
Statistica Sinica 34 (2024), 505-521
doi:https://doi.org/10.5705/ss.202021.0281

MEASURES OF UNCERTAINTY

FOR SHRINKAGE MODEL SELECTION

Yuanyuan Li and Jiming Jiang∗

University of California

Abstract: We develop measures of uncertainty, including model confidence sets

and a LogP measure, for shrinkage model selection procedures. The measures

are developed for linear models, generalized linear models, and generalized additive

models. We study the theoretical and empirical properties of the proposed measures,

and demonstrate how theses measures work by applying them to real-life problems.
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1. Introduction

Driven largely by practical needs, measures of uncertainty in model selection

have been studied by, among others, Hansen, Lunde and Nason (2011), Ferrari

and Yang (2015), Lubke and Campbell (2016) (also, see Lubke et al. (2017)

and the references therein), Zheng, Ferrari and Yang (2019), Li et al. (2019),

and Liu, Li and Jiang (2021). For example, Conlon et al. (2003) discussed a

motif regression problem. One of their study objectives is to find binding sites

in DNA sequences of an NDD1 transcriptional activator, which is essential for

the expression of a set of late-S-phase-specific genes. Pang, Lin and Jiang (2016)

formulated these study objectives as a shrinkage variable selection problem, and

several models were proposed based on various selection criteria. We revisit this

problem later. As another example, Subramanian et al. (2005) proposed using a

gene set enrichment analysis (GSEA) to assess the significance of predefined gene

sets. Efron and Tibshirani (2007) proposed an alternative method, called a gene-

set analysis (GSA), that produced different selection results to those of the GSEA

when applied to the p53 data with the catalog of 522 gene sets in Subramanian

et al. (2005). Quite often in practice, researchers use different variables and

models when applying model-selection procedures, and it is not clear which

is most suitable when the selection results vary with different procedures or

methods. For example, standard model selection procedures include information

criteria (e.g., AIC (Akaike (1973)), BIC (Schwarz (1978))), the fence methods

(e.g., Jiang and Nguyen (2016)), and shrinkage selection/estimation (e.g., the

least absolute shrinkage and selection operator (lasso) (Tibshirani (1996)), and
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smoothly clipped absolute deviation (SCAD) (Fan and Li (2001)) estimators).

Alternatively, instead of focusing on a single model that may correspond to a

subset of selected variables, one may consider a few models as possibilities. These

models are all appropriate because they are the results of model selection based

on different considerations. There may be other ways to justify these models.

Such a group of models naturally form a model set, which may be associated

with a model confidence set (MCS). Several MCSs have been proposed; see the

references mentioned in the first paragraph of this section. However, note that

although an MCS is typically defined as having a designed probability of covering

an optimal model (see below), in practice, the latter may not exist among the

candidate models under consideration. Nevertheless, an MCS may still be useful,

especially when there is uncertainty, about a single selected model.

MCS offers one type of measure of uncertainty in model selection. Another

type measures the error in model selection. Liu, Li and Jiang (2021) proposed

a LogP measure that is an estimated logarithm of the probability of selecting

a nonoptimal model. Here, an optimal model, denoted as Mopt, is defined as

the most parsimonious correct model, typically measured in terms of having the

minimum number of model parameters. Similarly to an MCS, when a correct

model may not exist, the optimal model may be understood in a broader sense as

one that best approximates the nature that generates the data. This potentially

extends the usefulness of LogP.

Thus far, MCSs and LogP have been developed under the framework of

classical model selection, where we have a finite set of candidate models with

cardinality that does not increase with the sample size. Here, the consistency

of the model selection is typically established for the selected model according

to a certain model selection criterion. For example, Liu, Li and Jiang (2021)

studied both the finite-sample and the asymptotic behavior of their proposed

MCS and LogP measures. However, such methods may not apply to modern

model selection problems, which are characterized by high dimensionality. It

is known that shrinkage model selection (Tibshirani (1996)) methods are often

suitable for high-dimensional variable selection problems. The MCS method

called Model confidence bounds (MCB) of Li et al. (2019) incorporates shrinkage

methods, making it promising for high-dimensional model selection. However, no

studies have examined the performance of MCB in high-dimensional cases and

for models beyond a linear regression, whether empirically or theoretically. Thus,

the main purpose of this work is to develop MCS and LogP strategies that are

suitable for shrinkage model selection, including linear models, generalized linear

models (GLMs), and generalized additive models (GAMs). We also compare the

performance of the proposed MCS method with that of MCB in high-dimensional

cases using simulation studies.
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In Section 2, we develop the MCS and LogP measures for linear models,

GLMs, GAMs, and, in Section 3, we examine the properties of the proposed

measures. In Section 4, we investigate the finite-sample performance of the

proposed measures using Monte Carlo simulation studies. Two real-data

applications are discussed in Section 5. The proofs of the theoretical results

are deferred to the online Supplementary Material.

