
Statistica Sinica 33 (2023), 519-549
doi:https://doi.org/10.5705/ss.202021.0107

STATISTICAL INFERENCE FOR
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Abstract: We investigate statistical inference for the mean function of stationary

functional time series data with an infinite moving average structure. We propose

a B-spline estimation for the temporally ordered trajectories of the functional mov-

ing average, which are used to construct a two-step estimator of the mean function.

Under mild conditions, the B-spline mean estimator enjoys oracle efficiency in the

sense that it is asymptotically equivalent to the infeasible estimator, that is, the

sample mean of all trajectories observed entirely without errors. This oracle effi-

ciency allows us to construct a simultaneous confidence band (SCB) for the mean

function, which is asymptotically correct. Simulation results strongly corroborate

the asymptotic theory. Using the SCB to analyze an electroencephalogram time

series reveals strong evidence of a trigonometric form of the mean function.

Key words and phrases: B-spline, electroencephalogram, functional moving average,

oracle efficiency, simultaneous confidence band.

1. Introduction

Functional data analysis (FDA) has garnered much research in the last two

decades, extending the statistical analysis of multivariate data to more compli-

cated and informative curve data; see Ferraty and Vieu (2006), Ramsay and

Silverman (2002), Ramsay and Silverman (2005), Hsing and Eubank (2015), and

Kokoszka and Reimherr (2017). Mathematically speaking, classical functional

data consist of a collection of n trajectories {ηt(·)}nt=1 corresponding to n sub-

jects, where the tth trajectory ηt(·) for subject t is a continuous stochastic process

equal in distribution to a standard process η(·). These trajectories {ηt(·)}nt=1 play

the role of univariate and multivariate random observations associated with in-

dividual subjects in most textbooks on introductory statistics. Thus one may be

interested in predicting other numerical or categorical outcomes based on such

random curves or, at a more basic level, measuring the location and scale of these

curves. The latter consists of the mean and covariance functions m (·) = E{η(·)}
and G(x, x′) = Cov {η(x), η (x′)}, respectively, of η(·), and has been studied in
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Cao, Yang and Todem (2012), Cao et al. (2016), and Zheng, Yang and Härdle

(2014), who derive pointwise normal confidence intervals and simultaneous con-

fidence bands (SCBs) have been derived for m (·) and G (·, ·) based on various

limiting distributions.

Much of the above is done using “raw” functional data {Ytj}, where Ytj
represents the discretely recorded value of the t-th trajectory ηt (·) at the j-th

x-location Xtj , contaminated with measurement error σ (Xtj) εtj ,

Ytj = ηt (Xtj) + σ (Xtj) εtj , 1 ≤ t ≤ n, 1 ≤ j ≤ Nt. (1.1)

Therefore, the “raw data” are not a collection of curves {ηt(·)}nt=1, which may

be considered the “smooth data.” In the case of densely recorded “raw” data,

the trajectories {ηt(·)}nt=1 can be estimated one at a time to produce something

that resembles {ηt(·)}nt=1, which might be best referred to as “smoothed pseudo

data.” To be precise, the “raw data” takes the form

Ytj = ηt

(
j

N

)
+ σ

(
j

N

)
εtj , 1 ≤ t ≤ n, 1 ≤ j ≤ N, (1.2)

where bothN and n go to infinity. Spline estimates {η̂t(·)}nt=1 are obtained in Cao,

Yang and Todem (2012), that is the “smoothed pseudo data” that can be used as

substitutes for {ηt(·)}nt=1 in data analysis. Without loss of generality, the func-

tions η(·) and {ηt(·)}nt=1 are defined on [0, 1], and G(·, ·) is defined on [0, 1]2. The

trajectories {ηt(·)}nt=1 are decomposed as ηt (x) = m (x) + ξt (x), where m (·) is

continuous on [0, 1], and ξt (x) is a small-scale variation of x on the tth trajectory,

a process with a continuous sample path Eξt (x) = 0,Emaxx∈[0,1] ξ
2
t (x) <∞, and

continuous covariance G (x, x′) = Cov {ξt(x), ξt (x′)}.
According to Hsing and Eubank (2015), there exist eigenvalues λ1 ≥ λ2 ≥

· · · ≥ 0,
∑∞

k=1 λk <∞, with corresponding eigenfunctions {ψk}∞k=1 of G (·, ·), the

latter being an orthonormal basis of L2 [0, 1], G (x, x′) =
∑∞

k=1 λkψk(x)ψk (x′),∫
G (x, x′) ψk (x′) dx′ = λkψk(x). The process η(x), for x ∈ [0, 1], then allows

the well-known Karhunen–Loève L2 representation η(x) = m(x)+
∑∞

k=1 ξkφk(x),

in which the random coefficients {ξk}∞k=1, called functional principal component

(FPC) scores, are uncorrelated, with mean zero and variance one. The rescaled

eigenfunctions φk are called FPCs, φk =
√
λkψk, for k ≥ 1.

Mean estimation is usually the essential first step in functional data analysis;

see Ma, Yang and Carroll (2012) and Zheng, Yang and Härdle (2014) for theory

and applications of sparse longitudinal data, and Cao, Yang and Todem (2012)

for an SCB for the mean function based on dense functional data. One serious
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Figure 1. Five smoothed trajectories for the EEG data.

drawback in Cao et al. (2016) and Cao, Yang and Todem (2012) is the assumption

that the number of records on each curve is dominated by the number of curves,

that is N = O
(
nθ
)
, for some θ > 0. This constraint is unreasonable, because it

prevents observing each subject more densely, whereas larger N is always more

preferable, owing to the increased measurement precision, regardless of whether

n is large or small (consider the limiting case N =∞ when observations are made

arbitrarily dense in the entire range). In our current work, we instead assume that

the assumption n = O
(
N θ
)
, with the more logical and natural understanding

that the speed at which n asymptotics become significant is contingent upon the

precision level set by N .

Existing works also restrict {ηt(·)}nt=1 to be independent and identically dis-

tributed (i.i.d.) copies of the process η(·). As discussed in Bosq (2000), functional

data do not always come in the form of i.i.d. replicates. One interesting example

is the continued recording of an electroencephalogram (EEG) for a person in a

resting eyes-closed state. The participant went through a five-minute test, and

EEG signals were recorded at a 1,000 Hz sample rate from 32 scalp locations.

Observations at the sixth location are divided into 400 consecutive segments,

each consisting of N = 500 EEG signals recorded every 0.001 second. Figure

1 shows five randomly selected “smoothed pseudo data” from the 400 smooth

curves {η̂t(·)}400t=1.

Horváth, Kokoszka and Reeder (2013) developed the asymptotic theory for

testing the equality of two mean functions in functional samples exhibiting tem-
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poral dependence, assuming that the entire trajectories {ηt(·)}nt=1 are fully ob-

served. SCBs of mean functions of functional time series are constructed in Chen

and Song (2015), but there are two major gaps in their theoretical development.

First, they had required the number of positive eigenvalues to be finite, limiting

the scope of applicability. Second, they do not specify clear assumptions on the

FPC scores. In particular, the physical dependence condition of (2.1) does not

ensure independence of all FPC scores ξk, for k = 1, 2, . . ., which is a key con-

dition if the strong Gaussian approximations in (A.3) of Lemma A.5 for all ξtk,

k = 1, 2, . . . , kn; need to be jointly independent so that their linear combinations

are Gaussian as well.

To set up an appropriate framework that accounts for dependence between

trajectories {ηt(·)}nt=1, the infinite moving average MA(∞) concept in classic

time series analysis is extended to the functional setting. Specifically, the de-

meaned trajectories {ξt(·)}nt=1 are regarded as a segment of zero mean processes

{ξt(·)}∞t=−∞ satisfying the functional moving average (FMA(∞)) equations

ξt (·) =

∞∑
t′=0

At′ζt−t′ (·) , t = 0,±1,±2, . . . , (1.3)

in which At′ are bounded linear operators L2 [0, 1]→ L2 [0, 1] and {ζt(·)}∞t=−∞ are

i.i.d. zero mean processes, that is, strong white noise according to Bosq (2000).

Note that the classic MA(∞) is a rather broad category, and includes as a special

case the widely used causal ARMA(p, q); see Theorem 3.1.1 of Brockwell and

Davis (1991).

In the next section, under the above dependence structure, we propose B-

spline estimator for the mean function m (·). B-splines are widely used in non-

parametrics for their computational ease and conceptional simplicity; see de Boor

(2001) and DeVore and Lorentz (1993). It is established in Theorem 2 that the

B-spline estimator is as efficient as an infeasible “oracle” estimator, which is ob-

tained as if all random trajectories are totally observed without measurement

errors. Theorem 1 and Corollary 1 further establish an asymptotically correct

SCB of the mean function m (·) under some mild conditions. SCB is a powerful

tool for quantifying the variability of functions and making global inferences for

functions; see Cao et al. (2016), Cao, Yang and Todem (2012), and Degras (2011)

for SCBs of dense functional data, Gu et al. (2014), Ma, Yang and Carroll (2012),

and Zheng, Yang and Härdle (2014) for SCBs of sparse functional data, Choi and

Reimherr (2018) for the ghost region of functional parameters, and Gu and Yang

(2015), Wang (2012), Wang and Yang (2009), Zheng et al. (2016), Wang et al.
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(2020), and Yu et al. (2020) for applications and theory of SCB in other contexts.

