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ALMOST SURE CONVERGENCE OF STOCHASTIC
APPROXIMATION PROCEDURES

Gang Li

Ohmeda

Abstract: In this paper we investigate the convergence of the Robbins-Monro proce-
dure Xn+1 = Xn — an(Yn — a). The following along with some related results are
obtained.

Let £; =Y; — M(X;) be the error in the jth observation. A necessary and sufficient
condition for the almost sure convergence of {X,} is

} k

o a5;
j=n

. =0 a.s.

lim sup

n— o0
kzn 1 + a;
j=n

If {¢;} is an i.i.d. sequence, p > 1, E{; =0, and a; = j_% for 7 > 1, then the above
is true if and only if E|£1|F < oo.

Key words and phrases: Robbins-Monro procedure, almost sure convergence, martin-
gale differences.

1. Introduction

Let M be an unknown real valued function defined on the real line and sup-
pose that at each real number z unbiased observations of M(z) can be taken.
Suppose 6 is the unique root of M(z) = a for some known « and one wishes to
find 8. Robbins and Monro (1951) suggested a recursive procedure for approx-
imating 6. In the Robbins-Monro (RM) procedure one starts at some X; and
recursively defines X, the estimate of  at the nth step, by

Xn+1 = Xn — a"n(Y'n - a),

where Y, is observed at X,,, i.e., it is an unbiased observation of M(X,). The
convergence of {X,} to 6 in various modes has been studied extensively by many
authors. Many results are presented in Nevel’son and Has'minskii (1976).

Most of the results on the RM-procedure suggest that the convergence of
X, to 6 is associated with the errors of observation &, = Y, — M (Xn). Blum
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(1954) and Krasulina (1969) gave several results on almost sure convergence of
the RM procedure, requiring almost sure convergence of Yor 1 anén. Goodsell
and Hanson (1976) obtained a result stating that X, can converge almost surely
even though the series above does not do so. Dvoretzsky (1956) and Krasulina
(1969) showed that, for p € (1,2], E|Xn — 87 — 0 if 22, aP|én|P < oo.

In this paper the relation between the errors of observation and convergence
of X, to @ is obtained. In Section 2, a necessary and sufficient condition is
given which, for a given choice of {a,}, states the relation between the errors of
observation and the almost sure convergence of X, to §. Mean-square convergence
is also considered there. In Section 3, almost sure convergence of martingale
difference sequences is considered. Section 4 contains proofs of the results in
Section 2. Section 5 contains proofs of the results in Section 3.

2. Convergence of Robbins-Monro Procedure

Let M be a real valued function defined on the real line. Suppose M is
Borel-measurable and satisfies the following conditions:

(M1) |[M(z) —a| < c+d|z| for some ¢>0 and d > 0,
(M2) Y(6) = I i%]f>5lM(m) —a| >0 forevery § >0, and
(M3) M(z)<a for <6 and M(z)>a for z>6.
Let {an} be a sequence of positive numbers such that
oo
(A) an —0 as n— oo and Zanzoo.
n=1

Let {Xn} and {Y,} be sequences of random variables on a probability space
(Q, F, P) such that X; is arbitrary,

Xny1=Xp—an(Yn—a) for n>1, and (2.1a)

E{Ya|X1,..., X011, Yoo1} = E{Ys| X0} = M(X,) as. forn>1. (2.1b)
Let §; = Y; — M(X;).

Theorem 2.1. Suppose M satisfies (M1)-(M3), {an} satisfies (A), and {X,} is
defined as in (2.1). If

‘Z;;naj &5 \

lim sup———F—— =0 as. (2.2)
n=0E>n 1+ Zj—-naj
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then
X, —0 as. as n— oo (2.3)

Furthermore, if M is continuous at 8 then (2.3) implies (2.2).

It is obvious that (2.2) is true if the series 72, a;{; converges almost surely,
a condition required in most of the literature. In Section 3, we investigate the
conditions under which (2.2) holds. For mean square convergence we have the
following result which is similar to Theorem 2.1.

Theorem 2.2. Let {X,} be defined as in (2.1) and suppose {an} satisfies (A).
If M satisfies (M1), (M3), and

(M2") |M(z) —a| > K|z — 6] for some K >0 and all =z,
and if
_ ZlnagEf,z'
TS o
j=n

then E(X, — )% — 0. Conversely, if M satisfies (M3) and
(M1 |M(z) — a| < K|z — 6| for some K >0 and all z,
and if E(X, — )2 — 0, then (2.4) holds.

=0, (2.4)

3. Almost Sure Convergence Theorems for Martingale Difference Se-
quences

Let F,, be the sigma-algebra generated by Xi,...,Xn; ¥1,... ,Yn_1.

