’
with a diagonal D > 0 and a not necessarily definite matrix AA’ of rank m.

With D = W2 note that
WRW =1,+ BB/, (1.3)

where the p X m-matrix B of rank m has without loss of generality pairwise
orthogonal columns b,,, some of them possibly imaginary. The char. roots 8, # 1
of I, + BB’ coincide with the m diagonal elements

By =1+b,b,>0 (1.4)

of I,, + B'B.

For an m-factorial R the d.f. F,(-;¢, R) is given in Corollary la of Theorem
3.1 as a mixture with regard to a Wishart W,,(q, I,,)-distribution. The one-
factorial case was treated in Royen (1991a, b). For the two-factorial case several
representations of F, are given in Corollary 1b of Theorem 3.1. Together with the
limit case with only p — 1 positive elements in D (cf. Theorem 4.2) many four-
variate x?-distributions are covered by these correlation matrices (cf. Sec.5).
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If there exists a “good” approximation of R by an m-factorial R, (practically
m = 1 or m = 2) then a Taylor polynomial approximation with R — R, (or
some transformed deviations) can be derived for the d.f., which generalizes the
corresponding approach for the multivariate normal distribution in Royen (1987).
This method is described concisely at the end of Section 3.

For the non-central case with a one-factorial R and any non-centrality matrix
A a comparatively simple expansion is found in Corollary 2a of Theorem 3.1,
which is simplified further if rank(A) = 1.

2. Some Preliminaries
Let g,(z) be the gamma density z"~'exp(—z)/I'(r) and G,.(z) the corre-
sponding d.f.. We need the functions

00(0) = o genla) = I (@)g,(0) ] ( e 1) (2.1)

n

and

() = (1)"L D 20)g, () / ( e 1) (22)

n

with the generalized Laguerre polynomials L'~ (A.S.22.11.6).

An always absolutely convergent expansion for central multivariate x?-proba-
bilities of (bounded or unbounded) rectangular regions was given in Royen (1991
b) using the functions

H,(z) = /0 () dE. (2.3)
For n — oo its order is

H, () = O(n="/2711%) (2.4)

with an O-constant depending on r and z. Also,

Gala) = | "9 (€)de = Ofn /21 (2.5)

with an O-constant only depending on 7.
With any scale factors v; = w7/2 we define for any real numbers t;, j =

1,...,p:
zj = (L—it;/v;)™", wu; =1—2z; = (—it;/v;)z,

w; = z; —u; = exp(ig;), ¢; = 2arctan(t;/v;),

and the diagonal matrices T, W,V = W?/2, Z, U, with the corresponding ele-
ments t;,w;,v;, 2j,u; and w;. With v = 1, x > 0 and any real or complex y we

(2.6)

obtain, by Fourier transform, the relations
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fr,n(tay) ‘ fr,n(xay)

2" exp(—yu) | grin(@,y) (2.7a)
Zu" exp(—yu) | g1, (2, y) (2.7b)
z'w" exp(—yu) | hyn(x,y) (2.7c)

and

Fr,n(xay) :/OI fr,n(£ay)d£ =

Gr-l—n(xay) = e—y Z Gr—i—m—i—n(x)ym/m!a (283)
m=0

G\(z,y) = e Y G (@)y™ fml = 3 G () (—y)™ /ml, (2.8b)
m=0 m=0

H,,(z,y)=¢" i Hyppon(x)y™/m! = e /2 i H, in(z)(y/2)™/ml. (2.8¢c)

m=0 m=0

F,.(z) is written instead of F, ,(z,0). Since the functions G,,(z,y), (v € R)
are the most important elements in the formulas of the following sections we list
some further representations, as follows:

2 G (@) (=)™ fmd = e V2 3 H, () (y/2)™ ! (2.92)

m=0

— e / R () (©)dE = VS oF(r + 1+ 1 2) g 415 (2) (2.9b)

m=0

= ((L'/7r)1/2/_11 Groipp((1=c*)z) exp(—(y—cvz)?)de  (r>1/2;Go(z)=1) (2.9¢)

BV +VE) ~ BT~ VED) e 5 (VD) (2 ),
if r=1/2,3/2,..., - (2.9d)

e T r m ycos(r cos((r—1
v(g)yr/2L [ ety ) exp(2,/@y cos())dg + 6(x — y),

1, y <,
if r:0,1,2,...;y>0;(5(x—y):{1/2, y=ux, (2.9¢)
L 0, Yy > .

It should be noted that the spherical Bessel functions are elementary. The for-
mulas (2.9a) are verified by characteristic functions and the remaining ones by
A.S5.9.6.47, A.S.9.6.18/19, A.S.9.6.33 and A.S.6.5.29.

Now several expressions are summarized for the ch.f. (1.2) with an m-factorial
R. For this we define with B from (1.3) and 3, from (1.4) the following quantities:
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o B, ifk=1, (2.10a)
_B:lﬁ::{BDmgﬂfﬂw.w@j”% if k=2 (2.10b)
BDiag((1 + 3)~Y2,...,(1+B,)"Y?), ifk=3, (2.10¢c)
WRW —1, if k=1,
CZBBH:{L4WRW)2 if k=2, (2.11)
I—2(I+WRW)™, ifk=a3,
LW AW, ifk=1
— 2 ) 9
D‘{%u—cmVAWU—cm if k=2,3, (2.12)
1, ifk=1,2, . (1, ifk=1,2,
az{ua if k= 3, ‘“‘{Uz if k= 3, (2.13)
1, if k=1, . (L if k=1,
€= { I —C|, ifk=2,3, €= {c”etr(—aB’DB), if k=23, (2.14)

and with U, Z,Q from (2.6):

—U, ifk=1,
Y:{Z, if k=2, (2.15)
Q, ifk=3.