Applying the proposed SCB to the aforementioned EEG data set reveals strong

evidence that the mean function is of a simple trigonometric form; see Section 6.

The reminder of the paper is organized as follows. Section 2 states the main

theoretical results on an SCB constructed from a B-spline estimator. Section 3

contains a decomposition of the difference between the B-spline estimator and

the infeasible one, so that each component can be easily bounded. Procedures

to implement the proposed SCB are given in Section 4 with details. Section 5

documents our simulation findings, and an empirical study of the EEG functional

time series using the proposed SCB is reported in Section 6. Section 7 concludes

the paper. All technical proofs are collected in the Appendix.

2. Main Results

This section introduces the B-spline estimator for the mean function m (·)
and studies the asymptotic properties of the proposed estimator.

The FMA(∞) operators At in (1.3) are of the form

At

{ ∞∑
k=1

ckφk(·)

}
=

∞∑
k=1

atkckφk(·), atk ∈ R, k = 1, 2, . . . , t = 0, 1, . . . ,

with geometrically decaying MA coefficients |atk| < Caρ
t
a for constants Ca > 0,

for ρa ∈ (0, 1) , k = 1, 2, . . ., and t = 0, 1, . . .. Note that the geometric decay is

not as restrictive as it might seem, because it holds for the MA coefficients of

the causal ARMA model, according to equation (3.3.6) of Brockwell and Davis

(1991).

The strong functional white noise {ζt(·)}∞t=−∞ allows for its own Karhunen–

Loève representation ζt (·) =
∑∞

k=1 ζt,kφk(·), where {ζt,k}∞,∞t=−∞,k=1 are uncorre-

lated random variables with mean zero and variance one. Together with (1.3),

we have

ξt (·) =

∞∑
t′=0

At′

{ ∞∑
k=1

ζt−t′,kφk(·)

}
=

∞∑
t′=0

∞∑
k=1

at′,kζt−t′,kφk(·)

=

∞∑
k=1

( ∞∑
t′=0

at′,kζt−t′,k

)
φk(·),

which can be the Karhunen–Loève representation for {ξt(·)}nt=1, as long as each

random coefficient
∑∞

t′=0 at′,kζt−t′,k is white noise, that is, has variance one. This

can be achieved by assuming
∑∞

t=0 a
2
tk ≡ 1, for k = 1, 2, . . . , which is reasonably
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analogous to what is assumed in numerical MA(∞).

With these in mind and (1.2), the FMA(∞) model is

Ytj = m

(
j

N

)
+ ξt

(
j

N

)
+ σ

(
j

N

)
εtj

= m

(
j

N

)
+

∞∑
k=1

ξtkφk

(
j

N

)
+ σ

(
j

N

)
εtj , 1 ≤ t ≤ n, 1 ≤ j ≤ N, (2.1)

where for 1 ≤ t ≤ n, k = 1, 2, . . .,

ξt (·) =

∞∑
k=1

ξtkφk (·) , ξtk =

∞∑
t′=0

at′kζt−t′,k a.s. (2.2)

For any non-negative integer q and fraction µ ∈ (0, 1], denote by C(q,µ)[0, 1]

the space of functions with a µ-Hölder continuous qth derivative, that is,

C(q,µ)[0, 1] =

{
ϕ : [0, 1]→ R

∣∣∣∣∣‖ϕ‖q,µ = sup
x,y∈[0,1],x 6=y

∣∣∣∣ϕ(q)(x)− ϕ(q) (y)

|x− y|µ
∣∣∣∣ < +∞

}
.

Because m(·) and φk(·) both belong to C(q,µ) [0, 1] under Assumptions (A1) and

(A3) below, η (·) can be regarded as C(q,µ) [0, 1]-random variables. Had the tra-

jectories ηt (·), for 1 ≤ t ≤ n, been all observed over the interval [0, 1] entirely, the

population mean function m (·) could have been estimated by the sample mean

of n random variables valued in C(q,µ) [0, 1],

m (x) = n−1
n∑
t=1

ηt(x), x ∈ [0, 1] . (2.3)

This “estimator” is infeasible because it uses unobservables. However, it serves

as a benchmark.

To describe the spline functions, denote by {t`}Js

`=1 a sequence of equally-

spaced points, t` = `/ (Js + 1), for 0 ≤ ` ≤ Js + 1, 0 = t0 < t1 < · · · < tJs
<

1 = tJs+1, called interior knots, that divide the interval [0, 1] into (Js + 1) equal

subintervals I` = [t`, t`+1), for ` = 0, . . . , Js − 1, IJs
= [tJs

, 1]. Let H(p−2) =

H(p−2) [0, 1] be the polynomial spline space of order p on I`, for ` = 0, . . . , Js,

that consists of all (p− 2) times continuously differentiable functions on [0, 1]

that are polynomials of degree (p− 1) on subintervals I`, for ` = 0, . . . , Js. Then,

we denote by {B`,p(·), 1 ≤ ` ≤ Js + p} the pth-order B-spline basis functions of

H(p−2); hence, H(p−2) = {
∑Js+p

`=1 λ`,pB`,p(·)|λ`,p ∈ R}.
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The individual trajectories can be estimated via B-spline as

η̂t(·) ≡
Js+p∑
`=1

β̂`,p,tB`,p(·), 1 ≤ t ≤ n, (2.4)

with the coefficients {β̂1,p,t, . . . , β̂Js+p,p,t}> solving the following least squares

problem:

{
β̂1,p,t, · · · , β̂Js+p,p,t

}>
= argmin
{β1,p,...,βJs+p,p}∈RJs+p

N∑
j=1

{
Ytj −

Js+p∑
`=1

β`,pB`,p

(
j

N

)}2

.

(2.5)

The mean function m(·) is then estimated by an oracle estimator,

m̂(·) = n−1
n∑
t=1

η̂t(·), (2.6)

which mimics the infeasible estimator m (·) in (2.3).

Throughout this paper, an � bn means that an = O (bn) and bn = O (an),

as n → ∞. For any measurable function φ (·) defined on [0, 1], denote ‖φ‖∞ =

supx∈[0,1] |φ (x)|. Denote by In an integer-valued truncation index for the white

noise sequence ζtk, for −∞ < t ≤ n, which satisfies In > −10 log n/ log ρa,

In � log n. We next introduce some technical assumptions.

(A1) The mean function m (·) ∈ C(q,µ) [0, 1] for an integer q > 0 and a constant

µ ∈ (0, 1]. We denote p∗ = q + µ in what follows.

(A2) The standard deviation function σ(·) ∈ C(0,ν)[0, 1] for ν ∈ (0, 1], and cσ ≤
σ(x) ≤ Cσ, ∀x ∈ [0, 1], for constants 0 < cσ < Cσ <∞.

(A3) There exists a constant θ > 0 such that as N → ∞, n = n (N) → ∞,

n = O
(
N θ
)
.

(A4) There exists CG > 0 such that Gϕ (x, x) ≥ CG, ∀x ∈ [0, 1], with Gϕ (x, x)

defined in (2.7). The FPCs φk (·) ∈ C(q,µ) [0, 1], with
∑∞

k=1 ‖φk‖0,µ < +∞,∑∞
k=1 ‖φk‖q,µ < +∞, and

∑∞
k=1 ‖φk‖∞ < +∞; for increasing positive inte-

gers {kn}∞n=1, as n → ∞,
∑∞

kn+1 ‖φk‖∞ = O(n−1/2) and kn = O (nω) for

some ω > 0.

(A5) There are constants C1, C2 ∈ (0,+∞), γ1, γ2 ∈ (1,+∞), and β1, β2 ∈
(0, 1/2), and i.i.d. N (0, 1) variables {Ztk,ζ}n,knt=−In+1,k=1, {Ztj,ε}

n,N
t=1,j=1, where

In is the truncation index such that
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P

{
max

1≤k≤kn
max

−In+1≤τ≤n

∣∣∣∣∣
τ∑

t=−In+1

ζtk −
τ∑

t=−In+1

Ztk,ζ

∣∣∣∣∣ > nβ1

}
< C1n

−γ1 ,

P

max
1≤t≤n

max
1≤τ≤N

∣∣∣∣∣∣
τ∑
j=1

εtj −
τ∑
j=1

Ztj,ε

∣∣∣∣∣∣ > Nβ2

 < C2N
−γ2 .

(A5′) The i.i.d. variables {εtj}t≥1,j≥1 are independent of the FPC score white

noise {ζtk}t≥1,k≥1. The number of distinct distributions for all FPC score

white noise {ζtk}t≥1,k≥1 is finite. There exist constants r1 > 4 + 2ω and

r2 > 4 + 2θ, for ω in Assumption (A4) and θ in Assumption (A3), such that

E|ζ1k|r1 and E|ε11|r2 are finite.

