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Abstract: We present a reparameterization of vector autoregressive moving aver-

age (VARMA) models that allows parameter estimation under the constraints of

causality and invertibility. This reparameterization is accomplished via a bijection

from the complicated causal-invertible parameter space to Euclidean space. The

bijection facilitates computation of maximum likelihood estimators (MLE) via un-

constrained optimization, as well as computation of Bayesian estimates via prior

specification on the constrained space.

The proposed parameterization is connected to the Schur-stability of polyno-

mials and the associated Stein transformation, which are often used in dynamical

systems; we establish a fundamental characterization of Schur stable polynomials

via a novel characterization of positive definite block Toeplitz matrices. Our results

also generalize some classical results in dynamical systems.

Key words and phrases: Block Toeplitz matrix, constrained estimation, reparame-

terization, Schur stability.

1. Introduction

The article develops a method for estimating the parameters of a general

VARMA model under the constraint that the estimated process is causal and

invertible. To our knowledge there are no existing procedures or software that

maintain the restrictions of causality and invertibility in the estimation process

(except in such special cases as the Yule-Walker for vector autoregressions). We

fill that gap by producing a parameterization of the process that automatically

maintains the constraints during estimation. Because VARMA models (partic-

ularly vector autoregression models) are ubiquitous in time series applications

and because causality and invertibility are often imposed on the models (but not

always enforced during the estimation process due to the complexity of the con-

straints), it is important to estimate VARMA processes under such constraints.

That fact that VARMA models often lead to forecasting gains (Athanasopoulos

and Vahid (2008), Simionescu (2013)) compared to vector autoregressive mod-

els makes it important that there are available tools for fitting causal invertible
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VARMA models. The methods described in this work are equally applicable to

fitting VAR models and VARMA models.

Recently, interest has grown in non-causal VARMA processes (Nyberg and

Saikkonen (2014), Gourieroux and Jasiak (2016)) and non-Gaussian models

(Breidt et al. (1991); Breidt, Davis and Trindade (2001), Lanne and Saikko-

nen (2013); Giurcanu (2015); Nyberg, Lanne and Saarinen (2012)). Results here

describe the complement to the non-causal parameter space, implying possible

applications to these topics and evaluation of the likelihood through autocovari-

ances; non-Gaussian processes can be considered. But estimating causal invert-

ible VARMA models with Gaussian innovations remains a topic of interest, par-

ticularly for producing long-term forecasts and understanding stability in linear

dynamical systems.

A mean zero VARMA(p, q) process of dimension m, denoted by {Xt}, is

defined by the relation

Φ(B)Xt = Θ(B)Zt, (1.1)

indexed by time t. The innovations, {Zt}, satisfy E(Zt) = 0, Var(Zt) = Σ,

and Cov(Zs, Zt) = 0 for s 6= t; B represents the back-shift operator; for any

complex number z ∈ C, the autoregressive polynomial Φ(z) and the moving

average polynomial Θ(z) are defined as

Φ(z) = Im − Φ1z − · · · − Φpz
p, (1.2)

Θ(z) = Im + Θ1z + · · ·+ Θqz
q, (1.3)

withm×m coefficient matrices Φ1, . . . ,Φp and Θ1, . . . ,Θq, respectively. Through-

out the paper Im will denote the identity matrix of dimension m. A VARMA(p, 0)

process will be referred to as a VAR(p) process (vector autoregression of order

p) and a VARMA(0, q) process will be referred to as a VMA(q) process (vector

moving average of order q). In the current investigation assume that the pro-

cess is identified and the autoregressive and the moving average polynomials do

not share any common factors (however, our parameterization does allow for the

possibility of common factors). We understand the gains from methodology to

remove common roots, such as reduced echelon form (Tsay (2014)), but have

not found shared roots to be a problem in our estimation. A process is weakly

stationary if there exists a matrix-valued function Γ such that Γ(k) = E(XtX
′
t−k)

for k ∈ Z.

The subclass of stationary VARMA processes that we study is the class of

causal-invertible VARMA processes. The process is causal if (1.1) has exactly

one stationary solution of the form Xt = Ψ(B)Zt where Ψ(z) =
∑∞

j=0 Ψjz
j , z ∈
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C for a sequence of coefficient matrices {Ψj , j ≥ 0}. Causality ensures the pro-

cess is independent of future innovations, thereby allowing one to forecast ahead

based on current and past observations. The VARMA(p, q) is called invert-

ible if, based on (1.1), the innovation process Zt can be given the representation

Zt = Π(B)Xt in terms of a stationary solutionXt, with Π(z) =
∑∞

j=0 Πjz
j , z ∈ C.

Although spectral factorization methods (Zadrozny (1998)) can be used to render

a VARMA model as causal and invertible, this has the disadvantage of numerical

instability when roots are close to unity; moreover, one does not obtain an explicit

parameterization of the parameter space, which interferes with the elicitation of

Bayesian priors.