Lemma 2.1. For an m-factorial correlation matriz R the ch.f. in (1.2) with
q = 2r is given by

Fltrs o otyig, R A) =
cfOﬁ%)%d%ﬂM@—CYﬁﬁﬂwuﬁ—Eﬂﬁ”*éﬂDY@%

j=1

j k=1,2,3. (2.16)
In particular for m =1, B = b the last factor in (2.16) is simplified to

exp(a(l +b'Ub)"'W'Y DYD) (2.17)
and
L, — CY|™ = |L, + bU| ™ = (1 + 6'Ub) . (2.18)
If rank(C) = 2 then
1L, = CY | =1= cjy; + > (ciici; — 6)viy;- (2.19)
J

i<j
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Proof of Lemma 2.1. The formulas for the central case are from Royen
(1991b). With T' = Diag(ty,...,t,) we find

1
tr(iT(I — 2iRT) *A) = §tr(2iTW’2(I — WRW2iTW ) "'WAW)
=tr(I-Z")YI—-(IT+C)I—-Z")"'Dy)
=tr(Z-10)(Z-(I+C\)(Z-1))"Dy)
= —tr(U(I + C,U)""'Dy) (2.20)
With C, = BB' and (I, + BB'U)™'B = B(I,, + B'UB)™! it follows that the
second term in (2.21) is equal to tr((Z,, + B'UB)"'B'UD,UB).
To show the second formula with Y = Z we start from (2.20) withU =1 -2
and Cy, =T — (WRW)™'. Tt is
—tr((I — Z)(I + WRW —I)(I — Z))™'Dy)
=—tr((I — Z)(WRW — (WRW —1)Z)'D,)
=—tr((I — CoZ — (WRW)™'Z))I — C,Z) " (WRW)™'Dy)
= — tr(BB'DZ) — tI'(DQ) + tr(Z(I - CQZ)71D2)
= — tr(B'D2B) — tr(UD2) + tr(Z([ — 022)7102ZD2).
With C, = B, B, and EZ(ImN— EQZE;V)_I = (I, — B,B,Z)"'B, the last trace is
equal to tr((I,, — B5ZBsy) ' ByZ DyZ Bs).
In a similar way the formula with Y =  is shown, starting again from (2.20)

with 2U =1 — Q.

In the proof of Theorem 3.1 we have to justify a change of the order of
integration over RY and {S,,x,, > 0} using the following lemma:

Lemma 2.2. Let S be W,,(2r, I,,)-distributed (r > 1), b',... 0" the rows of
the matriz B in (1.3) and Bi,..., B, the numbers from (1.4). Then, for any

non-negative numbers x;, d;; and any n; € Ny, 3 =1,...,p, the expectation
L 1. .
E | IT grsn, (25:ds; + S0/ S0) (2.22)
j=1

18 bounded by ]_[ﬁ”<1 B

Proof. Set S/2 = Y'/2CY'/? where Y = Diag(V,...,Y,,) has independent
gamma-distributed elements and C' with ¢, = 1 is distributed independently of
Y. From the F.t. (2.7c) we obtain

r—14n 1

hrns(@)] < B(—5—,3)/Cm) <1 (r+n>3/2),



MULTIVARIATE CHI-SQUARE DISTRIBUTIONS 379

and from (2.2), A.S.22.14.13 the bound |h; x(
second series in (2.9a), b),b, = >_¥_, bj,bj, =0,
that (2.22) is bounded by

exp(— /R E(ZZH| A+ PV POV )

¥ ko(k

X H eXp(—QbLbuyu)gr(yu)dyu (2.23)

1. Now it follows with the

o)l
1 <v<m,and § = Y dj

<
S p

with the expectation F referring to a possibly singular distribution of C. After
the substitution y, = (1 +b,b,/2)y, the inner sum is written as

k
1 (&1
[Z |5+ PY'V2CY 2| (2.24)
j=1
with _ s
bjp = bju(2+b,b,) 717, |blb] = |blbl/(2+bb,) <1 (2.25)

since 8, = 1 +b),b, > 0. For a pure imaginary or real B it is

o1 ~ .y moo_
> 5+ VY'POY'VPH | <64 |b,b,ly, (2.26)

j=1 n=1

since Y'/2CY'/? > 0 and E’ug,, =0, (u # v). If B contains real and imagi-
nary columns the quadratic form @Q; = BYY2CYY2h can be written as Q; =
Qi1 — Qja2 + 2iQ;12 with real forms. Then Q11 Q)20 — Q?lg > 0 follows from
YY2CY1/? > 0 and therefore |Q;| < Qj11 + Qj22, which leads again to the bound
(2.26).

Now it follows from (2.24), (2.25) and (2.26) that (2.23) is bounded by

H (1+ b' _r/o exp(|b b Y1) 90 (Y)Y, = H ’B_
pn=1

Bu<1

3. The Main Results

Even for the central general x2(g, R)-density “simple” formulas are only avail-
able in a symbolic form (cf. also Blumenson and Miller (1963)). With the oper-
ator

0.4 (0,
07! = Diag (5" (50 ).
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any scale factors v; = w?/2 and C' = I, — (WRW)~", the series derived from the
ch.f. (2.16) with A =0 and k£ = 2 can be written as

p T p
ﬁ@h”w%ﬂan4WRW¢r@lﬁg%%%ﬂgyg—owawrﬂxgk

Jj=1 Jj=1
Using the formula for Laplace transforms of zonal polynomials (Johnson and Kotz
(1972), Chap. 38, Sec.4) the operator is easily shown to coincide with the gen-
eralized hypergeometric function |Fy(r; CVO™1), (2r > p). Zonal polynomials
however do not seem to be useful for a direct representation of the x2(2r, R)-
distribution. With the central functions F, ,(x) in (2.8), ¢ from (2.14) and all
principal minor arrays C; of C' = C}, in (2.11) with row and column indices
jeJCA{l,...,p}, (J #0), we have the following expansions for the d.f.:

14

Fp(xl,...,wp;%,R):c’"ZZc(nl,...,nP, H vy (0525), (3.1)
n=0 (n)

j=1

sh n 1, lszl,
c(nl,...,np;r) = WZF(T_FZTLJ H —|CJ J/nJa 5_{_1 ifk=29.3
7 9 b )

where the last sum extends over the n; with 37, ;n; =mn;, j =1,...,p. The
series with Laguerre polynomials (f,., = g,(ffr)n, cf. (2.1), (2.5)) are absolutely
convergent if ||C|| < 1. This can always be achieved by suitable factors v;. The
remaining series are always absolutely convergent. For more details see Royen
(1991b) and (1992).