(A6) The spline order p ≥ p∗, the number of interior knots Js = NγdN , for some

γ > 0, with dN + d−1N = O
(
logϑN

)
for some ϑ > 0 as N → ∞, and for p∗

in Assumption (A1), ν in Assumption (A2), θ in Assumption (A3), β2 in

Assumption (A5), and r1 in Assumption (A5′),

max

{
1− ν, θ

2p∗
+

2θ

r1p∗

}
< γ < 1− θ/2− β2.

Assumptions (A1) and (A2) are typical for spline smoothing. In particular,

(A1) controls the size of the bias of the spline smoother for m(·), and (A2) requires

that the variance function is uniformly bounded on its domain. Assumption (A3)

restricts the sample size n to increase by a fractional power θ of N , the number

of observations for each subject. The collective bounded smoothness of the prin-

cipal components is stated in Assumption (A4). Assumption (A5) provides the

strong Gaussian approximation of the estimation errors and the FPC score white

noise {ζtk}∞,∞t=−∞,k=1. The high level of Assumption (A5) can be ensured by an

elementary Assumption (A5′). The requirement for the number of knots of the

splines is stipulated in Assumption (A6), which ensures the smoothness of the

B-spline estimator.

Remark 1. The assumptions above are quite mild because they can easily be

satisfied in various practical situations. We propose one simple and reasonable

setting for the above parameters q, µ, θ, p, and γ, as follows: q + µ = p∗ = 4,

ν = 1, θ = 1, p = 4 (cubic spline), γ = 1/4 and dN � log logN . These constants

are used as defaults in the implementation, see Section 4.
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Define a limiting covariance function

Gϕ
(
x, x′

)
=

∞∑
k=1

φk(x)φk(x
′)

{
1 + 2

∞∑
t=0

∞∑
t′=t+1

atkat′k

}
, x, x′ ∈ [0, 1], (2.7)

and for i.i.d. standard normal variables {Uk}∞k=1, denote a Gaussian process

ϕ (x) =

∑∞
k=1

∑∞
t=1 atkUkφk (x)

Gϕ (x, x)1/2
, x ∈ [0, 1].

Then, ϕ (x) satisfies Eϕ (x) ≡ 0, Eϕ2 (x) ≡ 1, and x ∈ [0, 1], with covariance

function

Eϕ (x)ϕ
(
x′
)

= Gϕ
(
x, x′

) {
Gϕ (x, x)Gϕ

(
x′, x′

)}−1/2
, x, x′ ∈ [0, 1].

For any α ∈ (0, 1), define z1−α/2 as the 100 (1− α/2)th percentile of the standard

normal distribution. Denote by Q1−α the 100 (1− α)th percentile of the absolute

maxima distribution of ϕ (x) over [0, 1], that is,

P

[
sup
x∈[0,1]

|ϕ (x)| ≤ Q1−α

]
= 1− α. (2.8)

The following result establishes how well m(·) could be estimated had all tra-

jectories ηt (·), for 1 ≤ t ≤ n, been fully observed without error, and is used to

compute the infeasible “oracle” estimator m(·):

Theorem 1. Under Assumptions (A1), (A3)–(A5), for α ∈ (0, 1), as n → ∞,

the infeasible estimator m(·) converges at the
√
n rate to m(·) with asymptotic

covariance function Gϕ (x, x′), and thus

P

{
sup
x∈[0,1]

n1/2 |m(x)−m(x)|Gϕ (x, x)−1/2 ≤ Q1−α

}
→ 1− α,

P
{
n1/2 |m(x)−m(x)|Gϕ (x, x)−1/2 ≤ z1−α/2

}
→ 1− α, x ∈ [0, 1] .

The next result enables one to construct an SCB based on m̂ (·) in (2.6) by

showing that m̂ (·) has the same asymptotic property as m (·) in (2.3), so there

is no need to differentiate between the two.

Theorem 2. Under Assumptions (A1)–(A6), as n→∞, the B-spline estimator

m̂ (·) is oracally efficient, that is, it is asymptotically equivalent to m (·) up to

order Op
(
n−1/2

)
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sup
x∈[0,1]

n1/2 |m(x)− m̂(x)| = Op (1) .

Corollary 1. Under Assumptions (A1)–(A6), for any α ∈ (0, 1), as n→∞, an

asymptotic 100 (1− α) % correct confidence band for m(·) is

m̂(x)±Gϕ (x, x)1/2Q1−αn
−1/2, x ∈ [0, 1] , (2.9)

and an asymptotic 100 (1− α) % pointwise confidence interval for m(x) is

m̂(x)±Gϕ (x, x)1/2 z1−α/2n
−1/2, x ∈ [0, 1] .

3. Decompositon

In this section, we decompose the estimation error η̂t (x) − ηt (x) into three

convenient terms. For any L2 integrable functions φ(x) and ϕ(x), for x ∈ [0, 1],

define their theoretical inner product as 〈φ, ϕ〉 =
∫
[0,1] φ(x)ϕ(x)dx, and the empir-

ical inner product as 〈φ, ϕ〉N = N−1
∑N

j=1 φ (j/N)ϕ (j/N). The related theoreti-

cal and empirical norms are ‖φ‖22 = 〈φ, φ〉and ‖φ‖22,N = 〈φ, φ〉N . For any function

ϕ(x) defined on [0, 1], denote its discretization by ϕ = {ϕ (1/N) , . . . , ϕ (N/N)}>,

that is, the vector of its values on the N measurement points. In particular,

ηt =

{
ηt

(
1

N

)
, . . . , ηt

(
N

N

)}>
, m =

{
m

(
1

N

)
, . . . ,m

(
N

N

)}>
,

ξt =

{
ξt

(
1

N

)
, . . . , ξt

(
N

N

)}>
, ηt = m + ξt. (3.1)

Matrix algebra represents the B-spline estimator η̂t (·) in (2.4) as

η̂t (x) = {B1,p (x) , . . . , BJs+p,p (x)} (X>X)−1X>Yt, (3.2)

where Yt = (Yt1, . . . , YtN )> and the design matrix X is

X =

B1,p

(
1
N

)
· · · BJs+p,p

(
1
N

)
... · · ·

...

B1,p

(
N
N

)
· · · BJs+p,p

(
N
N

)

N×(Js+p)

. (3.3)

Define the empirical inner product matrix of the B-spline basis {B`,p(x)}Js+p
`=1 as

Vn,p =
{
〈B`,p, B`′,p〉N

}Js+p

`,`′=1
= N−1X>X, (3.4)

and according to Lemma A.3 in Cao, Yang and Todem (2012), for some constant
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Cp > 0, ∥∥V−1n,p∥∥∞ ≤ CpJs. (3.5)

Denote εt = {σ (1/N) εt1, . . . , σ(N/N)εtN}> and B(x) = {B1,p (x) , . . . , BJs+p,p(

x)}>. Then, the approximation error η̂t(x) − ηt(x) is decomposed according to

(3.1) as

η̂t(x)− ηt(x) = η̃t(x)− ηt(x) + ε̃t(x), (3.6)

where

η̃t(x) = N−1B(x)>V−1n,pX
>ηt = m̃(x) + ξ̃t(x), (3.7)

m̃(x) = N−1B(x)>V−1n,pX
>m, ξ̃t(x) = N−1B(x)>V−1n,pX

>ξt, (3.8)

ε̃t(x) = N−1B(x)>V−1n,pX
>εt. (3.9)

Thus, one has η̂t(x)− ηt(x) = ξ̃t(x)− ξt(x) + m̃(x)−m(x) + ε̃t(x). Therefore, by

(2.3) and (2.6), the approximation error of m̂ (·) in (2.6) to m (·) is

m̂(x)−m(x) = n−1
n∑
t=1

{η̃t(x)− ηt(x) + ε̃t(x)} . (3.10)

4. Implementation

This section describes procedures to implement the SCB in Corollary 1.

4.1. Knots selection

The number of knots is an important smoothing parameter, and is selected

using the AIC.

According to Remark 1, γ = 1/4 and dN � log logN meet Assumption (A6),

for γ and dN , with Js being of order N1/4 log logN . Thus, we propose selecting a

data-driven Ĵs from the integers in [0.8Nr,min (10Nr, n/2)] using the AIC, with

Nr = N1/4 log logN . Specifically, given any data set (j/N, Ytj)
N,n
j=1,t=1 from model

(1.2), denote the estimator for the jth response Ytj by Ŷtj (Nn) = η̂t (j/N), for

j = 1, . . . , N . The trajectory estimate η̂t depends on the knot selection sequence,

as given in (2.4). Then, Ĵs,t for the tth curve is the one minimizing the AIC value

Ĵs,t = argmin
Nn∈[0.8Nr,min(10Nr,n/2)]

AIC(Nn), t = 1, . . . , n, (4.1)

where AIC(Nn) = log (RSS/N)+2 (Nn + p) /N , with the residual sum of squares

RSS =
∑N

j=1{Ytj − Ŷtj(Nn)}2. Then, Ĵs is set as the median of {Ĵs,t}nt=1.