Theorem 3.1. Suppose {€n,Fn,n > 1} is a martingale difference sequence,
p21,

P{|&n| > t|Fn-1} < ®(t) as. for n=1,2,..., (3.1)
lim ®(t) =0, and /0 ” #1do(t)| < co. (3.2)

Then . )
‘Z '—nj— ’ gjl
lim sup 1=

- =0 as. (3.3)
"TCkzn 1+ Zj:nj—

=

Remark 3.1. Under the condition of Theorem 3.1, when p € (0, 2), the series
1 n=1/P¢, converges almost surely (cf. the proof of Theorem 3.2.3 of Stout
(1974)), so (3.3) holds. But for p > 2, the series 5220 n~1/P¢, may diverge almost
surely, even when &, are i.i.d., for example, P{¢& = 1} =1/2.
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Remark 3.2. If £, are i.i.d. then (3.3) implies that El&1|P < co. In fact (3.3)
implies n~1/P¢, — 0o as., and consequently E|&]P < oo.

Theorem 3.2. Suppose {&n, Fron > 1} is a martingale difference sequence,
p>2,and E|{,|P < C < oo for all n. Then for some § > 2

p+2’
ko _ N
>, 37 log )75, |
lim sup 1=

n—oo k . — o\ —
k>n 1 4 ijnj 2/(P+2)(10gj) g

=0 as. (3.4)

4. Proofs for Results in Section 2

For notational convenience assume that o = 6 = 0, continue to let ¢, =
Y, — M(X,), and denote z Ay = min(z,y). Our proofs are corollaries to the
following lemma.

Lemma 4.1. Suppose M satisfies (M1)-(M3), {an} satisfies (A), and {z,} and
{bn} are sequences of real numbers.

i) If
ZTnt1 < Tn — anM(zn) + anb, forall n>1 and (4.1)
k
_ > aib;
lim sup sup ———— <0, (4.2)
n—oo k>n | .
+ Zj:naj,
then
lim sup z,, < 0. (4.3)
T 00
(ii) If M is continuous at 0,
Tnil 2 Tn ~ anM(T,) + anb, for all n>1, and (4.4)
nlingo zn, =0, (4.5)

then (4.2) holds.

Proof of Lemma 4.1. Proof of (i): Suppose (4.1) and (4.2) hold. Let § =
liminf, o Z,. First we show that § < 0. If § > 0 then there exists a positive
integer N such that z, > -g for all n > N. Note that z,.1 < — ey a;(M(zj) -
b;) + z; and recall the assumption that 21 an = 0o. Then from (M2) and (M3)
we have

n n
. Zj=1“ibﬂ' I Zj:lajM(zj) — T
liminf —%—— > liminf =
n—oo a. n—oo a:

g=1" Zj=1 7

> w(%) > 0. | (4.6)
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However (4.2) and the assumption that 3 an = 00 give

n n
e D im0l
limsup —7—— < limsup sup <7z

n—oo a; m—o0 n>m a;
j=1"17 = j=1 "7

<0

which contradicts (4.6). Thus 6 < 0.

365

(4.7)

Suppose lim sup,,_,oo £n > b > a > 0. From (4.2) there exists an N such that

forall n > N.

k
Z ,__najbj b—
sup j= - < ¢ga) A a
k2n 1 4 Zj—naj

Choose m and n such that N <n <m,

z, <a and m > b,
a<z;j<b forn<j<m, and
cL,_bze

3d " 3(c+ y¥(a))

Gn

It follows from (4.1), (4.8), (4.9), and the assumption following (i) that

m—1 m—1
b—a < Ty —2ZTn < — EajM(:cj)+ Zajbj
Jj=n j=n
m—1 m—1
< - Z ajv(a) + Z a;bj + antp(a) — anM(zn)
j:n j:n
< 1/)-(?:0’_) A 'b—‘;_(‘l' + andJ(a) - anM(mn)'

If z, > 0, then M(z,) > 0, so (4.10) and (4.9) give the contradiction

b—a<§——;—g+and)(a)<§(b—a).

(4.8)

(4.9)

(4.10)

If z,, < 0, then (M1) gives |M(zn)| < c+djzn| < ¢+ d(Zm — Tn); thus (4.10) and

(4.9) give

b = @ < 22 4 n(dm = )+ ¢+ 9(@) < 2o~ )+ 3(@m - 20)

which contradicts b — a < Ty, — ZTn from (4.9).
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Proof of (ii): Suppose M is continuous at 6 and that (4.4) and (4.5) hold. Suppose

!
D05
lim sup sup ——————

> 0. (4.11)
n—oo  [>n 1 + Z

Then there exists an € > 0 and subsequences {n;} and {mx} such that for all k
we have ny < m; and
My
Z j=n, 2 b;