For the actual computation of probabilities simpler formulas are desirable.
For the integration over a density separated arguments z; are preferable as given
in the following, not necessarily real, mixture representation of F).

With the notations (2.10)—(2.15) we define the polynomials P(Y) by

P(Y:B,D - e~
&J—%éfl:a%d@f4ﬂﬁ”CYDY%:Mﬁ«BUm—BWQﬂ”BYDY)
|I, — BB'Y|
and

_ [ pP/nl, fy =-U _ N
‘%_{amﬂypmpwm ﬁY:ZY:Q}_EhAM“”N“H%

With the functions F), from (2.8) and the diagonal elements d;; of D in
(2.12) the following theorem holds:
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Theorem 3.1. The d.f. of the x5 (q, R, A)-distribution with an m-factorial R =
WY1, + BB YW ! is given by

F,(x1,...,2p;q, R, A)
P

i 1 ,

=Y B(Y auWisoo o, N,) TT P, (v, s + SV Satrmt? ) (32
n=0 ]:1
(r = q/2,v; = wj/2)

with the expectations referring to the W, (2(r + n), I,,)-distributed Wishart ma-
trices Sy(rin)-

Corollary 1a.

L 1. .
Fp(xl,...,xp;q,R) =F (H Gr(’UjfL'j,EbJqu] )) . (33)
If m = 2 we write
1.
SV S = b3 Y1 + 05,5 + 2bj,bj5(Y,Y2)'/? cos @, (3.4)
where the independent random variables Y; and ® have the densities g,.(y;) and
fr(¢) = (sin” )" /B(1/2,r = 1/2), (0<$<m, r>1). (3.5)

Corollary 1b. If R is two-factorial then the central d.f. F is given by any of
the following representations (3.6) — (3.8):

i (T L n> / / 2n > H Grn; (025, U140 + Bloy2) (Bnbj)™ /! )

n=0 2n) ] 1

X Grin (Y1) Gr4n (Y2)dy1dys. (3.6)

With C = B(Diag(f:,0:)) ' B’, tr(C) < 1 (always satisfied if at least one
ﬂu =1 + b;bu < ].) and Vi = —(Ciiij - C?j)? ('L ?é ])

(B132) "(T(r)) iF(T +n)/(1 = tr(C))" (3.7)

< [(Z( X I /nw)HG% (0s5, ¢339/ (1 = t1(C))) ) grin(w)dy.

(2n) n.j=n; i<j

p

chZc(nl,...,np, H vy (0525) (3.8)

n=0 (n) j=1
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with
1, if F,, =G\, k=1,
c=cp = (/BIBQ)ila ) if Fr,n = Gr—i—na k= 23
(L+8)(+B)/4) i Frp=H,y, k=3,

and

s smyir) = 0D X Tt g0t Ym) TT 27/

Nn.;=n; ISZS]SP
i —ij, lszl, N . - . _ B
K {ij, ifh =23 "unENEEH) C=ley)fom (211)

For the absolute convergence of (3.8) ||B'B|| < 1 is supposed only if F,., =
G\, Also, the inequalities ||C5]| < [|Cill, (k = 1,2) and ||Cs|| < 1 hold with
any scale matrix W. Since max(e™" [[}_; G,1n,; (z;)| X n; = n) — 0 for every
e > 0 the condition ||Cy|| < 1 is not necessary for the convergence of (3.8) with
Fy = G,1n (Royen (1991b, 1992)).

Corollary 2a. If R=W (I, + bb')W ! is one-factorial then
F,(z1,...,2p;,q, R, A)

[e%e] %) p
=d’ Z/O (Z d(nay. .., p) [T Fr, (05w, dj; + b??/)b?j)gr+n(y)d?/ (3.9)
n=0

(2n) j=1
with
1, ifk=1,
JF = dz:{ (3.10)
exp(—ab'Db), if k=2,3 (a from (2.13), D = (d;;) from (2.12)),
%b’WAWb, ifk=1,
ab' Db = { 15 20'WAWD, ifk=2 (B=1+10D) (3.11)
(14 p5) 2WAWD, if k=3,
and

. di, ifi=j
= a" i Al = 4 D ’
dmecom) = " S [ dg/mits d {2%, DAL
n.jt+nji=n; 1<i<j<p
Jj=1,....,p
For identical correlations see (6.1). In particular with A = (6;0;), D = (d;d;)
and f,. from (3.5) we obtain
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Corollary 2b. If R is one-factorial and rank(A) =1 then
F,(z1,...,2p,q, R, A)

- /000/ HG (vj25,0;82 + b2y + 2b;0; /555 cos($)) £ () depg, (y)dy ~ (3.13)

—d*z / 2n ZHFM nyﬁwd2'+b??/)(bjdj)"j/nj!)9r+n(y)dy- (3.14)

(2n) j=1

Proof of Theorem 3.1. The L.t. of

(H ngrJrn] (ij]7d]] + b]SbJ )) (3.15)
Jj=1
is given by
2 1
(H Z;‘+n eXp(—djjuj)) FE <etr(—§SB'UB)> (316)
Jj=1

(W (v, Iy)-distributed S, v = 2(r +n), z; = (1 + t;/v;) 1 u; =1 — z;).