The spline estimator η̂t (·) is obtained from (3.2) by using the selected number
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of knots Ĵs, and the estimator m̂(·) is computed from (2.6).

4.2. Covariance estimation

Denote ξ̂t (x) = η̂t (x) − m̂ (x), for t = 1, . . . , n, and x ∈ [0, 1]. To estimate

the covariance function Gϕ (x, x′), divide {ξ̂t (·)}nt=1 into l groups in order, where

each group has B samples with B = [n1/5] and l = [n/B] , where [a] denotes

the integer part of a. Noting that Ĝϕ (·, ·) is the limit of the covariance function

of the process
√
n (m(·)− m̂(·)), we use m̂ (x) to mimic m (x) and

√
B δ̂j (x) to

mimic the points from the process
√
n (m(·)− m̂(·)), where

δ̂j (x) =
1

B

Bj∑
k=B(j−1)+1

ξ̂k (x) , j = 1, . . . , l, x ∈ [0, 1].

The estimator Ĝϕ (x, x′) of Gϕ (x, x′) is defined as

Ĝϕ
(
x, x′

)
=
B

l

l∑
j=1

{
δ̂j (x) δ̂j

(
x′
)
− δ̂ (x) δ̂

(
x′
)}
, x, x′ ∈ [0, 1], (4.2)

where δ̂ (x) = l−1
∑l

j=1 δ̂j (x) , x ∈ [0, 1]. Because the consistency of Ĝϕ (x, x′) is

straightforward, the proof is omitted to save space.

4.3. Estimating the percentile

To estimate the percentile Q1−α, we first obtain the estimated eigenvalues

λ̂k,ϕ and eigenfunctions ψ̂k,ϕ of Ĝϕ (x, x′) using N−1
∑N

j=1 Ĝϕ(j/N, j′/N)ψ̂k,ϕ(

j/N) = λ̂k,ϕψ̂k,ϕ (j′/N). Next, we choose the number κ of eigenfunctions us-

ing the following standard criterion: κ = argmin1≤l≤T {
∑l

k=1 λ̂k,ϕ/
∑T

k=1 λ̂k,ϕ >

0.95}, where {λk,ϕ}Tk=1 are the first T estimated positive eigenvalues.

We then generate ζ̂b (x) = Ĝϕ (x, x)−1/2
∑κ

k=1 Zk,bφ̂k,ϕ (x), where φ̂k,ϕ =

λ̂
1/2
k,ϕψ̂k,ϕ and Zk,b are i.i.d. standard normal variables with 1 ≤ k ≤ κ and b =

1, . . . , bM , where bM is a preset large integer with default value 1,000. We take

the maximal absolute value for each copy of ζ̂b (x) and use the empirical quantile

Q̂1−α of these maximum values as an estimate of Q1−α.

Finally, the SCB for the mean function is computed as

m̂(x)± n−1/2Ĝϕ (x, x)1/2 Q̂1−α, x ∈ [0, 1]. (4.3)
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5. Simulation

In this section, simulation studies are conducted to illustrate the finite-sample

performance of the proposed method. The data are generated from the following

model:

Ytj = m

(
j

N

)
+

2∑
k=1

ξtkφk

(
j

N

)
+ σ

(
j

N

)
εtj , 1 ≤ j ≤ N, 1 ≤ t ≤ n. (5.1)

Case 1: m(x) = 10 + sin {2π (x− 1/2)}, εtj ∼ N(0, 1), for 1 ≤ t ≤ n and

1 ≤ j ≤ N , φ1(x) = −2 cos {π (x− 1/2)}, and φ2(x) = sin {π (x− 1/2)}.
This setting implies λ1 = 2 and λ2 = 0.5. Here, {ξtk}n,2t=1,k=1 are generated

from (2.2), where {ζtk}n,2t=0,k=1 are i.i.d. N(0, 1) variables and

a0k = 0.8, a1k = 0.6, atk = 0, ∀t ≥ 2, k = 1, 2.

The number of curves n is taken to be 100, 400, 900, and 1600, and the

number of observations per curve N is taken to be 120, 500, 1000, and

2000. The noise level is set to include both homoscedastic σ (x) = 0.3 and

σ (x) = 0.5, and heteroscedastic σ (x) = (exp (x)− 0.9) / (exp (x) + 0.9) and

σ (x) = 0.1 sin (2πx) + 0.2.

Case 2: We set m(x) = 0.4 sin {50π (x− 1/2)} to mimic the data example in

Section 6, with εtj , φ1(x), φ2(x), and {ξtk}n,2t=1,k=1 the same as those in Case

1. The number of curves n is taken to be 100, 200, 300, and 400, and the

number of observations per curve N is taken to be 500. The noise level is

σ = 0.005.

Throughout this section, the mean function is estimated using cubic splines,

that is, p = 4. Each simulation is repeated 1,000 times.

To visualize the SCBs for the mean function, Figure 2 shows the estimated

mean functions and their 95% SCBs for the true curve m(·) in Case 1 when

σ = 0.3 and n = 100, 400, 900, and 1600, with the true curve shown as solid,

and the estimated curve and the SCBs shown as dashed. As expected, when n

increases, the SCB becomes narrower and the cubic spline estimators are closer

to the true curve. In all panels, the true mean function is entirely covered by the

SCBs.

Tables 1 to 3 display the empirical coverage rate, that is, the percentage

out of the 1,000 replications in which the true curve m (·) is covered by the cubic

spline SCBs (4.3) at the N points {1/N, . . . , (N − 1) /N, 1}. It is shown in Tables

1 and 2 for Case 1 that regardless of the noise level and/or form, the coverage
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Figure 2. Plots of the cubic estimator in (2.6) for the simulated data (dash) and 95%
SCBs in (4.3) (dotted), for m (x) (solid). The number of observations N of (a)–(d) are
100, 400, 900, and 1600, respectively. In all panels, σ = 0.3.

Table 1. Coverage frequencies of the SCB in (4.3) with p = 4, Case 1.

σ = 0.3 σ = 0.5

(n,N) α = 0.01 α = 0.05 α = 0.10 α = 0.20 α = 0.01 α = 0.05 α = 0.10 α = 0.20

(100,120) 0.962 0.897 0.840 0.708 0.957 0.896 0.831 0.692

(400,500) 0.974 0.921 0.871 0.770 0.971 0.919 0.867 0.763

(900,1000) 0.976 0.925 0.882 0.764 0.976 0.925 0.879 0.763

(1600,2000) 0.990 0.943 0.893 0.804 0.990 0.942 0.892 0.802

rate of the SCB becomes closer to the nominal confidence level as the sample size

increases. The results in Table 3 for Case 2 are very similar, providing a positive

confirmation of the asymptotic theory.
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Table 2. Coverage frequencies of the SCB in (4.3) with p = 4, Case 1.

σ (x) = (exp (x)− 0.9) / (exp (x) + 0.9) σ (x) = 0.1 sin (2πx) + 0.2

(n,N) α = 0.01 α = 0.05 α = 0.10 α = 0.20 α = 0.01 α = 0.05 α = 0.10 α = 0.20

(100,120) 0.960 0.895 0.837 0.702 0.963 0.896 0.841 0.713

(400,500) 0.959 0.911 0.845 0.748 0.961 0.912 0.847 0.748

(900,1000) 0.984 0.930 0.882 0.752 0.984 0.912 0.862 0.740

(1600,2000) 0.986 0.942 0.896 0.792 0.986 0.940 0.882 0.784

Table 3. Coverage frequencies of the SCB in (4.3) with p = 4, Case 2.

(n,N) α = 0.01 α = 0.05 α = 0.10 α = 0.20
(100,500) 0.966 0.882 0.826 0.722
(200,500) 0.972 0.912 0.844 0.714
(300,500) 0.976 0.920 0.854 0.766
(400,500) 0.980 0.938 0.872 0.761

6. Real Data Analysis

The SCB methodology is further illustrated using EEG data collected by

the research group of Prof. Linhong Ji at Tsinghua University Department of

Mechanical Engineering. EEG is known to provide rich information about brain

function. For the study, 145 university students were recruited and EEG signals

were recorded from 32 scalp locations based on the international 10/20 system of

electrode placement. The experiment required participants to go through a five-

minute closed-eye resting state while the EEG was being recorded at a sample

rate of 1,000 Hz.

We have selected one person’s EEG at the sixth scalp location, using the mid-

portion 200,000 signals divided into 400 consecutive segments of 500 recordings

each. Each piece can be regarded as an FMA trajectory, with N = 500 recordings

and n = 400 trajectories. The data range is from −29.2 to 22.8, with an estimated

noise level of 0.026; thus, the signal-to-noise ratio is around 2,000, close to that

of Case 2 in Section 5. While conceding that there are other reasonable choices

of n and N , we compute the coefficient of determination R2 for the B-spline

trajectory against the raw EEG data at each of the 400 segments. The sample

minimum, 25th percentile, median, 75th percentile and maximum of the 400 R2’s

are 0.9993, 0.9996, 0.9997, 0.9998, and 0.9999, respectively, showing very good

fits for all times t. Four randomly selected trajectories are shown in Figure 3,

together with the 500 corresponding raw EEG recordings.