2. Methods

We first develop the measures under a linear model setting, before considering

extensions to other general models.

2.1. Constructing a nested MCS for Mopt

2.1.1. Linear models

Suppose the data are generated under a linear model,

y = Xβ + ε, (2.1)

where y is an n×1 vector of responses, X is an n×p known matrix of covariates,

and ε = (ε1, . . . , εn) is a vector of independent and identically distributed (i.i.d.)

errors with mean 0 and variance σ2. Consider a lasso solution fitting the model

min
β
||y −Xβ||22 + λ||β||1, (2.2)

where λ > 0 denotes the penalty or regularization parameter. Efron et al. (2004)

proposed the least angle regression (LARS) algorithm to compute the full solution

path of the lasso. As λ decreases from a large value, the covariates enter the model

at a certain order, say EO = {e1, e2, . . . , ep}, where EO means “Entering Order”.

For any fixed λ, we have a corresponding selected model, M̂ = {e1, . . . , ek}, that

is, we select the first k covariates in EO. Different λ will result in different numbers

of covariates in the selected model. However, the order of the covariates entering

the model is fixed, and depends only on the data. Usually, λ is chosen using

cross-validation or an information criterion; see, for example, Fu, Carroll and

Wang (2005) and Wang, Li and Leng (2009). In rare cases, some covariates enter

the model and leave multiple times, usually because of the strong correlation

between covariates, and we define EO using a two-step approach based on the

selected model M̂ . A detailed description and discussion are provided in the

Supplementary Material (see Section S1).

Let M̂ denote the model selected using the original data, and ψ̂ be the

vector of estimated parameters under M̂ . Later, we investigate the model using

bootstrapped data. Furthermore, note that M̂ is the first q elements in EO, for

some positive integer q. Because EO may be viewed as an order of relative

importance among the covariates, we may eliminate relatively unimportant
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members from M̂ to form a “smaller” model, M̂L, called a lower bound model

(LBM). Note that this is different to the LBM of Ferrari and Yang (2015), even

though the same abbreviation is used. Similarly, adding more covariates in EO

to M̂ results in a “larger” model, M̂U, called an upper bound model (UBM). It

is easy to see that M̂L ⊆ M̂ ⊆ M̂U. If the pair of models {M̂L, M̂U} satisfies

P(M̂L ⊆Mopt ⊆ M̂U) ≥ 1− α, (2.3)

where Mopt is the optimal model, that is, the most parsimonious true model

under which data can be generated from the same distribution as that of the

observed data (Liu, Li and Jiang (2021)), then {M : M̂L ⊆ M ⊆ M̂U ,M ⊂ M}
is a 100(1−α)% MCS for Mopt, denoted as (M̂L, M̂U). We call this a nested MCS

(NMCS), because the construction is based on a nested sequence of models; the

resulting MCS is a nested sequence between the LBM and the UBM.

It remains to determine how many covariates should be eliminated, and

added, to form the LBM and UBM, respectively, so that (2.3) holds. Because

Mopt and ψopt are unknown, the probability in (2.3) cannot be calculated directly.

Following Liu, Li and Jiang (2021), we can approximate the probability in (2.3)

using bootstrapping. Furthermore, an NMCS should include as few models as

possible in order to be efficient. As such, we define the width of an NMCS as

w(M̂L, M̂U) = |M̂U| − |M̂L|, (2.4)

where |M | denotes the number of covariates included in model M . For a given

width w, we determine the NMCS as follows:

NMCS(w) = argmax
(M̂1,M̂2)

{P(M̂1 ⊆Mopt ⊆ M̂2) : w(M̂1, M̂2) = w, M̂1 ⊆ M̂ ⊆ M̂2},

(2.5)

where the probability P is approximated using bootstrapping (see below). In

addition, because the width of an NMCS is a positive integer, we only need to

consider (2.4) for w that are positive integers. The coverage probability of the

NMCS is then a function of w,

CP(w) = P{Mopt ∈ NMCS(w)}. (2.6)

Suppose that the optimal model satisfies Mnull ⊆Mopt ⊆Mfull. Then, we increase

w from zero (include only M̂) to p (i.e., the model with no covariate, Mnull, as

the LBM, and the model with all of the covariates, Mfull, as the UBM) so that

(2.3) is “just” satisfied. As w increases, NMCS(w) gets “wider” and CP(w) gets

closer to one. Therefore, there is a unique w such that CP(w − 1) < 1 − α and

CP(w) ≥ 1− α. In the special case where CP(0) ≥ 1− α, the NMCS reduces to

a single model, M̂ . We can use the following bootstrap algorithm to obtain the

final NMCS.



MOU FOR SHRINKAGE MODEL SELECTIONS 509

Algorithm 1: 100(1− α)% NMCS construction.

1. Generate B bootstrap samples y∗[b] under the distribution under model M̂ and

parameter vector ψ̂.