The change of the order of integration is justified by Lemma 2.2 for all ¢; > 0.
Since Re(I,, + B'UB) > 0 (cf. Anderson (1984), Sec. 7.3, (11)) the expectation
in (3.16) is equal to

I, + BUB|™/* = |I, + BB'U|™"/>.

Since u", w™ are finite linear combinations of powers of z, the identity of
(3.15), (3.16) also holds if the pairs (g,,,;2""") are replaced by (g,(fr)n;z’"u") or
(Bryns; 2" w™).

For ¢ = 2r > 1 it follows from the central case in (2.16) with k& = 3 that
the F.t. f,(-;¢q, R) belongs to the Hilbert space £2(R?) since ||B;Bj|| < 1. This
also holds for f,(-;¢q, R, A) since the exponent tr(—iT(I — 2iRT)~'A) in (1.2)
is bounded according to Lemma 2.1. After having expanded the last factor of
(2.16) into the exponential series it follows with the corresponding partial sums
S, that [|s, — f,||» = 0 and

[ (5o = fddol < ([ dz) llsn = £yl 0

for any bounded region A C RE. In particular with rectangular regions A =
X%_1(0,7;) this entails (3.2).
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Proof of Corollary 1b. From (3.3), (3.4), (3.5) we obtain with the identities

Go(m, M+ As) = exp(—A2) Y Grpn(@, M)A /0L, (As = 2bj1bj2 (y12)"/? cos(9)),

I'(r)D(n + 1/2)
T(1/2)T(r +n)

| (eost 9y 1,000 =

and
I'(r)'(n+1/2)

PR T T
= <T B 7114_ n) )T (r +n)) 2(yryz) "

the series (3.6). Because of |G,;,(z,0)| < exp(max(0,—9))G,n(z),(d € R, cf.
A.8.9.1.62) and max(e " [[}_, Grin;(x;)| X n; = n) — 0 for every € > 0, the
series (3.6) is majorized by

r—1+n n ’ —r—n
> ( n >(6Z biibie)™™ T[] (1 +0),b,)7" "
J b,

n b, <0

The series (3.7) follows by inversion from the L.t.

p

(11

j=1

ir-cy| " =15 ( ‘}f”) Q(1-1) "

(L= chj?/j, Q= Z'Yijyiyja Y =2)
J

i<j
with
p s o~ P s

ALz =07 = [ (A1) expyllgrin)dy (Re(L) < 1)

j=1

and it is majorized by

r—1+n n —r—n

> ( n )(522m-|> (1= % )
n i<j cj; >0

Finally (3.8) follows from the general expansion (3.1) with (2.19).

Proof of Corollary 2a and 2b. The identity (3.9) follows from Lemma
2.1 with m = 1 and (2.18). In particular with d;; = d;d; and VY DYb =
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B b;d;y;)* we obtain (3.14). The identity of (3.13) with (3.14) is verified
j=1Y%Y;j
with F, , = Gﬁffn by integration over ¢ using the relation

o0

Gr(xa )‘1 + )\2) = Z GE‘Z-)n((I;a )\1)(_)‘2)n/n!’ (>\2 = ijéj\/@cos(qﬁ))

n=0
or directly by the L.t. of the corresponding density.
If R is not m-factorial (m < 2) then an approximation of R by an m-factorial
Ry, may be useful. Let H = (h;;) be the difference C' — Cj of the corresponding
matrices C' and Cj with rank(Cy) = m (e.g. Co = ByB, =W RW, — I, C =
WoRWy — I, cf. (2.11)). The Taylor polynomial T5(H; Cy) of 2nd degree of the
Taylor expansion with center Cy of the central ch.f. (2.16) is given by

- 1
’ <H Zg) <|I_C°Y|_T+T|I = GoY |7 L+Q)+ (T; ) II—COYI""—QL2>
j=1

(3.17)
with )
L= Z (—1)i+k|(1 - COY)i,k|hikyka
ik=1
Q=- Z (=) NI = CoY )ijnel (hahje — hachjr ) yrye,
i<j,k<t

where (I — CoY);j ¢ is obtained from I — CyY by deleting the rows 4, j and the
columns k,¢. The inversion of (3.17), followed by integration, is a finite linear
combination of terms of the type

P 1 . .
E (H F, v, (vojzj, Eb{)Sz(,,Jrn)b{) )) , (n=0,1,2), (3.18)

=1

which is expected to provide a good approximation to the d.f. F,(-;q, R) if the
deviations h;; are sufficiently small. For the corresponding Taylor expansion of
the multivariate normal distribution see Royen (1987).

If there is only one element h;; = hj; # 0 (cf. end of Sec. 5) then the formal
Taylor expansion of f is

u > L(r +n1 +ny) LmQm
- , 1
¢ (]1;[1 z]) PP T(r)nalny! |1 — CoY|rrmine (3.19)

N=0n1+4+2ns=N

with simplified terms L and (). For approximations only Taylor polynomials of a
low degree are applied with small values of |h;;|. Nevertheless, conditions for the
convergence of the inverted expansions are established in the following theorem.
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Theorem 3.2. Let R and Ry be non-singular p X p-correlation matrices where
Ry = Wy % + AA" is m-factorial with m < p — 1. Furthermore let be T =
Diag(ty,...,t,) with real t;, Z = (I, — 2iTWy>) "t and U =1 — Z.