The mean function reflects the overall trend of the EEG series, and serves

as a preliminary step for further data analysis. The mean function of the EEG
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Figure 3. Plots of four randomly selected B-spline trajectories (solid), together with their
raw EEG data (dash).

is estimated using (4.3) with a cubic spline (p = 4) and the number of knots

chosen using the AIC, as in Section 4. The accompanying SCB enables us to

test hypotheses on the mean function, such as a certain parametric form. Figure

4 shows that the estimated mean function looks trigonometric. Hence, we test

the null hypothesis H0 : m (x) ≡ m0 (x) ≡ a0 + a1 sin(100πx) + b1 cos(100πx),

with parameters a0, a1, and b1 estimated using the least squares method as

â0 = −0.0148, â1 = −0.632, and b̂1 = 0.157. Because the lowest confidence level

at which the SCB contains the entire null curve is 2.8% (see Figure 4), we cannot

reject the null hypothesis with a large p-value of 1−0.028 = 0.972. This suggests
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Figure 4. Plots of the null hypothesis curve m0 (x) = −0.0148 + 0.632 sin (100πx) +
0.157 cos (100πx) (thick), spline estimator m̂(x) (dashed), and 100 (1− α) % =
100 (1− 0.972) % SCB (solid) for m (x).

strongly that the mean function of the EEG data is trigonometric in form. We

also carried out SCB testing for other participants in the study, and reached

similar conclusions.

7. Conclusion

We have proposed a computationally efficient B-spline estimator for the mean

estimation in functional time series. We establish asymptotic properties of the

estimator, with an SCB as a theoretical byproduct, which proves to be a versatile

tool for inference on the true mean function. The SCB performs well numerically,

and is illustrated by testing against a hypothesis on the possible form of the mean

function. The FMA(∞) model can be extended to functional panel data, which

promises more interesting discovery of both the mean function and the functional

autocovariance function. The methodology is expected to find wide application

in studies involving physiological data such as EEG and ECG data.

Appendix

A.1. Preliminaries

Throughout this section, Op (or Op) denotes a sequence of random variables

of certain order in probability. For instance, Op
(
n−1/2

)
means a smaller order
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than n−1/2 in probability, and by Oa.s. (or Oa.s.) almost surely O (or O). In

addition, Up denotes a sequence of random functions which are Op uniformly

defined in the domain.

For any vector a = (a1, . . . , an) ∈ Rn, denote the norm ‖a‖r = (|a1|r +

· · · + |an|r)1/r, 1 ≤ r < +∞, ‖a‖∞ = max (|a1| , . . . , |an|). For any matrix

A = (aij)
m,n
i=1,j=1, denote its Lr norm as ‖A‖r = maxa∈Rn,a 6=0 ‖Aa‖r ‖a‖

−1
r , for

r < +∞ and ‖A‖r = max1≤i≤m
∑n

j=1 |aij |, for r =∞. For any random variable

X, if it is Lp-integrable, denotes its Lp norm as ‖X‖p = (E |X|p)1/p.

Lemma A.1. (Theorem 2.6.7, Csörgö and Révész (1981)) Suppose that ξi, 1 ≤
i ≤ n are iid with E(ξ1) = 0, E(ξ21) = 1 and H(x) > 0 (x ≥ 0) is an increas-

ing continuous function such that x−2−γH(x) is increasing for some γ > 0 and

x−1 logH(x) is decreasing with EH (|ξ1|) < ∞. Then there exist constants C1,

C2, a > 0 which depend only on the distribution of ξ1 and a sequence of Brown-

ian motions {Wn(m)}∞n=1, such that for any {xn}∞n=1 satisfying H−1 (n) < xn <

C1 (n log n)1/2 and Sm =
∑m

i=1 ξi, then P {max1≤m≤n |Sm −Wn (m)| > xn} ≤
C2n {H (axn)}−1 .

Lemma A.2. (Theorem 7.5, Billingsley (1999)) Let (Ω,F ,P) be a probability

space and let X map Ω into C [0, 1]: X (ω) is an element of C[0, 1] with value

Xt (ω) = X (t, ω) at t. For F ∈ C[0, 1], denote ω(F, h) = supx,x′∈[0,1],|x−x′|≤h
|F (x′) − F (x)| as the modulus of continuity. Suppose that X,X1, X2, . . . are

random functions. If
(
Xn
t1 , . . . , X

n
tk

)
→D (Xt1 , . . . , Xtk) holds for all t1, . . . , tk,

and if

lim
δ→0

lim sup
n→∞

P [ω (Xn, δ) ≥ ε] = 0 (A.1)

for each positive ε, then Xn →D X.

Lemma A.3. For n > 2, a > 2, Wi ∼ N
(
0, σ2i

)
, σi > 0, i = 1, . . . , n

P
(

max1≤i≤n

∣∣∣∣Wi

σi

∣∣∣∣ > a
√

log n

)
<

√
2

π
n1−a

2/2. (A.2)

As n→∞, (max1≤i≤n |Wi|) / (max1≤i≤n σi) ≤ max1≤i≤n |Wi/σi| = Oa.s.
(√

log n
)
.

Proof. Note that

P
(

max1≤i≤n

∣∣∣∣Wi

σi

∣∣∣∣ > a
√

log n

)
≤

n∑
i=1

P
(∣∣∣∣Wi

σi

∣∣∣∣ > a
√

log n

)
≤ 2n

{
1− Φ

(
a
√

log n
)}

< 2n
φ
(
a
√

log n
)

a
√

log n
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≤ 2nφ
(
a
√

log n
)

=

√
2

π
n1−a

2/2,

for n > 2, a > 2, which proves (A.2). The lemma follows by applying Borel-

Cantelli Lemma with choice of a > 2.

Lemma A.4. Assumption (A5) holds under Assumptions (A3), (A4) and (A5′).

Proof. Under Assumption (A5′), E |ζtk|r1 < ∞, r1 > 4 + 2ω, E |εtj |r2 < ∞,

r2 > 4+2θ, where ω is defined in Assumption (A4) and θ is defined in Assumption

(A3), so there exists some β0, β1, β2 ∈ (0, 1/2), such that r1 > (2 + ω) /β0, r2 >

(2 + θ) /β2.

Let H(x)=xr1 . Lemma A.1 entails that there exist constants c1k and ak de-

pending on the distribution of ζtk, such that for xn = (n+ In)β0 , (n+In)/H (akxn)

= a−r1k (n+ In)1−r1β0 and i.i.d. N (0, 1) variables Ztk,ζ ,

P

{
max

−In+1≤τ≤n

∣∣∣∣∣
τ∑

t=−In+1

ζtk −
τ∑

t=−In+1

Ztk,ζ

∣∣∣∣∣>(n+ In)β0

}
< c1ka

−r1
k (n+ In)1−r1β0 ,

Since there are only a finite number of distinct distributions for {ζtk}n,knt=−In+1,k=1

by Assumption (A5′), there exists a common c1 > 0, such that

max
1≤k≤kn

P

{
max

−In+1≤τ≤n

∣∣∣∣∣
τ∑

t=−In+1

ζt,k −
τ∑

t=−In+1

Ztk,ζ

∣∣∣∣∣> (n+In)β0

}
< c1 (n+In)1−r1β0 .

Since In � log n by definition, there exists ε > β0 log{(n+In)/n}/ log n, such that

nβ0+ε > (n + In)β0 . Noting that β0 log{(n + In)/n}/ log n → 0 as n → ∞, one

can choose ε < 1/2−β0. Denote β1 = β0 + ε, then β1 < 1/2 and nβ1 > (n+In)β0 .

Because 1− r1β0 < 0, it is clear that (n+ In)1−r1β0 < n1−r1β0 . Thus one has

max
1≤k≤kn

P

{
max

−In+1≤τ≤n

∣∣∣∣∣
τ∑

t=−In+1

ζt,k −
τ∑

t=−In+1

Ztk,ζ

∣∣∣∣∣ > nβ1

}
< c1n

1−r1β0 .

Recalling that r1 > (2 + ω) /β0, one can let γ1 = r1β0− 1−ω > 1, and there

exists a C1 > 0 such that

P

{
max

1≤k≤kn
max

−In+1≤τ≤n

∣∣∣∣∣
τ∑

t=−In+1

ζt,k −
τ∑

t=−In+1

Ztk,ζ

∣∣∣∣∣>nβ1

}
<knc1n

1−r1β0≤C1n
−γ1 .

Likewise, under Assumption (A5′), taking H(x) = xr2 , Lemma A.1 implies

that there exists constants c2 and b depending on the distribution of εij , such
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that for xN = Nβ2 , N/H(bxN ) = b−r2N1−r2β2 and i.i.d. standard normal random

variables {Ztj,ε}n,Nt=1,j=1 such that

max
1≤t≤n

P

 max
1≤τ≤N

∣∣∣∣∣∣
τ∑
j=1

εtj −
τ∑
j=1

Ztj,ε

∣∣∣∣∣∣ > Nβ2

 < c2b
−r2N1−r2β2 .