2. For b = 1, . . . , B, record the EO in lasso selection based on the bth bootstrap
data (y∗[b], X), denoted by EO∗[b] = {e∗1,[b], . . . , e

∗
p,[b]}, and the selected model M̂ ,

denoted by M̂∗[b] = {e∗1,[b], . . . , e
∗
kb,[b]
}.

3. For w=0, . . . , 2p, calculate the bootstrapped coverage probabilities of NMCS(w),

CP∗(w) = max0≤j≤w B
−1∑B

b=1 1(M̂∗−w+j,[b] ⊆ M̂ ⊆ M̂
∗
j,[b]), where M̂∗−w+j,[b] =

{e∗1,[b], . . . , e
∗
kb−w+j,[b]}, M̂

∗
j,[b] = {e∗1,[b], . . . , e

∗
kb+j,[b]

}, and M̂∗x includes only the

intercept term if kb + x ≤ 0; M̂∗x is the full model if kb + x ≥ p. Denote j that
achieves the maximum as f∗(w), which is a function of w.

4. Obtain the smallest w∗ such that CP∗(w∗) ≥ 1− α, and the corresponding j∗

= f∗(w∗).

5. The final 100(1− α)% NMCS is (M̂−w∗+j∗ , M̂j∗), where M̂−w∗+j∗ = {e1, . . . ,
ek−w∗+j∗} and M̂j∗ = {e1, . . . , ek+j∗}.

2.1.2. Extensions to GLMs and GAMs

Algorithm 1 is quite general, and thus can be extended to other models, such

as GLMs and GAMs. In a GLM, the parameters in the distribution of y are

connected to a linear predictor, η = Xβ, via a link function. Hence, we can

select the variables and generate bootstrap samples from the distribution under

model M̂ .

GAMs, introduced by Hastie and Tibshirani (1986), are generalized linear

models in which the linear predictor can be represented as a sum of more general

functions of a single variable: η(X) =
∑p

j=1 fj(Xj), where fj are unknown

functions, assumed to be smooth or otherwise have low complexity. Some model

selection criteria delete irrelevant predictors or reduce the complexity of the fj
functions, such as the component selection and smoothing operator (COSSO) (Lin

and Zhang (2006)), sparse additive model (SpAM) (Ravikumar et al. (2009)), the

method of Meier, Geer and Buhlmann (2009), and generalized additive model

selection (GAMSEL) (Chouldechova and Hastie (2015)). We adopt GAMSEL

in our simulation study (see section 4.1.3); other selection methods can also be

used. Specifically, GAMSEL represents fj functions using a linear component and

a nonlinear component; that is, fj(Xj) = αjXj +µj(Xj)
Tβj, where µj is a vector

of mj Demmler–Reinsch basis (Demmler and Reinsch (1975)) functions. Then,

GAMSEL generates sparse solutions by solving a convex optimization problem

with L1 penalties for αj and group-lasso penalties for βj, given by
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min
α0,αj ,βj

1

2

∥∥∥y − α0 −
p∑
j=1

αjXj −
p∑
j=1

uj(Xj)βj

∥∥∥2
+λ

p∑
j=1

{γ|αj|+ (1− γ)‖βj‖D∗
j
}+

1

2

p∑
j=1

ψjβ
T
j Djβj, (2.7)

where ‖βj‖D∗
j

=
√
βTj D

∗
jβj, and Dj is the diagonal penalty matrix associated

with the Demmler–Reinsch basis. The multiplier ψj is chosen to control the

smoothness of the basis functions, that is, to achieve prespecified degrees of

freedom when λ = 0. The tuning parameter λ penalizes the linear and nonlinear

coefficients of each term simultaneously, and sets all αj = 0 and βj ≡ 0 for

large values. As λ decreases, some estimated coefficients become nonzero. If

α̂λj and β̂λj include nonzero elements, f̂λj (Xj) is either a linear or a nonlinear

nonzero function; hence, the variable Xj is selected into the model to construct

η(X) at the given λ. The EO in algorithm 1 can be obtained by recording the

order of variables {X1, . . . , Xp} that enter the model (when f̂j(Xj) is nonzero)

as λ decreases. The selected model M̂ is the model at the cross-validated

tuning parameter λ̂. Then, we can generate the bootstrap samples from the

distribution under M̂ and the estimated parameters, and construct the NMCS

using Algorithm 1.

2.2. LogP measure for M̂

The LogP measure proposed by Liu, Li and Jiang (2021) quantifies the error

in model selection. It is defined as the logarithm of the probability that the

selected model is different from the optimal model,

LogP = LogP(M̂) = log{P(M̂ 6= Mopt)}. (2.8)

The right side of (2.8) is evaluated using a bootstrapping procedure similar

to Algorithm 1. First, we use M̂ and ψ̂ as approximations of Mopt and ψopt,

respectively, to generate samples y∗[b], for b = 1, . . . , B, called bootstrap samples.