Likelihood-based estimators often have better finite sample efficiency than

moment-based estimators (Fuller (1995, Chap. 8)) provided the assumed likeli-

hood is approximately correctly specified. Thus, the MLE obtained by maximiz-

ing the full Gaussian likelihood of a causal invertible VARMA process (including

the contribution of the initial observations) is preferable. However, due to com-

plexity of the causality and invertibility constraints, along with the highly compli-

cated form of VARMA likelihood, MLE estimation becomes a nearly intractable

problem.

There is a long literature of likelihood computation and optimization for

the VARMA model, originating with univariate ARMA models. Before mod-

ern computing power, researchers often developed various approximations for

the likelihood under which approximate MLE were obtained and their proper-

ties were studied (Whittle (1951), Tunnicliffe-Wilson (1973), Godolphin (1984)).

Some authors derived convenient algorithms for computing the VARMA likeli-

hood (Nicholls and Hall (1979), Ansley (1988), Koreisha and Pukkila (1989),

Reinsel, Basu and Yap (1992)). Other authors (Mauricio (1995, 1997), Mauricio

(2002), Metaxoglou and Smith (2007)) provide EM-type algorithms along with

a state-space formulation that makes likelihood computation considerably faster

and improves convergence. However, none of the procedures guarantee that the

estimated VARMA process is causal and invertible.

Along with maximum likelihood estimation, much attention has been de-

voted to Bayesian vector autoregression (BVAR) and prior specification for such

models. The popular choices for prior specification include those described in Lit-

terman (1980), Doan, Litterman and Sims (1984), Kadiyala and Karlsson (1997),

and Sims and Zha (1998). These formulations usually have normal priors on the

coefficients along with inverse Wishart priors on the innovation covariance ma-

trix. The supports of the normal priors are the entire Euclidean spaces, and hence
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there is positive probability that the posterior estimates may lie outside the con-

straint set determined by causality and invertibility. Depending on the sample

size and the dimension of the parameter space, significant posterior probability

may exist for estimating processes that are not causal, as demonstrated in our

simulations. This is highly undesirable in applications where long-term behavior

of the underlying stationary system is being estimated. It is known that having

prior mass outside the constrained parameter set could make Bayesian computa-

tion inefficient (Marin and Robert (2007)) and in such situations some authors

have advocated making parameter transformations to render the parameter re-

striction free (Albert (2009)). Recent interest in Bayesian macroeconomics has

spawned research in BVAR; (Wise (1956)). Koop and Potter (2011) suggested

Bayesian schemes for estimating time varying VARs under inequality restriction.

However, their method does not guarantee that the posterior is supported only

on the causal set. Our methodology is supported on the causal set but does not

elicit a convenient parameterization of the exact posterior distribution on the

VARMA parameters. That is to be expected given the complicated nature of

the causal invertible parameter space and samples from the induced posterior

distribution generally appear normally distributed.

To avoid the numerical complexities and instabilities of constrained opti-

mization or constrained prior specification, one can re-parameterize the problem

via a transformation such that the new parameters are unconstrained. Parame-

ter transformation has been successfully used in many complicated constrained

estimation problems. Some examples include estimation of covariance matrices

under positive-definiteness constraints (Lindstrom and Bates (1988), Leonard

and Hsu (2002), Pinheiro and Bates (1996)) and order-constrained parameters

(Dunson and Neelon (2003)). Previous attempts of such parameterization for uni-

variate ARMA models include Wise (1956), Barndorff-Nielsen and Schou (1973),

Marriott and Smith (1992), and Quenneville and McLeod (1992). However, the

techniques of these papers are not easily adaptable to the vector case.

It is our contention that in complex constrained parameter problems, it is

much easier to carry out inference under suitable parameter transformations.

Transformation of parameters to quantities that are free (or nearly free) of con-

straints can present feasible solutions to complicated constrained inference prob-

lems. In this article, we derive a bijection of the constrained parameter space of

a causal invertible VARMA to Euclidean space, providing a parameterization of

causal invertible VARMA in terms of unconstrained parameters. The bijection

goes beyond just likelihood based computation. It can be used to obtain mini-
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mum distance estimators that are constrained, and eases optimization in terms

of the transformed parameters. The mapping is quite complicated, so we illus-

trate the first order VAR bijection in Section S2 of the supplementary material.

Additional numerical illustrations as well as notes on computational aspects of

the proposed algorithm are given in Section S3 in the supplement.

2 Schur-stability

Causality, Invertibility, Schur-Stability and Estimation

A VARMA(p, q) process is causal if det(Φ(z)) 6= 0, for all z ∈ C such that

|z| ≤ 1 (Brockwell and Davis (1991, Thm. 11.3.1)). The converse is also true

under the assumption that the polynomials det(Φ(z)) and det(Θ(z)) do not share

any common factor. For what follows it will be convenient to characterize the

causal process in terms of the associated monic polynomial

Φ̃(z) := zpΦ(z−1) = Imz
p − Φ1z

p−1 − · · · − Φp.