Assumption (A3) states that n = O
(
N θ
)
, so there is a C2 > 0 such that

P

max
1≤t≤n

max
1≤τ≤N

∣∣∣∣∣∣
τ∑
j=1

εtj −
τ∑
j=1

Ztj,ε

∣∣∣∣∣∣>Nβ2

< c2b
−r2n×N1−r2β2≤ C2N

θ+1−r2β2 .

Since r2β2 > (2 + θ), there is γ2 = r2β2−1−θ > 1 and Assumption (A5) follows.

Lemma A.5. Under Assumptions (A5) and (A5′), as n → ∞, there exist

C3, C4 ∈ (0,+∞), γ3 ∈ (1,+∞), β3 ∈ (0, 1/2) and N (0, 1) variables Ztk,ξ =∑∞
t′=0 at′kZt−t′,k,ζ , t = 1, . . . , n, k = 1, . . . , kn, with Ztk,ζ ’s as in Lemma A.4.

Consequently for 1 ≤ j ≤ n, 1 ≤ h ≤ n − j, Cov (Zjk,ξ, Zj+h,k,ξ) =
∑∞

m=0 amk
am+h,k and one has

P

{
max

1≤k≤kn
max
1≤τ≤n

∣∣∣∣∣
τ∑
t=1

ξtk −
τ∑
t=1

Ztk,ξ

∣∣∣∣∣ > C3n
β3

}
< C4n

−γ3 . (A.3)

Proof. Since
∑∞

t=0 a
2
tk = 1 and |atk| < Caρ

t
a, for t = 0, . . . , n, k = 1, . . . , kn,

together with In > −10 log n/ log ρa in Assumption (A5), then ρIna < n−10 ,

ρt
′−In
a , when t′ > In and

∑In
t=0 |atk| < M for some constant M > 0. It is clear

that

ξtk =

In∑
t′=0

at′kζt−t′,k +

∞∑
t′=In+1

at′kζt−t′,k,∣∣∣∣∣ξtk −
In∑
t′=0

at′kζt−t′,k

∣∣∣∣∣ ≤
∞∑

t′=In+1

Can
−10ρt

′−In
a |ζt−t′,k| ,∣∣∣∣∣ξtk −

In∑
t′=0

at′kζt−t′,k

∣∣∣∣∣ ≤ Can−10
∞∑
t′=1

ρt
′

a |ζt−In−t′,k| .

Hence,

max
1≤k≤kn

max
1≤τ≤n

∣∣∣∣∣
τ∑
t=1

ξtk −
τ∑
t=1

In∑
t′=0

at′kζt−t′,k

∣∣∣∣∣ ≤ max
1≤k≤kn

max
1≤t≤n

Can
−9

∞∑
t′=1

ρt
′

a |ζt−In−t′,k|
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Denote Wtk =
∑∞

t′=1 ρ
t′
a |ζt−In−t′,k| and note that supt,k E |ζt,k|

r1 < ∞, where

r1 > 4 + 2ω,

‖Wtk‖r1 ≤
∞∑
t′=1

ρt
′

a ‖ζt−In−t′,k‖r1 <∞.

Therefore, EW r1
tk < K for some K > 0, t = 1, . . . , n, k = 1, . . . , kn. Note that

kn = O (nω) in Assumption (A4), thus

P
(
Can

−9 max
1≤k≤kn

max
1≤t≤n

Wtk > Mnβ3

)
< nkn

Cr1a K

M r1
n−(β3+9)r1

<
Cr1a K

M r1
n−(β3+9)r1+1+ω.

So,

P

[
max

1≤k≤kn
max
1≤τ≤n

∣∣∣∣∣
τ∑
t=1

ξtk −
τ∑
t=1

In∑
t′=0

at′kζt−t′,k

∣∣∣∣∣ > Mnβ3

]
<
Cr1a K

M r1
n−(β3+9)r1+1+ω.

Next, define Utk =
∑∞

t′=In+1 at′kZt−t′,k,ζ , then Utk ∼ N
(
0,
∑∞

t′=In+1 a
2
t′k

)
, k =

1, . . . , kn. It is obvious that

max
1≤k≤kn

max
1≤τ≤n

∣∣∣∣∣
τ∑
t=1

∞∑
t′=In+1

at′kZt−t′,k,ζ

∣∣∣∣∣ ≤ n max
1≤k≤kn

max
1≤t≤n

|Utk| .

Note that
∑∞

t′=In+1 a
2
t′k < Cn−20 for some C > 0, k = 1, . . . , kn and kn = O (nω)

for some ω > 0, one has

P
(
n max

1≤k≤kn
max
1≤t≤n

|Utk| > Mnβ3

)
< nkn

Cn−20

M2 (nβ3−1)
2 <

C

M2
n−17−2β3+ω,

which leads to

P

[
max

1≤k≤kn
max
1≤τ≤n

∣∣∣∣∣
τ∑
t=1

∞∑
t′=In+1

at′kZt−t′,k,ζ

∣∣∣∣∣ > Mnβ3

]
< nkn

Cn−20

M2 (nβ3−1)
2

<
C

M2
n−17−2β3+ω.

Now Assumption (A5) entails that for 0 ≤ t′ ≤ In, 1 ≤ t ≤ n, −In+1 ≤ t−t′ ≤ n

P

{
max

1≤k≤kn
max

−In+1≤τ≤n

∣∣∣∣∣
τ∑

t=−In+1

ζtk −
τ∑

t=−In+1

Ztk,ζ

∣∣∣∣∣ > nβ3

}
< C1n

−γ1 .
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Then,

P

[
max

1≤k≤kn
max
1≤τ≤n

∣∣∣∣∣
τ∑
t=1

In∑
t′=0

at′k(ζt−t′,k − Zt−t′,k,ζ)

∣∣∣∣∣ > 2Mnβ3

]

= P

[
max

1≤k≤kn
max
1≤τ≤n

∣∣∣∣∣
In∑
t′=0

at′k

τ∑
t=1

(ζt−t′,k − Zt−t′,k,ζ)

∣∣∣∣∣ > 2Mnβ3

]

≤ P

[
max

1≤k≤kn

{
In∑
t′=0

|at′k| max
1≤τ≤n

∣∣∣∣∣
τ∑
t=1

ζt−t′,k −
τ∑
t=1

Zt−t′,k,ζ

∣∣∣∣∣
}
> 2Mnβ3

]

≤ P

[
M max

1≤k≤kn
max
1≤τ≤n

max
0≤t′≤In

∣∣∣∣∣
τ∑
t=1

ζt−t′,k −
τ∑
t=1

Zt−t′,k,ζ

∣∣∣∣∣ > 2Mnβ3

]

≤ P

{
2 max
1≤k≤kn

max
1≤τ≤n

∣∣∣∣∣
τ∑

t=−In+1

ζtk −
τ∑

t=−In+1

Ztk,ζ

∣∣∣∣∣ > 2nβ3

}
< C1n

−γ1

Hence,

P

[
max

1≤k≤kn
max
1≤τ≤n

∣∣∣∣∣
τ∑
t=1

ξtk −
τ∑
t=1

( ∞∑
t′=0

at′kZt−t′,k,ζ

)∣∣∣∣∣ > 4Mnβ3

]

= P

[
max

1≤k≤kn
max
1≤τ≤n

∣∣∣∣∣
τ∑
t=1

ξtk −
τ∑
t=1

In∑
t′=0

at′kζt−t′,k +

τ∑
t=1

In∑
t′=0

at′kζt−t′,k

−
τ∑
t=1

In∑
t′=0

at′kZt−t′,k,ζ −
τ∑
t=1

∞∑
t′=In+1

at′kZt−t′,k,ζ

∣∣∣∣∣ > 4Mnβ3

]

≤ P

[
max

1≤k≤kn
max
1≤τ≤n

{∣∣∣∣∣
τ∑
t=1

ξtk −
τ∑
t=1

In∑
t′=0

at′kζt−t′,k

∣∣∣∣∣+

∣∣∣∣∣
τ∑
t=1

In∑
t′=0

at′kζt−t′,k

−
τ∑
t=1

In∑
t′=0

at′kZt−t′,k,ζ

∣∣∣∣∣+

∣∣∣∣∣
τ∑
t=1

∞∑
t′=In+1

at′kZt−t′,k,ζ

∣∣∣∣∣
}
> 4Mnβ3

]

≤ P

[
max

1≤k≤kn
max
1≤τ≤n

∣∣∣∣∣
τ∑
t=1

ξtk −
τ∑
t=1

In∑
t′=0

at′kζt−t′,k

∣∣∣∣∣ > Mnβ3

]

+ P

[
max

1≤k≤kn
max
1≤τ≤n

∣∣∣∣∣
τ∑
t=1

In∑
t′=0

at′kζt−t′,k −
τ∑
t=1

In∑
t′=0

at′kZt−t′,k,ζ

∣∣∣∣∣ > 2Mnβ3

]

+ P

[
max

1≤k≤kn
max
1≤τ≤n

∣∣∣∣∣
τ∑
t=1

∞∑
t′=In+1

at′kZt−t′,k,ζ

∣∣∣∣∣ > Mnβ3

]

≤ Cr1a K

M r1
n−(β3+9)r1+1+ω +

C

M2
n−17−2β3+ω + C1n

−γ1 < C4n
−γ3
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Denote C3 = 4M and Ztk,ξ =
∑∞

t′=0 at′kZt−t′,k,ζ , t = 1, . . . , n, k = 1, . . . , kn, then

{Ztk,ξ}n,knt=1,k=1 are N(0, 1) variables and Cov (Zj,k,ξ, Zj+h,k,ξ) =
∑∞

m=0 amkam+h,k,

1 ≤ j ≤ n, 1 ≤ h ≤ n− j, thus

P

[
max

1≤k≤kn
max
1≤τ≤n

∣∣∣∣∣
τ∑
t=1

ξtk −
τ∑
t=1

Ztk,ξ

∣∣∣∣∣ > C3n
β3

]
< C4n

−γ3 .