Second, we perform model selection procedures for all y∗[b], and obtain the selected

models, M̂∗
[b]. Then, we calculate the empirical probability that M̂∗ = M̂ , and

obtain the estimator of (2.8) as

L̂ogP = log

(
1− 1

B

B∑
b=1

1(M̂∗
[b]

=M̂)

)
. (2.9)

Note that (2.9) is a natural estimator of LogP because of the following

approximation supported by the law of large numbers:

P(M̂ = Mopt) ≈ P(M̂∗ = M̂) ≈ 1

B

B∑
b=1

1(M̂∗
[b]

=M̂). (2.10)
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Here, we use the same LogP estimator, and extend the original information-

based selection criteria to include shrinkage model selection methods. The

consistency property of the LogP estimator and the conditions required to achieve

these need to be re-examined. We also apply this estimator to more general classes

of models, namely, GLMs and GAMs. The implementation is quite similar,

because the LogP measure uses only the model selected from the data, M̂ or

M̂∗
[b], despite the different model structures and shrinkage methods.

3. Theoretical Properties

In this section, we study the theoretical properties of the proposed measures

of uncertainty, including the coverage probability of the NMCS and the consis-

tency of the LogP measure.

3.1. Coverage probability of the NMCS

Let y denote the original data, and y∗[1], . . . , y
∗
[B] be the bootstrap samples.

The notation P(·|M,ψ) denotes the probability of the event when the underlying

distribution and the parameter vector ψ are from model M . Let ψ̂opt denote the

estimator of ψopt (i.e., ψ̂ when M̂ = Mopt). We make the following assumptions.

A1. The bootstrap samples y∗[b], for 1 ≤ b ≤ B, are generated independently

under M̂, ψ̂.

A2. There is a constant c such that, for every w ≥ 0, 0 ≤ j ≤ w, and fixed ψ̃opt,

we have∣∣∣P(Mopt ∈ (M̂∗
−w+j, M̂

∗
j )|Mopt, ψ̃opt)− P(Mopt ∈ (M̂∗

−w+j, M̂
∗
j )|Mopt, ψopt)

∣∣∣
≤ c|ψ̃opt − ψopt|. (3.1)

A3. P(M̂ = M̂∗
l |M̂, ψ̂) > 0, for every l ≥ 0.

Note that the two probabilities inside the absolute value on the left side of

(3.1) differ only in that the argument of ψopt in one probability is replaced by ψ̃opt

in the other. Furthermore, the absolute difference between the two probabilities

is bounded by a constant times the absolute difference between ψopt and ψ̃opt.

Therefore, this assumption is similar to a condition for Lipschitz continuity (e.g.,

Thomson, Bruckner and Bruckner (2008, p. 316)).

Proposition 1 (Linear regression with orthogonal covariates). Let (2.1.1)

hold, where ε has distribution N(0, σ2In), with σ2 a positive constant, X is an

n× p matrix satisfying p = O(nc1), with 0 ≤ c1 < c2 ≤ 1, and XTX = nIp. The

number of nonzero regression coefficients q is fixed, and n(1−c2)/2 mini=1,...,q |βi| ≥
M0. For λ satisfying λ = O(

√
n), assumption A2 holds.
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A proof of Proposition 1 is given in the Supplementary Material.

Theorem 1. Assume that assumptions A1–A3 hold. Let w∗, and j∗ denote w

and j, respectively, determined by step 4 in Algorithm 1. As B →∞, w∗ and j∗

converge in probability, with respect to the bootstrap distribution, to the integers

w ≥ 0 and 0 ≤ j ≤ w, respectively, which depend on M̂ and ψ̂. Furthermore, for

this w and j, we have

P(Mopt ∈ (M̂−w+j, M̂j))

≥
1− α− P(M̂ 6= Mopt)− cE{|ψ̂opt − ψopt|1(M̂=Mopt)

} − o(1)

P(M̂ = Mopt)
, (3.2)

provided that P(M̂ = Mopt) > 0.

Theorem 1 establishes a lower bound for the coverage probability of the

NMCS, (3.2), which depends on two quantities, namely, δ1 = P(M̂ 6= Mopt) and

δ2 = E{|ψ̂opt − ψopt|1(M̂=Mopt)
}. Note that if M̂ is a consistent model selector,

then, under regularity conditions, we have δ1 → 0, and the denominator of (3.2)

goes to one, as the sample size, n, increases. Furthermore, if ψ̂opt converges in

L2 to ψopt, we have δ2 → 0 as n→∞. Thus, as both n,B →∞, the limit of the

right side of (3.2) is 1−α. The proof of Theorem 1 is given in the Supplementary

Material.