>
1 ™mg -
+>, im0
Choose § so that supj, <5 |M(z)| < e and 6 < & %; then choose N > 0 so that for
n > N we have |z,| < §. Then for ny > N we have

(4.12)

g
[Tmyt1 — @m | < 26 < 2. (4.13)

However it follows from (4.4) and (4.12) that

T+l = Tny, 2 — Z a;M z])"' Z a;b;

'—-nk —‘nk

2 - Z aj|M(z;)| + Z a;b;
'—nk J=ng

> - Z aje + <1+ Z aJ>s
= )

> €

which contradicts (4.13). Thus (4.11) leads to a contradiction and (4.2) holds.
Proof of Theorem 2.1. Let

q . Z ayfy (‘U)
= (w:limsupsu
! n-—boop k>:-[r:: 1 _+_ Z

—Z _na]§.7 (w)

—_ )

92}

w : limsupsu
n—-voopk>5 1+Z
A= {w:limsup X,,(w) < 0}, and B = {w : limsup ( — X,(w)) < 0}.

Suppose (2.2) holds, then P(2; N Q) = 1. By Lemma 4.1, Q; C B and Q, C A
Therefore P(AN B) =1 and (2.3) holds.
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Conversely, suppose (2.3) holds so that P(A N B) = 1, and suppose M is
continuous at 0. By Lemma 4.1, ANB C ©; and ANB C Q. Thus P(1NQ,) =1
and (2.2) holds.

Proof of Theorem 2.2. From (M1), (M2'), (M3) and (2.1b) we have , for n
sufficiently large,

EX121+1 E(Xn - anM(Xn))2 + aiEfi
< (1-Kan)EX2+aic* + aZE¢2.

By Lemma 4.1 (with M = the identity there), (2.4) implies EX — 0.
Similarly, from (M1’) and (M3) EX2,, > (1 - 2Ka,)EX2 + a2E¢%. By
Lemma 4.1 EX? — 0 implies (2.4).

5. Proofs for Section 3

Throughout the remainder of this paper we use C to denote positive constants
whose exact numerical values are not important. [z] denotes the greatest integer
less than or equal to z. 14 denotes the indicator function of the set A. We need
the following lemma.

Lemma 5.1. Suppose a > 2, {an} is a sequence of positive numbers, and the
sequence of martingale difference {&n, Fn} satisfies P{l&n] > t | Fro1} < ®a(t)
as., n=1,2,.... Then there ezists a constant C, such that

* n oo n oo /2
<c, ( S a2 /0 118, (¢)dt + (Z a? /0 t@i(t)dt) )
1=1 i=1

Proof. It is derived by repeated use of Theorem 3.3.6 of Stout (1974) (cf. Bai
and Yin (1993)).

Proof of Theorem 3.1. By Remark 3.1, we need only to prove the theorem for

pE [1a2)- Let n, = énl{K |<n%}a Ny = Nn — E{nnlfn—l}a and

Then A, C U5z, {I& > 3315} The fact that [;° tP|d®(t)| < co implies that 3°72,
P&l > 3 %} < oo. Consequently, by the Borel-Cantelli lemma P(lim sup,,_, o
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{l{nl > m} = 0. Therefore P{limsup,,_,,, An} = 0. Note that |E{n,|F,_1}| <
“Tp t|d®(t)] — 0 a.s. so that

- — 0 as. (5.1)

We prove (5.1) by cases where p € [2},2!*?) for [ = 1,2
Tk =Y 5eni™V/Pn}, and bpj =1+ 35, j~V/7. Let

26},

,.... Let m = 2!+1,

Tn k

k>n

Pn(E). = P{ sup |—— N

Tk
Pi(e) = P{ sup k 26}, and
k>2n | Unk
P*(e) = P{ sup Tnk 25}.
n<k<2n | bnk

For the subsequence ny = [kP T] we show that both 37, Py, (e) < coand 3°; Py¥(e)
< o0; from this, it will follow that >, Pn, (¢) < oo and thus that

Tnk )j

sup — 0 a.s. as k — oo.

J2ng

bnk aj

We will then compare T}, /by j for ny < n < ng4; with terms in our subsequence,
show that the difference is appropriately bounded, and hence argue that (5.1)
holds.

Since {Tnk,Fk,k > n} is a martingale and both t?™ and e'* are convex
functions, we see that { nk,fk,k > n} and {exp{T,xu}, Fx,k > n} are both
submartingales.