The proof is completed.

Lemma A.6. Under Assumptions (A2), (A5) and (A6), as n→∞

max
1≤`≤Js+p

∣∣∣∣∣∣(nN)−1
n∑
t=1

N∑
j=1

B`,p

(
j

N

)
σ

(
j

N

)
Ztj,ε

∣∣∣∣∣∣
= Oa.s.

(
n−1/2N−1/2J−1/2s log1/2N

)
.

Proof. Note that (nN)−1
∑n

t=1

∑N
j=1B`,p(j/N)σ (j/N)Ztj,ε = N−1

∑N
j=1B`,p(j

/N)σ (j/N)Z·j,ε, where Z·j,ε = n−1
∑n

t=1 Ztj,ε, one can apply Lemma A.3 to ob-

tain uniform bound for zero mean Gaussian variablesN−1
∑N

j=1B`,p(j/N)σ (j/N)

Z·j,ε, 1 ≤ ` ≤ Js + p with variance

E

N−1
N∑
j=1

B`,p

(
j

N

)
σ

(
j

N

)
Z·j,ε


2

= n−1N−2
N∑
j=1

B2
`,p

(
j

N

)
σ2
(
j

N

)
= n−1N−1 ‖B`,pσ‖22,N � J

−1
s N−1n−1.

It follows from Lemma A.3 that

max
1≤`≤Js+p

∣∣∣∣∣∣N−1
N∑
j=1

B`,p

(
j

N

)
σ

(
j

N

)
Z·j,ε

∣∣∣∣∣∣
= Oa.s.

{
n−1/2N−1/2J−1/2s log1/2 (Js + p)

}
= Oa.s.

(
n−1/2N−1/2J−1/2s log1/2N

)
, (A.4)

where the last step follows from Assumption (A6) on the order of Js relative to

N . Thus the lemma holds.

Lemma A.7. Under Assumptions (A2), (A5) and (A6), as n→∞

sup
x∈[0,1]

n−1

∣∣∣∣∣
n∑
t=1

ε̃t(x)

∣∣∣∣∣ = Oa.s.
(
n−1/2N−1/2J1/2

s log1/2N +Nβ2−1Js

)
.
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Proof. According to Assumption (A5), it is trivial that

max
1≤t≤n

max
1≤j≤N

∣∣∣∣∣N−1
j∑
i=1

(εti − Zti,ε)

∣∣∣∣∣ = Oa.s.(Nβ2−1).

Next, the B spline basis satisfies∣∣∣∣B`,p( j

N

)
−B`,p

(
j + 1

N

)∣∣∣∣ ≤ N−1 ‖B`,p‖0,1 ≤ CJsN−1
uniformly over 1 ≤ j ≤ N and 1 ≤ ` ≤ Js + p, while Assumptions (A2) and (A6)

imply that JsN
−1 ∼ NγdNN

−1 ∼ Nγ−1dN � N−ν , hence∣∣∣∣σ( j

N

)
− σ

(
j + 1

N

)∣∣∣∣ ≤ N−ν ‖σ‖0,ν ≤ CJsN−1
uniformly over 1 ≤ j ≤ N . Note that for 1 ≤ ` ≤ Js + p, both B`,p(·) and σ(·)
are bounded on [0, 1], then∣∣∣∣B`,p( j

N

)
σ

(
j

N

)
−B`,p

(
j + 1

N

)
σ

(
j + 1

N

)∣∣∣∣
=

∣∣∣∣ {B`,p( j

N

)
−B`,p

(
j + 1

N

)
+B`,p

(
j + 1

N

)}
σ

(
j

N

)
−B`,p

(
j + 1

N

)
σ

(
j + 1

N

) ∣∣∣∣
≤
∣∣∣∣B`,p( j

N

)
−B`,p

(
j + 1

N

)∣∣∣∣σ( j

N

)
+

∣∣∣∣σ( j

N

)
− σ

(
j + 1

N

)∣∣∣∣B`,p(j + 1

N

)
≤ CJsN−1.

Since the support of B`,p(·) has length at most p/ (Js + 1), one obtains that

N−1∑
j=1

∣∣∣∣B`,p( j

N

)
σ

(
j

N

)
−B`,p

(
j + 1

N

)
σ

(
j + 1

N

)∣∣∣∣ ≤ C
Hence,∣∣∣∣∣∣(nN)−1

n∑
t=1

N∑
j=1

B`,p

(
j

N

)
σ

(
j

N

)
(εtj − Ztj,ε)

∣∣∣∣∣∣
=

∣∣∣∣∣n−1
n∑
t=1

[
N−1∑
j=1

{
B`,p

(
j

N

)
σ

(
j

N

)
−B`,p

(
j + 1

N

)
σ

(
j + 1

N

)}
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N−1
j∑
i=1

(εti − Zti,ε)

]
+ n−1

n∑
t=1

{
B`,p (1)σ (1)N−1

N∑
j=1

(εtj − Ztj,ε)

}∣∣∣∣∣
≤

{
max
1≤t≤n

max
1≤j≤N

∣∣∣∣∣N−1
j∑
i=1

(εti − Zti,ε)

∣∣∣∣∣
}{

N−1∑
j=1

∣∣∣∣∣B`,p
(
j

N

)
σ

(
j

N

)

−B`,p
(
j + 1

N

)
σ

(
j + 1

N

) ∣∣∣∣∣
}

+ C

{
max
1≤t≤n

max
1≤j≤N

∣∣∣∣∣N−1
j∑
i=1

(εti − Zti,ε)

∣∣∣∣∣
}

= Oa.s
{
Nβ2−1 +Nβ2−1

}
= Oa.s

(
Nβ2−1

)
.

Hence,

max
1≤`≤Js+p

∣∣∣∣∣∣(nN)−1
n∑
t=1

N∑
j=1

B`,p

(
j

N

)
σ

(
j

N

)
(εtj − Ztj,ε)

∣∣∣∣∣∣ = Oa.s
(
Nβ2−1

)
.

The above inequality and Lemma A.6 together imply that

max
1≤`≤Js+p

∣∣∣∣∣∣(nN)−1
n∑
t=1

N∑
j=1

B`,p

(
j

N

)
σ

(
j

N

)
εtj

∣∣∣∣∣∣
= Oa.s.

(
n−1/2N−1/2J−1/2s log1/2N +Nβ2−1

)
.

Clearly (nN)−1X>
∑n

t=1 εt={(nN)−1
∑n

t=1

∑N
j=1B`,p(j/N)σ(j/N)εtj}Js+p

`=1 , thus∥∥∥∥∥(nN)−1X>
n∑
t=1

εt

∥∥∥∥∥
∞

= Oa.s.
(
n−1/2N−1/2J−1/2s log1/2N +Nβ2−1

)
.

Recalling the definition of ε̃i(x) in (3.9) and equation (3.5), the proof is completed

by

sup
x∈[0,1]

n−1

∣∣∣∣∣
n∑
t=1

ε̃t(x)

∣∣∣∣∣ =

∥∥∥∥∥n−1N−1B(x)>V−1n,pX
>

n∑
t=1

εt

∥∥∥∥∥
∞

= Oa.s.
(
n−1/2N−1/2J1/2

s log1/2N +Nβ2−1Js

)
.

A.2. Proof of Theorem 2

For any k = 1, 2, . . ., let φk = (φk(1/N), . . . , φk (N/N))>, and denote φ̃k(x) =

N−1B(x)>V−1n,pX
>φk. According to (3.7), η̃t(x) = m̃(x) +

∑∞
k=1 ξtkφ̃k(x), there-

fore,
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η̃t(x)− ηt(x) = m̃(x)−m(x) +

∞∑
k=1

ξtk

{
φ̃k(x)− φk(x)

}
.