3.2. Consistency in LogP estimation

Following Liu, Li and Jiang (2021), the consistency of L̂ogP is defined as

L̂ogP

LogP
P−→ 1, (3.3)

as both n,B → ∞, where the convergence in probability is with respect to the

joint distribution of the data and the bootstrapping. The consistency holds under

the following assumptions:

B1. M̂ is consistent.

B2. P(M̂ = Mopt) < 1 and P(M̂∗ = Mopt|Mopt, ψ̃opt) < 1, for any ψ̃opt.

B3. As n→∞, we have

log{P(M̂∗ 6= Mopt|Mopt, ψ̂opt)}
log{P(M̂∗ 6= Mopt|Mopt, ψopt)}

P−→ 1. (3.4)

B4. Denote the probability in the numerator of (3.4) by P∗. For any η > 0, we

have

E

[
1− P∗

P∗{(1− P η
∗ ) ∧ (P−η∗ − 1)}2

]
<∞. (3.5)
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Theorem 2 (Liu, Li and Jiang (2021)). Under assumptions B1–B4, (3.3)

holds in the sense that, for any ε > 0 and ρ > 0, there are N,Bn ≥ 1 that depend

on ε, ρ, and Bn depends on n, such that

PJ

(∣∣∣∣∣ L̂ogP

LogP
− 1

∣∣∣∣∣ > ε

)
< ρ, n ≥ N and B ≥ Bn, (3.6)

where PJ denotes the joint probability of the data and the bootstrapping.

In the rest of this section, we establish the assumptions and Theorem 2 in a

high-dimensional setting instead of the fixed–p case of Liu, Li and Jiang (2021).

To further illustrate when the assumptions are met, we introduce the following

notation. Let β(1) = (β1, . . . , βq) be the nonzero coefficients in the true model.

Let X(1) and X(2) be the first q and last p− q columns of X, respectively, and

C = (1/n)XTX. By setting C11 = (1/n)X(1)TX(1), C22 = (1/n)X(2)TX(2),

C12 = (1/n)X(1)TX(2), and C21 = (1/n)X(2)TX(1), C can be expressed in a

block-wise form as

C =

(
C11 C12

C21 C22

)
. (3.7)

Assume that C11 is nonsingular.

A strong irrepresentable condition (Zhao and Yu (2006)) is usually needed

to establish the consistency of a lasso selection. Therefore, there exists a positive

constant vector, η, such that

|C21C
−1
11 sign(β(1))| ≤ 1− η, (3.8)

where 1 is a (p− q)-dim vector of ones and the inequality holds element-wise.

In a high–dimensional model selection setting, we also need to constrain

the dimension of the design matrix and the sparsity of the model parameters

to establish consistency. We assume there exist 0 ≤ c1 < c2 ≤ 1 and

M1,M2,M3,M4 > 0 such that the following hold:

1

n
(Xi)

′(Xi) ≤M1, i = 1, . . . , n, (3.9)

α′C11α ≥M2, for ||α||22 = 1, (3.10)

q = O(nc1), (3.11)

n(1−c2)/2 min
i=1,...,q

|βi| ≥M3, (3.12)

Proposition 2 (Finite 2kth moment). Assume εi, for i = 1, . . . , n, are i.i.d.

random variables with a finite 2kth moment,that is, E(εi)
2k <∞, for an integer

k > 0, and the design matrix satisfies the strong irrepresentable condition and

(3.9)–(3.12). For p = o(n(c2−c1)k), and any λ that satisfies λ/
√
n = o(n(c2−c1)/2)

and p−1(λ/
√
n)2k →∞, assumptions B1–B4 hold.
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A proof of Proposition 2 can be found in the Supplementary Material. Note

that the conditions in Proposition 2 are not more restrictive than those assumed

for sign consistency (Zhao and Yu (2006)), which suggests that assumptions

B1–B4 can be achieved easily under general settings. In particular, for Gaussian

noise that has all the moments, the growing rate of p can be relaxed to an

exponential rate for selection consistency. Hence, it is possible for assumptions

B1–B4 to be satisfied with exponentially growing p under Gaussian noise. This

yields the following result.

Proposition 3 (Gaussian noise). Assume εi, for i = 1, . . . , n, are i.i.d. Gaus-

sian random variables, and that the design matrix satisfies the strong irrepre-

sentable condition and (3.9)-(3.12). If there exist 0 ≤ c3 < c2 − c1 such that

p = O(en
c3

), for λ ∝ n(1+c4)/2 with c3 < c4 < c2 − c1, assumptions 1–B4 hold.

4. Simulation Studies

4.1. Simulation studies for the NMCS

We investigate the performance of the NMCS under three types of models:

linear regression models, logistic regression models, and GAMs.