(a) Let be K = R— Ry, C = WoRW, — I, Cy = WyR Wy — I and H = WKW,
If Ry — K > 0, then the ch.f. f,(ty,... ty;q,R) = ( Y1 Z)) I, + CU|™" has a
uniformly abs. convergent erpansion

p [oe)
(H z?) |1, + CoU|™" > 4pu(H; U, Co)
j=1 n=0

with polynomials 1, (H) of degree m and it holds true for the functions sy,
obtained by Fourier inversion of the partial sums, that

lsv — follo =0 and |sy — fpllit =0, (g =2r>1). (3.20)

(b) Let be K = Ral - R_l, c=1- (W()RWO)_I, Cg =1- (W()R()Wg)_l and
H=W,'KW;"'. If Ry' + K > 0, then f, has the uniformly abs. convergent
expansion

p [e%e]
I —C|" (H z;> 11— CoZ|™" Y u(—H; Z,—Cy)
j=1 n=0

and (3.20) holds again.

Proof. Only (b) is shown, since the proof of (a) is very similar.

We have | — CZ| = I — CoZ| |I — H(Z™' — Cy)™'| = |I — CoZ] |I —
K(Ry' — 2iT)~!|. For any char. root A # 0 of K(Ry"' — 2iT)~" we obtain with
A7t = pexp(id) the equation

|Ry"' — pcos(¢p)K — i(2T + psin(¢)K)| = 0. (3.21)

Because R, ' = K > 0 there exists an ¢ > 0 with R,' — pcos(¢)K > 0 for all
p<(l—g) . Thus, p>(1—¢)'in (3.21) and H(Z ' — Cy) ! has a spectral
radius |A|max < 1.

With Cy = I — 2(I + WoRoW,)™" (cf. (2.11)) it follows from (2.16) with
A =0 that |[I — Co| |[I — CoZ|™" = I — Cs| |I — C582)~*. Since [|C59Q]] < ||Cs|| <
L |I — CoZ|™ " is uniformly bounded and, besides, we have [, [Tj_, |2;|*"dt; <
oo for r > 1/2. Thus, by Plancherel’s theorem, we get ||sy — fpll2 — 0 and
J4lsn = fpldz — 0 by Cauchy’s inequality for any bounded A C R%. Now, for
a sufficiently small ¢, ||exp(e > z;/2)(sy — fp)|l2 = 0 can be shown as before,
replacing T by T — (i/2)el and Z=' by Z7' = I — eW; > — 2iTW; >, Then
Cauchy’s inequality implies ||sy — f,|ls — 0.
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4. Central Multivariate Chi-Square Distributions Related to Non-
Central Ones with One-Factorial Correlation Matrices

Miller and Sackrowitz (1967) have found a close relation between a x> (q, R, A)
-distribution with a non-centrality matrix A = guu' of rank 1 and a central (p+1)-
dimensional chi-square distribution. A similar relation is given here in Theorem
4.1. The latter provides, in conjunction with (3.13), the result (4.3) in Theorem
4.2 concerning x>, (¢, R)-distributions with a (p+1) x (p+ 1)-correlation matrix

R = Diag(w, %, ...,w,?,0) + AA" > 0, (4.1)

where rank(AA’) = 2. If the r.v. (Y3,...,Y,41)" has a N,;;(0, R)-distribution
with a one-factorial p X p-correlation matrix R* of the conditional distribution of
(Y1,...,Y,) Y11 =y then R is of the type (4.1) with A as given in Lemma 4.1.

Theorem 4.1. Let be R a non-singular p x p-correlation matriz and M any
real p x g-matriz of rank 1 with the columns yip = y;(f1, ..., p1p) . With £, =
i1 yJZ-, the non-centrality matric A = MM' =z, pupu’ and

the x;(q, R, A)-density is given by

1
fp($1a- . 7$p;qaR7 A) = fp+1(x17 R 7$p+1;Q7Z)/(_gr($p+l/2))'

2
Proof. Note that R > 0 implies ¥ > 0. Let (Yy;,...,Yp11;) (G = 1,...,¢)
be independent N (0, X)-distributed column vectors and X; = 7, Y;7. The

conditional distribution of (Y7;,...,Y,;) |Y,+1,; = y; is a N(y;u, R)-distribution.
With the joint density f of X;,...,X,,Y,111,...,Y,41,, it follows that

(271.)711/2 exp(_xp+1/2)fp($17 s 7$p; qaRa A) = f(xla e 7$p7y17 e 7yq)'

Since the left hand side depends on yy, ..., y, only by z,.1 (cf. (1.2)) the asserted
result is obtained by integration over the sphere }_, yJ2 =Tpi.
The following lemma, is used for Theorem 4.2:

Lemma 4.1. In the representation of a correlation matriz R = (r;;) of the type
(4.1) the matriz A = (a;;) can be chosen as a (p + 1) x 2-matriz with

Gpy1,1 = 0, Qpt1,2 = I, G2 = Tipt1, (Z =1,... ap)'

Proof. The assumption w;? =1 — rme for all 2 = 1,...,p implies for all the

determinants of the 3 x 3 submatrices with row and column indices 7 < 7 < p
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the vanishing of r;; — 7,417 41 since rank(AA’) < 3. But this would entail
rank(AA’) = 1. Thus, possibly after a suitable permutation of the first p rows
and columns of AA', we assume

ary=1—w?*—7r2 . #0, (a5, <0 admissible).

Now we obtain for the non-singular lower right 2 x 2-submatrix in AA' the de-
composition

<a12)71 oot Topel ) _ (ap,l Tp,p+1 > ( p,1 0)
Tp.p+1 1 0 1 Topi1 1
and from rank(AA’) = 2 it follows easily that A has the asserted elements and

;1 = (T’LP — ri7p+17"p7p+1)/ap71, (’l = 1, ey D — 1)

With w,,; = 1, the (p + 1)-column e,; = (0,...,0,1)" and the (p + 1) x 2-
matrix B = WA = (bj;) we get from (4.1):

WRW = p+1l — ep+16;+1 + BBIa (bp+1,1 = 07 bp+1,2 = 1)' (4'2)

Theorem 4.2. For a correlation matriz of the type (4.1) the x;,,(q, R)-d.f. is
given by

Fp+1($17"'7$l)+1;q’R)
FTp41 poo pm P
:/0 /0 /0 (H Gr(Ujijab§1yl+b§292+2bj1bj2(ylyz)1/2cos(¢)))
j=1

X fr(6)9: (Y1) g (y2)dpdy, dys, (4.3)
(v; = w3 /2, r = q/2,w],bj, from (4.2), f, from (3.5)).