Suppose € > 0, 02 = [°t%|d®(t)|, and u = min{55;, 3, 1}. Then, almost
surely,

—1/p . ue
E{ exp(J nJu)|.7:J_.1} < exp <2j2/1’)
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so that, using backward induction,

E{exp(T, xu)} = E{ exp(Tn,k_lu)E(exp(k'I/Pn,’;u) | fk_l)}

k
< .- < exp (%E Zj'z/”> = exp (%bn,k). (5.2)

j=n

Using Chow’s inequality (see Stout (1974, Theorem 3.3.7)), and then (5.2), we
get

P{ sup Tn k/bn i > e} = P{ sup exp{Tn xu}/ exp{bn rue} > 1}
k>2n k>2n

o0
< Z (e——bn,kue _ e_b"'k"’IUE)EeTn'ku + lim sup EeTn’ku/eb"’kue
k=2n+1 k—oo
< Z e k¥ (k 4+ 1) VPey - exp (y—s-bn,k) +0
2
k=2n+1
> u\, _1
< Z exp(—bn,ksi)k PEU
k=2n+1
< Cexp{ —~ -623(21‘% - 1)n1‘%}. (5.3)
Similarly,
1 _1
P{ sup (=Tn k/bnk) 2 e} < Cexp{ - E1—‘-(21_17 - l)n1 » }
k>2n 2
Thus
T, -1
Pr(e) = P{ sup |=2%| > s} < Cexp{ — EE(\@— 1)n! P}. (5.4)
k>2n | On.k 2

Applying Chow’s inequality to the submartingale {T,ff,’?, Fr,k > n} gives

T k 2m
Esz sup ( n, ) > EZm
n<kL2n bn,k

2n—1 2m
1 1 2 ETn,2n

< > (b—z;ﬁ— W)—ETnf?”f o (5.5)
k=n n,k n,k+1 n,2n

The fact that mi—),—,; > 1 — 2mt when t is small enough implies that for n large

enough and all k > n

1 ! 2m -3 (5.6)

p2m - p2m < p2m+1
n,k n,k+1 n,k
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Now we apply Lemma 5.1 to estimate ETZ:}C1 Define

’

1, if 0<t<1;

t
P (t) = < q’('z-), if lgtsnl/z’_*__;_;

1
0, if t> nl/p+-2~.

\

When n is so large that [T/, t|d®(t)| < 1/2, we have P{|n}| >t | Fn_1} < ®,(1).
It follows from Lemma 5.1 that, for n < k < 2n,

ETZm < C 2Zn . 2m e 2m—1z 2n 2 S ' m
mo< iTE TR (tdt + VAL [ 125(t)dt
j=n

j=n
ko om (3")% k 2\
<Cl > iy (1 +/ tz’"‘lé(t)dt) 4 c( Z]"s) . (5.7)
j=n_ 0 j=n
A calculation yields that, for & > 2 and n > 2 we have
2m 2m

2331 (Zj_nj_%) B . (Zj.:nj—%) o
= (1 + Z —n >2m+1 1 (1 + ijnj_%)?m

< Cn~ N , if a=2m;
- C’n_'%, if a=2.

'ﬂl

(5.8)
Combining (5.5), (5.6), (5.7) and (5.8)

5 T k 2m
e’™P*(e) = €*™P{ max ( = ) > gim

n<k<2n \ by

2m—1 2m-—1

(3n)1/P
< on 5y on S / £27-19(t)dt + Cn~™P.  (5.9)
: 0

Let ng = [kr 1]. We now show that

e e}

Z Py (e) < oo. (5.10)

k=1

3pk

s
Let Ag =y 3P

t2m-1¢>(t)dt and A; =
3pjp-1

tP~1®(t)dt. Then

(3nk)% 39 k7T —2
/ £2m-1g(t)dt < / 2" 1(t)dt < Ap + Z 35+ 1) T4y
0 0
F=ko
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Thus
1
s m—1 [(3nk)P
3 C[k?’i‘l]’z_p—l/ 12m=1g(¢)dt
k=ko+1 0
< c/ P15 (t)dt = %/ 14 (¢)| < co. (5.11)
0 0

Hence (5.10) follows from (5.9) and (5.11).
(5.4) implies Y52 Py, (€) < co. Together with (5.10) this gives 3 gz Pn,(€) <
co. By the Borel-Cantelli Lemma,

Tn il
sup Toesil 0 as. (5.12)

i>ng Ung,i

Note that b, ; > 1 so that for nx < n < Ng41

Tug| — |Tres (1 N bnk,m—l)) _ Tan=1) bty
bnaj bnk’j bn)j bnk,(n—l) bn,j
Tn 1
S Sup ——k'l— (1 + 2bﬂk,'nk+1)’ (513) ‘
i>ng | Ing,i
and that
by mpsy < C- (5.14)

Then (5.1) follows from (5.12), (5.13) and (5.14), and this completes the proof.

Proof of Theorem 3.2. It is similar to the proof of Theorem 3.1 (cf. the proof
of Theorem 3.3.2 of Li (1993)).
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