As shown in the theorems in Section 3, the sign consistency of the lasso and

the theoretical properties of the NMCS and LogP are usually based on p = o(nc),

for some 0 < c < 1, for general design matrices and noise distributions. We first

run a screening procedure called iterative sure independence screening to reduce

the dimensionality of p from a possibly huge scale [say, exp{O(nδ)}, for some

δ > 0] to a scale that is more manageable [e.g., o(n)] via a fast and efficient

algorithm; see Fan and Li (2008) and Fan and Song (2010). The algorithm

is implemented using the R package SIS. We then construct MCSs using the

NMCS and its competitor based on the surviving features. We consider n = 200,

p = 1000, and d = n− 1 = 199 for the linear and GLM simulations.

4.1.1. Linear regression

For a linear regression, we compare the performance of the NMCS and the

MCB method of Li et al. (2019) under the same simulation setting.

The covariates are generated under one of the following cases:

Case 1: x1, . . . , xp are i.i.d. N(0, 1) random variables.

Case 2: x1, . . . , xp are jointly Gaussian, marginally distributed as N(0, 1), and

have the correlation structure cor(xi, xj) = 0.5|i−j|.

Case 3: x1, . . . , xp are jointly Gaussian, marginally distributed as N(0, 1), and

have the correlation structure cor(xi, xj) = 0.5, for i 6= j.

Case 1 is a simple case for variable selection. Case 2 has an exponential

decay correlation structure between the predictors, and Case 3 has a constant
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correlation as |i− j| increases. These simulation cases are adapted from Li et al.

(2019), Fan and Li (2008), and Fan, Yang and Song (2011).

The true parameters are such that β1, β2, and β3 are generated randomly as

(5 log n/
√
n+ |Z|)U , with Z ∼ N(0, 1), U independent of Z with P(U = 1) = 0.4

and P(U = −1) = 0.6, and βj = 0 for j > 3.

After the covariates are generated, we generate the responses using yi =∑p
j=1 βjxij + εi, where i = 1, . . . , n and εi ∼ N(0, 1). The NMCS and MCB

are both based on a BIC-tuned adaptive lasso (ALasso) and B = 500 bootstrap

samples. We also record the simulated coverage probability and mean width of the

MCSs, and use P ∗ to denote the empirical probability (based on the simulation

runs) that M̂ = Mopt. The results are shown in Table 1 in the Supplementary

Material.

In all simulation runs, the true predictors x1, x2, x3 were successfully selected

by the initial screening. We compare the NMCS with the MCB method of Li et al.

(2019) in terms of both the empirical coverage probability (CP) and average width

(AW) of the MCSs. The CP for both methods are very similar in all cases, and

are higher than the nominal confidence level (CL). Comparing AW, the NMCS

has a smaller width when the CL is large or the covariates are correlated (under

Cases 2 and 3, respectively), which suggests that the NMCS is more efficient in

these cases. Furthermore, the NMCS is more stable than the MCB in terms of

keeping smaller values of AW in all cases. For example, when the AW of the

MCB is larger than 10, the NMCS has a significant advantage. Note that the

construction of the MCB uses only the single selected model, whereas the NMCS

records and uses all the models in the full solution path of the shrinkage model

selection, which explains the advantage of the NMCS.

4.1.2. Logistic regression

We consider covariates generated under Cases 1, 2, and 3 described in the

previous subsection. We then simulate the response variable, Y , from a Bernoulli

distribution with the probability of success p(x)) such that log[p(x)/{1−p(x)}] =

x′β. In this case, the NMCS is constructed using the BIC-tuned ALasso with

B = 500 bootstrap samples.

The results, based on K = 200 simulation runs, are presented in Table 2.

Here, the initial screening did not fully preserve all of the true predictors under

Cases 2 and 3. Therefore, we record the frequency when the screening preserves

all of the true predictors in K = 200 simulation runs as “SIS rate.” Unlike in the

linear case, there are no existing methods for a comparison. The CP is above the

nominal CL under Cases 1 and 2. Under Case 3, the CP of the 95% NMCS is

lower than 0.95; however, in all runs in which the initial screening protects all the

true predictors, the “conditional CP”(0.905/0.970 = 0.933) meets the nominal

CL. Furthermore, the accuracy of the selected model, P ∗, is not close to one in

any of the three cases, but the NMCS still performs satisfactory, showing that the
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performance of the NMCS is not sensitive to the accuracy of the selected model,

as suggested by Theorem 1. In addition, the AW decreases with the CL, which

is reasonable.

4.1.3. GAM

In this case, the covariates are generated under the following setting:

Case 4: {xk}k 6=2 are i.i.d. N(0, 1) random variables, where x2 = −(1/3)x3
1 + ε̃

and ε̃ ∼ N(0, 1). The true parameters are β1 = β2 = β3 = 1 and βj = 0, for

j > 3.