Proof. For the density corresponding to (4.3) we have to verify

fp+1(xla-"axp+1;qaR)

1 1 [e%e] T p 1
= §9r(§$p+1) /0 /0 (H 0,9, (v, b?ﬂ/ + Eb?2$p+l + bj1bj2(2=’13p+1y)1/2 COS(¢)))
j=1
X fr(9)g-(y)dedy. (4.4)
With
0'? = (1-0,?2)_1 (jzl,...,p, Cljg :7"j7p+1), 012)+1 =1
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: : R+ pp' i
¥ = Diag(oy,...,0,41)RDiag(oy,...,0,41) = <———IL—‘,HP—JI—K—1L—>
with 1; = aj0; (j =1,...,p) and the p x p-correlation matrix
R= (ﬁ‘j), Tij = 001110}, (i # 4)-

Besides, we set

From the one-factorial R the following quantities (5 = 1,...,p) are derived:

1., 1 _
v; = 5111]2 =-(1-d}o}) " =

2

1 —a? 1
Jj2 27 2 2
7——111-/0-—1)-/0-
— g2 2 Jrg 11750

l—aj —aj, 2

N | =

bj = wjajlaj = wjajl = bjla

. 1 1/2
d; = 51’”]1'/2 = a2 (V1) = j2(§$p+1) .

That, indeed, R>0is recognized from the following implications:

WRW >0=1,,,+BB >0=1,+B'B>0

p+1 P P
= 14) b =14+) b = [WRW|>0.
j=1 j=1

Now we find with Theorem 4.1 that

fp+1(x17 e axp+1;QaR)

p
= (H 0]2) fp(o—%xla T Uixp; q, Ra A).477‘(*/11‘104-1/2)/2
j=1
and according to (3.13) the factor f, is given by

o0 s p _ _ 1
/0 /0 (H U9, (0,052, 05,y + §b§2$p+1 + bjibja (2, 11y)" COS(¢)))
J=1
x fr(9)gr(y)dody,

which yields (4.4).
A different verification of (4.4) by the L.t. is also possible.
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5. The Four-Variate Chi-Square Distribution

Any irreducible p x p-correlation matrix R = (r;;) can be mapped to a
connected graph G(R) with the p vertices 1,...,p and containing the edge [, j]
iff r;; #0 (i # 7). Let G;, ., denote the class of non-singular correlation
matrices corresponding to a graph with the vertex degrees 4y > --- > 4,. In
particular for p = 4 the classes Gs111 and G211 correspond to the spanning trees.
Let F,, (m < p) denote the class of the non-singular irreducible m-factorial p x p-
correlation matrices R and F?2 (m < p — 1) the set of the ((m + 1)-factorial) R
allowing a representation R = D + AA' with a diagonal D > 0 (but not D > 0)
and rank(AA’) = m. Finally let Cy be the class of 4 x 4-correlation matrices R
with at least one vanishing element r% in R™".

For an N(0, R)-distributed r.v. (Uy,...,U;) we obtain for the conditional
covariances ;e = Cov(U;, Uj|ug,u,) from

’f’ij = —|R|_1(’f’ij — ’rijlrl?:f — Tik’rjk — 7"1’[7”]'[ + Tik'rjl'rkl + Tilrjkrkl)a (’L # _]) (51)
the relation
oijwe = —|R|r7 /(L —13,), (i,j,k,¢ any permutation of 1,2,3,4). (5.2)

Thus, Cy corresponds to the class of N (0, R)-distributions with at least one pair
of conditionally independent components, given the complementary pair. Con-
sequently for any R € Cy the x3(q, R)-d.f. is given by

F4($17"'7$4;2T7R)

= (@ rtvaere 1 [ [T (T 6 oot @)

m=i,j
x (yrye sin® @) " exp(— (Y + ye—2rie(yrye)/? cos(¢)) /(L —13,))ddyedy(5.3)
with
O = Ommike = 1= (P 4 Tog = 2 ke miTme) /(1 — 170

and

Qm = (Om(1 = 750) (Pt = ToneTre)*Yne + (Tt = TmrTre)*Ye
4+ 2(Tmk = TmeTee) (Tme — ToeTre) (Yaye)? cos(@)),  (m =1i,5).
Let ¢ map R to its standardized inverse, i.e. to the correlation matrix
Q = (q;;) = (WRW)™" with W? = Diag(r",...,r??). It is R = ¢(Q) and
F o ¢(Fm) = Fm. The classification in Table 5.1 of the non-singular irre-
ducible 4 x 4-correlation matrices together with the criterion in Theorem 5.1
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may be helpful for the computation of a xi(q, R)-d.f.. The classes F; C F,
(m = 2,3) are by definition the relative complements of F} U G311 U Gaay and
F3 U Gao1y respectively.

Table 5.1. Classification of irreducible 4 x 4-correlation matrices

class comment d.f. Fy(zy,...,24;2r, R)

Fi Jo. (_H Gr( Um,bjy))gr(y)dy

F» containing
7 (1L Gr(%wj/u—rf-l),rfzy/u—r;z)))gr(y)dy
Goin |G =F | ST (n Gr(aj, =) ) (3)" /20, ((2we) /)9, () dy

(Royen (1994))
Go222 G990 C Co For densities with R € G555, see (4.2) in Miller and
Sackrowitz (1967)

Fy See Corollary 1.b of Theorem 3.1, Theorem 4.2,

Theorem 5.1 and Remark 1 below.