Lemma A.4 of Cao, Yang and Todem (2012) provides a constant Cq,µ > 0, such

that

‖m̃−m‖∞ ≤Cq,µ ‖m‖q,µ J
−p∗
s , (A.5)

‖φ̃k − φk‖∞ ≤Cq,µ ‖φk‖q,µ J
−p∗
s , k ≥ 1 (A.6)

Thus (A.5) and (A.6), and Assumption (A4) lead to

‖η̃t − ηt‖∞ ≤ ‖m̃−m‖∞ +

∞∑
k=1

|ξtk|‖φ̃k − φk‖∞ ≤ Cq,µWtJ
−p∗
s ,

where Wt = ‖m‖q,µ +
∑∞

k=1 |ξtk| ‖φk‖q,µ, t = 1, . . . , n, are identically distributed

nonnegative random variables with finite mean. Assumption (A6) then implies

that

P
{

max
1≤t≤n

Wt > (n log n)2/r1
}
≤ n EW r1

t

(n log n)2
= EW r1

t n
−1 (log n)−2 ,

thus,
∞∑
n=1

P
{

max
1≤t≤n

Wt > n log n

}
≤ EW r1

t

∞∑
n=1

n−1 (log n)−2 < +∞,

so max1≤t≤nWt = Oa.s.{(n log n)2/r1},max1≤t≤n ‖η̃t − ηt‖∞ = Oa.s.{J−p
∗

s (n log n

)2/r1}, thus, ∥∥∥∥∥n−1
n∑
t=1

{η̃t(x)− ηt(x)}

∥∥∥∥∥
∞

= Oa.s.{J−p
∗

s (n log n)2/r1}.

By noticing that
∥∥n−1∑n

t=1 ε̃t(x)
∥∥
∞ = Oa.s.(n−1/2N−1/2J1/2

s log1/2N+Nβ2−1Js)

in Lemma A.7 and 3.10, one obtaions that

sup
x∈[0,1]

|m(x)− m̂(x)|

= Oa.s.
{
J−p

∗

s (n log n)2/r1 + n−1/2N−1/2J1/2
s log1/2N +Nβ2−1Js

}
The orders of Js and n relative to N in Assumptions (A3) and (A6) imply that

sup
x∈[0,1]

n1/2 |m(x)− m̂(x)| = Op (1) .
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The proof is completed.

A.3. Proof of Theorem 1

Noting that Cov (Zjk,ξ, Zj+h,k,ξ) =
∑∞

m=0 amkam+h,k, 1 ≤ j ≤ n, 1 ≤ h ≤
n− j in Lemma A.5, it is easy to compute that

Var
(
Z ·k,ξ

)
= n−1 + 2n−2

{
n−1∑
m=1

∞∑
t=0

(n−m)atkat+m,k

}
.

Denote ϕ̃k (x) = Z ·k,ξφk (x), k = 1, . . . ,∞ and define ϕn (x) = n1/2Gϕ (x, x)−1/2∑∞
k=1 ϕ̃k (x), then for any (x1, . . . , xl) ∈ [0, 1]l and (b1, . . . , bl) ∈ Rl,

lim
n→∞

Var

(
l∑

i=1

biϕn (xi)

)

= lim
n→∞

Var

(
n1/2

l∑
i=1

biGϕ (xi, xi)
−1/2

∞∑
k=1

Z ·k,ξφk (xi)

)

=

l∑
i=1

b2i + 2
∑

1≤i<j≤l
bibjGϕ (xi, xi)

−1/2Gϕ (xj , xj)
−1/2Gϕ (xi, xj)

= Var

(
l∑

i=1

biϕ (xi)

)
.

Hence

{ϕn(x1), . . . , ϕn(xl)} →D {ϕ(x1), . . . , ϕ(xl)} . (A.7)

Assumption (A4) states that Gϕ (x, x) ≥ Cϕ > 0, x ∈ [0, 1], so ω (ϕn, δ) satisfies

ω (ϕn, δ) = sup
x,x′∈[0,1],|x−x′|≤δ

∣∣ϕn(x)− ϕn(x′)
∣∣

≤ sup
x,x′∈[0,1],|x−x′|≤δ

n1/2C−1/2ϕ

∞∑
k=1

∣∣φk(x)− φk(x′)
∣∣ ∣∣Z ·k,ξ∣∣

≤ n1/2C−1/2ϕ δµ
∞∑
k=1

‖φk‖0,µ
∣∣Z ·k,ξ∣∣ .

Since E
∣∣Z ·k,ξ∣∣ = (2/π)1/2Var

(
Z ·k,ξ

)1/2
, thus

P [ω (ϕn, δ) ≥ ε] ≤ P

(
n1/2δµC−1/2ϕ

∞∑
k=1

‖φk‖0,µ
∣∣Z ·k,ξ∣∣ ≥ ε

)
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≤
(2/π)1/2δµC

−1/2
ϕ

∑∞
k=1 ‖φk‖0,µ

{
nVar

(
Z ·k,ξ

)}1/2
ε

.

Since
∑∞

k=1 ‖φk‖0,µ < +∞ in Assumption (A4) and nVar
(
Z ·k,ξ

)
→ 1 + 2

∑∞
t=0∑∞

t′=t+1 atkat′k as n→∞, it is clear that

lim
δ→0

lim sup
n→∞

(2/π)1/2δµC
−1/2
ϕ

∑∞
k=1 ‖φk‖0,µ

{
nVar

(
Z ·k,ξ

)}1/2
ε

= 0.

Thus

lim
δ→0

lim sup
n→∞

P [ω (ϕn, δ) ≥ ε] = 0.

According to (A.7) and Lemma A.2, ϕn →D ϕ.

Note that

n1/2 sup
x∈[0,1]

Gϕ (x, x)−1/2

∣∣∣∣∣
∞∑
k=1

(
Z ·k,ξ − ξ·k

)
φk(x)

∣∣∣∣∣
≤ n1/2 sup

x∈[0,1]
Gϕ (x, x)−1/2

kn∑
k=1

∣∣Z ·k,ξ − ξ·k∣∣ |φk(x)|

+ n1/2 sup
x∈[0,1]

Gϕ (x, x)−1/2
∞∑

k=kn+1

∣∣Z ·k,ξ − ξ·k∣∣ |φk(x)| .

Applying (A.3) leads to that

P
{

max
1≤k≤kn

∣∣ξ·k − Z ·k,ξ∣∣ > C3n
β3−1

}
< C4n

−γ3 .

By Borel Cantelli lemma, one has

max
1≤k≤kn

∣∣ξ·k − Z ·k,ξ∣∣ = Oa.s.
(
nβ3−1

)
. (A.8)

By Assumption (A4),
∑∞

k=1 ‖φk‖∞ < +∞, thus
∑kn

k=1 ‖φk‖∞ < C for some

constant C. Together with (A.8) and Assumption (A3), one obtains that

n1/2 sup
x∈[0,1]

Gϕ (x, x)−1/2
kn∑
k=1

∣∣Z ·k,ξ − ξ·k∣∣ |φk(x)|

≤ n1/2C−1/2G sup
x∈[0,1]

kn∑
k=1

|φk(x)| max
1≤k≤kn

∣∣ξ·k − Z ·k,ξ∣∣
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≤ n1/2C−1/2G

kn∑
k=1

‖φk‖∞ max
1≤k≤kn

∣∣ξ·k − Z ·k,ξ∣∣
≤ n1/2C−1/2G COa.s.

(
nβ3−1

)
= Oa.s.

(
nβ3−1/2

)
= Oa.s. (1) (A.9)

Note that

(
E
∣∣ξ·k∣∣)2 =

(
E
∣∣Z ·k,ξ∣∣)2 ≤ EZ2

·k,ξ = n−1 + 2n−2

{
n−1∑
m=1

∞∑
t=0

(n−m)atkat+m,k

}
,

thus E
∣∣ξ·k∣∣ = E

∣∣Z ·k,ξ∣∣ = O
(
n−1/2

)
. In addition, Assumption (A4) states that∑∞

k=kn+1 ‖φk‖∞ = O
(
n−1/2

)
, then there exists

En1/2 sup
x∈[0,1]

Gϕ (x, x)−1/2
∞∑

k=kn+1

∣∣Z ·k,ξ − ξ·k∣∣ |φk(x)|

≤ n1/2C−1/2G

∞∑
k=kn+1

‖φk‖∞ E
∣∣Z ·k,ξ − ξ·k∣∣

≤ n1/2C−1/2G O
(
n−1/2

)
O
(
n−1/2

)
= O (1) (A.10)

Combining (A.9) and (A.10), one has

En1/2 sup
x∈[0,1]

Gϕ (x, x)−1/2

∣∣∣∣∣
∞∑
k=1

(
Z ·k,ξ − ξ·k

)
φk(x)

∣∣∣∣∣ = O (1) ,

hence

n1/2 sup
x∈[0,1]

Gϕ (x, x)−1/2

∣∣∣∣∣
∞∑
k=1

(
Z ·k,ξ − ξ·k

)
φk(x)

∣∣∣∣∣ = Op (1) .

Note that

ϕn(x)− n1/2Gϕ (x, x)−1/2 {m (x)−m (x)}

= n1/2Gϕ (x, x)−1/2
∞∑
k=1

(
Z ·k,ξ − ξ·k

)
φk(x),

hence

sup
x∈[0,1]

∣∣∣ϕn(x)− n1/2Gϕ (x, x)−1/2 {m (x)−m (x)}
∣∣∣ = Op (1) .

The proof is completed by applying Slutsky’s theorem.
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