The responses are generated under the model yi =
∑p

j=1 βjxij + ε, where

ε ∼ N(0, 1) and is independent of ε̃. Note that, in this case, E(Y |x1) and E(Y |x2)

are nonlinear about x1 and x2, respectively. We use GAMSEL (Chouldechova

and Hastie (2015)) with mj = 6 basis functions and three degrees of freedom

as the GAM selection method, which can be implemented using the R package

gamsel. Because GAMSEL estimates significantly more parameters than the

GLM does, the consistency of GAMSEL is more difficult to establish in the ultra-

high-dimensional case. Hence, we consider a relatively high–dimensional case

with p = 30 for the GAM simulation, without initial screening. The bootstrap

sample size is B = 400.

The results, based on K = 100 simulation runs, are presented in Table 3.

Again, there are no existing methods available for a comparison, but the CP meets

the nominal CL; the AW decreases with the CL, but the scale of the decrease is

much smaller than those observed in Tables 1 and 2.

4.2. Simulation study for LogP

The LogP measure is conceptually and computationally easier under all three

types of models. Thus, as an example, we present simulation results on the

performance of LogP for a linear model selection under Case 1 of Section 4.1.1.

We consider δ = 10−4, n = (50, 100, 200, 500), p = bn3/4c, and B = (500, 1000).

A performance measure for LogP estimation is the percentage relative bias,

defined as %RB = 100× [{E(L̂ogP)−LogP}/LogP], where LogP is the simulated

true LogP, that is, the logarithm of the empirical probability, based on the

simulation runs, that M̂ 6= Mopt, and E(L̂ogP) is the mean of the LogP

estimator, also based on the simulation runs. Another performance measure

is the coefficient of variation, defined as CV = s.d.(L̂ogP)/|E(L̂ogP)|, where

s.d.(L̂ogP) = {var(L̂ogP)}1/2 and var(L̂ogP) is the variance of L̂ogP based on

the simulation runs.

We consider LogP for BIC-tuned lasso, ALasso, and SCAD selections. The

mean of the estimated LogP and the corresponding RB% and CV, based on K =

200 simulation runs, are presented in Table 4, where P ∗ denotes the empirical

probability (based on the simulation runs) that M̂ = Mopt.
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In terms of the %RB, the SCAD performs satisfactorily. In general, the

performance in terms of %RB is considered satisfactory if it is a single-digit or low

double-digit number (10s or 20s). The SCAD and ALasso perform satisfactorily

when p is relatively small (< 100). However, the performance of the lasso is not

satisfactory. This may be because the SCAD and ALasso provide more accurate

estimators of the model parameters. It is known (Fan and Li (2001); Zou (2006))

that SCAD and ALasso estimators have the oracle property, whereas the lasso

estimator is consistent under more restrictive conditions.

In addition, for ALasso, the performance of L̂ogP is satisfactory, as long as P ∗

is not very close to one. As noted in Liu, Li and Jiang (2021), the LogP measure

is more useful when P(M̂ = Mopt), that is, the probability of choosing the optimal

model using the model selector, is not very close to one (because in the latter

case, there is not much uncertainty associated with the model selection). Thus,

practically, the performance of L̂ogP for ALasso is considered satisfactory for the

cases that matter.

Overall, the simulation results show some interesting differences between the

three most popular shrinkage selection/estimation procedures, namely, the lasso,

ALasso, and SCAD, that seemingly favor the ALasso and SCAD.

5. Real–Data Examples

We provide two real-data examples to illustrate the proposed measures of

uncertainty for model selection. The first example is under a linear model setting,

and the second is under a logistic regression framework.

5.1. NDD1 data analysis

Conlon et al. (2003) discussed a motif regression problem. The objective

is to find binding sites in DNA sequences of an NDD1 transcriptional activator

(TA) that is essential for the expression of a set of late-S-phase-specific genes.

The binding sites are called motifs and are short sequences of the DNA codes

A,C,G, and T . The number of candidate motifs is p = 100, and the number of

DNA segments in the data is n = 66. The response y is the measurement of the

binding intensity of the NDD1 activator on the DNA segments. The variable xj is

a measure of the abundance score of candidate motif j in the DNA segment. We

can fit a linear regression model using y and xj. We first run sure independence

screening (Fan and Li (2008)) to reduce the dimension to d = n − 1 = 65, and

then compute the NMCS, MCB (Li et al. (2019)), and LogP measures using the

surviving predictors.

Here, as model selection methods, we use ALasso with the tuning parameter

chosen using the BIC (ALasso-BIC) or 10-fold cross-validation (ALasso-CV), and

select the most parsimonious model within one standard error of the minimum

(Hastie, Tibshirani and Friedman (2001)). The results are presented in Table 5,
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and show that although the selected model M̂ varies depending on the tuning

methods, almost all of the 95% confidence intervals contain all of the models

selected using the various methods. Here, NULL means an empty set, that is, no

predictor is selected. Comparing the widths of the confidence sets, the NMCS is

more efficient than the MCB at the chosen CLs. The model with predictors {1,

4, 5, 80} is included in almost all confidence sets, suggesting that these motifs

may be the binding sites of the TA. Other motifs in the UBM of the 95% NMCS

cannot be excluded at the 95% CL, hence, additional data are required to further

investigate the effects of these motifs. These results support those of Pang, Lin

and Jiang (2016), who found that the first and fourth motifs contain the consensus

pattern from the Saccharomyces Genome Database (Chen et al. (2008)).