F3 containing
F) See (5.3) or Theorem 4.2

Gao11 CF3 CCo

Goo11 For bivariate integrals or series belonging to Gao11,

Gy211 and more generally for correlation matrices

R or () corresponding to spanning trees see

Royen (1994). For densities f, with a tridiagonal

R~ see also Blumenson and Miller (1963).

F3 General series expansions (3.1) or Taylor approxima-

tion using (3.19)

In the representation of an irreducible R = D + aa’ € F? there is exactly
one index ¢ with aj =1. It follows with 7;; =a,a; from (5.1) that ¥ =0 (i # 7,
i,j # ¢) and, besides, r¢ # 0 because of the irreducibility of R=!. Therefore
H(FY) C Gai1, and G314y C FY is also verified by (5.1). The remaining inclusions
of Table 5.1 are verified in the proof of Theorem 5.1.

Remark 1. For any p > 3 the class F, contains the class of the “formally
one-factorial” R = D + aa' with a non-singular indefinite D = Diag(d,,...,d,),
where, without loss of generality, d; =1 —aj >0 (j <p),and d, =1 — a2 < 0.
With

w?=|l-ai|™", by=aw;, C=(c;)=1I,—2(I,+WRW)'
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we obtain
p—1 p—1

cir = 0,0,k <p),cjp =b;/by, (1 <p),cpp =1— (2—1—2()?)();2, |€op] —I—Zci, <1
j=1 j=1

and from (2.16) with A = 0,Y = Q,v? = wj/2 and (r), = ['(r+n)/I'(r) the d.f.

J

F,(x1,...,2p;2r, R)

2 = e Pl 20
= (/Upa‘p)_r Z(T)nHr,n(UP$P) Z Lp| JP' Hr,n]‘ (’U]fL'])
n—0 (n) np. j=1 n]

Remark 2. If R € Goss, then ||R7|| < 1 and the series derived from the L.t.

4 —r
(H Z;) (1 — erjuiuj + |R-|’U,1’U,2U3’U,4) ) (Zj = (1 + 2tj)71,Uj = Qthj)
j=1

i<j
also leads to a representation of the corresponding d.f..

Remark 3. From the proof of (d) in Theorem 5.1 also the following equivalence
is recognized: R € Gy, & R € FY and [Lic;mi5 # 0.

To decide if any R belongs to F; we define the following quantities:

ope =1~ Tiijk/Tij,

;Bu = (Tkz - Tik'rjl/rij)(rkl - 'ril'rjk/'rij) = 5&
and the functions

hie(z) = ape + Bre/(x — i), (i,7,k,£ any permutation of 1,2,3,4).

Theorem 5.1. Let R be a non-singular irreducible 4 x 4-correlation matriz:
(a) R € Fy is equivalent to the condition
There is an index £ with M, = () {d > O|hy,(d) > 0} # 0. (5.4)
k£t

(b) If there is an index £ with age > 0 for allk # £ (i.e. Ry is 1-factorial), then
ReFLUF;.

(¢) Gagzz C Fo.

(d) Gaonr C fg C Cp.

Proof. (a) If R=D + AA’ € F;, where D > 0 is diagonal and rank(AA’) = 2,
then there exists a 3 x 3-submatrix Ry, with [[, ;, ri; # 0. Solving the equations
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|(R — D);;| =0 for d, we obtain dj, = hye(d,). Thus, (5.4) is satisfied. Here and
in the following (i, 7, k) is any permutation of the indices different from /.

Conversely, if (5.4) holds, then we can choose d = d; # 1 from the open set
M,. Besides, r;; # 0 and d; # ay, since hy, has to be well-defined. With

apn ==+ (1 - dl)1/27 ain = ric/an,

pij = rij — Turje/aj;  (# 0 since dy # ayy), 555 = sgn(pij), 8 = 88 jkSki

the 2nd column of A is defined by ap = 0, a; = Sjk\/g(|pijpik/pjk|)1/27 and
di(de)) =1—a} —aX =1—1r%/(1 —dy) — pijpix/pjx = hie(dy) is verified. Hence
R=D+ AA' € F;.

(b) If R ¢ F, the assertion is recognized with d, — oo.

(c) If R € Gaaoo with 77 # 0 then for a diagonal D = I — X it can be
verified that rank(R — D) = rank(R 4+ X) = 2 with

T =1y [T+, x5 = —weryri/(rare), Tk = /T T3 /T5

and D > 0 can always be satisfied by a suitable z, < 1.
(d) First, show Fy C Cy:

If R=D+ AA' € F) with rank(AA’) = 2 then D contains at most two zeros
on its diagonal. If e.g. d; = d» = 0, then rank(R — D) =

Ry, Ry >
rank =2,
(Rm Ryy — D,

which implies Ry, — Dy = Ry R;'Ry,. Thus 03412 = 0 and R € Cy because
of (5.2). Now let D > 0 contain exactly three positive elements. Since Fy N
(Ga111 U Gani1 U Gasan) = B there is always an index ¢ with [1;j2e7i; # 0. Then
dp = hye(de) =0, d;,d;,d, > 0 imply B = g = 0. Otherwise, a change of
dy; would lead to D > 0, which is impossible for R € Fjy. For the same reason
d; =0, d;,d;,d, > 0 is impossible. The identity

7ij (Bre — o) = |R|rY (5.5)

implies again R € Cy.

If R € Gy then Q = ¢(R) € Goory with g;;q,1qre # 0. Formula (5.1) applied
to Q shows that r;; = ¢ (g% ¢?7)"*/? # 0 for all i # j and ajy = ajp = g =
ay; = 0. Then, also 8, = B, = Bri = Br; = 0 because of (5.5). Hence, for every
index ¢, one of the expressions d;(d;) = hj¢(d,) must vanish identically. Since
a;, < 0 for at most one index j # £ we find d;, dy,, d, > 0,d; = 0 for all sufficiently
large d, and consequently R € FJ.
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The free choice of a d; € M, in the representation D + AA’ of a two-factorial
R can be used to minimize the spectral norm of C' = C} = Eké,’g (k = 1,2,3;
cf. (2.11)), which accelerates the rate of convergence in (3.8) (cf. remarks after
Corollary 1b). The equation tr(C) = 0 implies always ||C|| < 1. Therefore a
solution d, € M, of one of the following equations (with d; = hj.(d,), 51, 5> from
(1.4)) would be an appealing choice if it exists.