5.2. South African heart disease data

Hastie, Tibshirani and Friedman (2001) considered a data set on heart disease

in South African men. The data include 462 observations. Some potential

predictors are considered and indexed by 1, . . . , 9, indicating systolic blood

pressure (sbp), cumulative tobacco (in kg; tobacco), low density lipoprotein

cholesterol (ldl), amount of fat found in adipose tissue (adiposity), family

history of heart disease (famhist), type-A behavior rating (typea), obesity score

(obesity), current alcohol consumption (alcohol), and age at onset (age),

respectively. The responses are binary indicators of whether or not the person

had heart disease.

We apply the NMCS and the LogP measures to those data. Available

methods for a shrinkage selection/estimation under a GLM setting include the

lasso and ALasso (see Section 4.1.2). The results are presented in Table 6.

Although the selected model, M̂ , varies depending on the selection criteria, almost

all of the 95% confidence sets contain all of the selected models. For example,

the 95% NMCS of the AIC-tuned lasso includes all of the models selected by any

of the six methods, that is, the lasso or ALasso tuned using the AIC, BIC, or

CV. The widths of the NMCS and the values of LogP indicate the uncertainty of

different selection methods. The smaller LogP of the BIC-tuned ALasso suggests

that its selected model, {2, 3, 5, 6, 9}, is more likely to be the optimal model. The

narrower NMCS of the CV-tuned ALasso suggests there is less variation among

the selected models. Furthermore, the ALasso methods have smaller errors and

less variation than the lasso methods do. Thus, we may favor a model selected

using BIC-tuned ALasso or CV-tuned ALasso, depending on whether we need to

reduce the error or the variation. The model with predictors {tobacco(2), ldl(3),

famhist(5), age(9)} is included in all confidence sets, indicating the importance

of these predictors in terms of explaining heart disease. The importance of the

predictors sbp(1), typea(6), and obesity(7) requires further investigation. These

conclusions are consistent with those of Hastie, Tibshirani and Friedman (2001),

in which the model {2, 3, 5, 9} is selected under a GLM setting, and sbp(1) and
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obesity(7) have nonlinear effects that can be added to the model under a GAM

setting.

6. Conclusion

We have proposed two measures of uncertainty for shrinkage model selection

procedures that can be used in high–dimensional cases (p grows at a polyno-

mial/exponential rate) and for more general classes of models. The NMCS is

obtained by trimming the EO of the variables in the solution paths when the

tuning parameter decreases. We prove that, under some general conditions, the

optimal model is contained in the NMCS at least at a probability that is close

to the nominal CL, if the model selection method and the parameter estimators

are consistent. Our simulations show that the empirical coverage probabilities of

the NMCS meet the nominal CLs even when the covariates are highly correlated

and p is much larger than n (decreased to n − 1 by using initial screening).

Compared with other MCS methods, such as the MAC (Liu, Li and Jiang (2021))

and MCB (Li et al. (2019)), the NMCS has advantages in terms of applicability

and efficiency. Another measure, LogP, measures the error of a (single) selected

model by estimating the logarithm of the probability that the selected model

is different from the optimal model. The LogP estimator based on bootstrap

probabilities is consistent under some weak conditions. The results of simulation

studies show that the LogP estimator has satisfactory accuracy when the selected

model exhibits relatively large to modest uncertainty (the probability that the

selected model is the true model is between 0.5 and 0.98; see Table 4).

The proposed measures can be used to signal the uncertainty of a selected

model by checking the width of the NMCS (a larger width means higher

“variance”) and the value of LogP (a smaller value means less “bias”). A

comparison of these measures for different model selection methods using

simulation data and real data shows that the ALasso and SCAD penalty generate

selected models with less “bias” than those selected using the lasso penalty.

In addition, the selected models tuned using the cross-validation with the one

standard error rule have lower “variance” than those tuned using AIC/BIC. These

findings are useful when considering which selection method to use, and even

whether model selection makes sense, given the level of uncertainty associated

with the data.

Furthermore, the nested property of the NMCS provides sufficient options

for choosing a model, from relatively parsimonious models to more conservative

and higher-dimensional models, with a given CL. In some areas with expensive

data collection, such as experimentation data, the NMCS tells us which of the

covariates are most important covariates (those in the LBM), as well as identifying

some potential important (those in the UBM but not included in the LBM) with

a probability guarantee. Here, potential applications include speeding up the
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drug development process and helping to allocate a budget efficiently.

Supplementary Material

A web appendix, referenced throughout the manuscript, contains technical

proofs and tables and is available online.
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