%Z%Zl (<= (B + B2)/2 =1 = tx(Cy) = 0)
iidjrja‘ =1 (&= (/B +1/B)/2 =1 <= tr(C,) = 0)

4
I14; = IR| (<= [ =1 < tr(C3) =0).

If R (and consequently () belongs to F; then look for an Ry (or Q) €
F, differing from R (or @) only by a single element. E.g. the condition (b)
in Theorem 5.1 can always be satisfied by increasing the absolute value of the
absolutely smallest correlation in R,, but the condition Ry > 0 has to be observed.
If such a 2-factorial approximation to R (or @) is available then the Taylor
approximation (3.19) is applicable besides the general expansions in (3.1).

6. Applications to Some Multivariate Multiple Comparisons

In multiple test procedures, based on union intersection tests, a-level bounds
(or “p-values”) are needed for the maxima of several stochastically dependent test
statistics. Conservative bounds are frequently obtained by Bonferroni’s inequal-
ity. However, for a larger number of correlated statistics, more accurate bounds
are desirable. Better conservative bounds are found by Bonferroni inequalities
of third order using three-variate marginal distributions of higher dimensional
statistics. E.g. the bounds for the multivariate maximum range test for all
pairwise comparisons of the parameter vectors of several univariate linear mod-
els with identical design matrices — originally computed by large simulations
(Royen (1989, 1990)) — can be approximated by this method. Here several three-
variate F-distributions (or studentized x2-distributions) occur. The error terms
are bounded by a sum of probabilities from four-variate F-distributions.

By studentizing formulas from Sec.5 exact a-level bounds (p-values) are
computable for simultaneous comparisons of p = 4 stochastically dependent lin-
ear contrasts z; = Y., i@ of independent N, (&, 0?7, V)-distributed random
vectors x;, with covariance matrices 0?7, V', known except for o2, which is esti-
mated by s? (rank(y;) = p, test statistics z/V 1z;/(s* >, vak), (2 = 1,...,p)
and correlations pi; = (3, Vi Tk Yop VieT) 2 Xk Vi Vik Th)-
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Furthermore, for investigations of the power of several competing multiple
test procedures, analytical methods are preferable to simulations if they are avail-
able. As an example the application of (3.9) to simultaneous comparisons with
a control under classical linear model assumptions is given below.

For identical correlations p;; = p we obtain from (3.9)—(3.12) with & = 2
and wi = 1/(1 = p), b7 =p/(1 = p), B=1+pp/(1 —p) = (1 + (- p)/(1 - p)
the d.f.

Fp(gcl,...,xp;q,p,A)—eXp(——Z w)i( p)”

z<] n=0

X/OOO(Z 11 d;?ij/nij!]:[ar+nj (ﬁadjﬂrﬁy))gwn(y)dy (6.1)

(n) 1<i<j<p

with r = q/2, nj = nj; + 37, ni; (nji = ny;), 25, nj = 2n,

D = (dy) = %(1 —p)R'AR!
= %( p) (I =p(l+(p—1p) 1) A(I = p(1 + (p—1)p)~'11"),
g i

The coefficients

d(ng,...,n,) = Z H d” '[!
njit+n j=n; 1<i<j<p
of the Hp G'r4n; are recursively computed as the coefficients of the polynomials
(Xicj dijzi x]) /nl. If rank(A) = 1, A = (J;0;), then (6.1) is simplified according
o (3.13).

Now let p+1 independent observation vectors y; = X3;+¢€; (i =0,...,p) be
given with identical n x g-design matrices X of rank ¢ and N(0,0°I,,)-distributed
columns e;. Furthermore let s2 be the usual o?x?2/v-distributed pooled estimate
of 0% with v = (p+1)(n — q) degrees of freedom. For the tests of the hypotheses
H;: 3 = B against H; : B; # By (i = 1,...,p) at the simultaneous level « we
use the test statistics o?x3/s2 = 3 (y; — yo)' X (X' X) 1 X" (y; — yo) /52

With the solution ¢ = ¢(a;p, ¢ = 2r,v; p) of the equation

[ (6o 551)) o0 dudz =1

where f,(z) = fv(vz/2)"/*7" exp (—vz/2)/T(v/2) is the density of s2/0?, we
find for the probability of at least one rejection with p = 1/2 the formula
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1 —exp —Zd;j

1<j
0 o0 09 P
8 Z/O /0 (ZHd;?ij/nij!XHGr—i-nj (szdjj +y))gr+n(y)fu(z)d?/dza (6.2)
n=0 (n) i<i j=1
(dy) = (I ! 11’>A(I ! 11’)
ij) — p+1 p+1 y

A = (6;) with §&; = %(Bz — 6o)' X' X(B; — Bo)/0”.

Similar formulas are available for further probabilities related to power.
For large values of v the double integrals over [[; Gi,.y,; in (6.2) can also be
approximated by the asymptotic expansion

<1+ P N 2(4033 +1d4>+ 3<2d4 +4d5 +1d6>>
vV — TtV e v — ts—= 1t >7%
dz* 3dz8  2d2* dz*  3d2°  6d2°

oo , P
/0 (IT Grin, (e dss + 1)) grinlm)dy| _ + O™,
j=1

obtained from the expectation over a Taylor polynomial of powers of Z — 1 with
a x2/v-distributed r.v. Z. At least the term of order v~ is easily computed by
numerical differentiation.
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