A VARMA process defined by (1.1) is causal if det(Φ̃(z)) 6= 0, for all z ∈ C
such that |z| ≥ 1, or equivalently the process in (1.1) is causal if all roots of

det(Φ̃(z)) = 0 lie within the open unit disc D = {z ∈ C : |z| < 1}. Similarly, let

Θ̃(z) := zqΘ(z−1) = Imz
q + Θ1z

q−1 + · · ·+ Θq.

Invertibility of the process is equivalent to the property that all roots of Θ̃(z) lie

within D.

We refer to Φ̃(z), Θ̃(z) and Σ as the parameters of the process defined by

(1.1) and when it is clear we interchangeably refer to the associated coefficient

matrices Φ = (Φ1, . . . ,Φp), Θ = (Θ1, . . . ,Θq) and Σ as the parameters as well.

Before describing the parameter space of a causal invertible VARMA process,

we introduce further notations. Let ≥L denote the Loewner partial ordering for

symmetric matrices. Take

Sm
++ = {Σ ∈ Sm : Σ >L 0} (2.1)

to be the set of all m ×m symmetric positive definite matrices that constitute

the interior of the convex cone, Sm
+ , of m×m positive semi-definite matrices in

Sm, the set of m×m symmetric matrices. A matrix monic polynomial A(z) =

zkIm − A1z
k−1 − · · · − Ak, is called Schur-stable if all roots of det(A(z)) = 0 lie

within the unit disc D. Such polynomials are common in the dynamical systems

literature (Bhatia (1997); Kaszkurewicz and Bhaya (2000)). Let
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Sm,k = {A(z) = zkIm −A1z
k−1 − · · · −Ak : Ar ∈ Rm×m,

r ≥ 1, and A(z) is Schur-stable} (2.2)

define the set of all m−dimensional Schur-stable matrix monic polynomials of

degree k, and let any polynomial A(z) = zkIm−A1z
k−1− · · ·−Ak be associated

with the coefficient sequence A = [A1, . . . , Ak] . We take a sequence of matrices

A = [A1, . . . , Ak] to be Schur-stable provided the associated polynomial is Schur-

stable. Then, the parameters (Φ,−Θ,Σ) of an m-dimensional causal invertible

VARMA(p, q) process belongs to the parameter space

P = Sm,p ×Sm,q ×Sm
++. (2.3)

Often for a VARMA(p, q) process the innovations are assumed to be Gaus-

sian, Zt ∼ N(0,Σ). Based on this, a likelihood for the parameters (Φ,−Θ,Σ)

can be written down and used for likelihood-based inference. Under the assump-

tion of second order stationarity, for any p ≥ 0, let Γp be the covariance matrix

of (X ′t, X
′
t−1, . . . , X

′
t−p)

′. The jkth block of Γp is an m × m matrix, given by

Γ(k − j) = Γ′(j − k), for 1 ≤ j, k ≤ (p + 1). If Zt
i.i.d.∼ N(0,Σ), a stationary

likelihood for (Φ,Θ,Σ) based on a sample X = (X ′n, . . . , X
′
1)
′ (written in the

reverse order for notational consistency) is

L(Φ,Θ,Σ) = (2π)−n/2
{

det(Γn−1)
}−1/2

exp (−0.5X ′Γ−1n−1X). (2.4)

where Γn−1 is a function of (Φ,Θ,Σ). An available likelihood, evaluated through

Γn−1, immediately facilitates estimation. For causal invertible processes, maxi-

mum likelihood estimators of (Φ,Θ,Σ) can be obtained by maximizing the likeli-

hood over the parameter space P, or Bayesian posterior estimates can be obtained

based on priors specified in the range of (Φ,Θ,Σ).

The Schur-stable space Sm,k is described by the roots of the matrix polyno-

mials. Unfortunately, the roots are highly non-linear functions of parameters Φ

and Θ, and often are implicitly defined. Thus, direct maximization of the likeli-

hood (2.4) over the parameter space P is a computationally intractable problem.

For Bayesian estimation that guarantees causal invertible estimates, one has to

specify priors that are fully supported on P so that the posterior is supported

within P. The posterior mode will belong to P and is a valid estimator. However,

P is not convex and one has to be careful. If the true value is in the interior of

P, the Bayesian posterior will be concentrated on an open convex set around the

true value and averaging of posterior samples should be acceptable. In general,

for non-convex sets, means can be defined in an extrinsic manner, where the av-

eraging is done on the unrestricted space under some suitable transformation and
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then mapped back to the non-convex set through the inverse transformation. In

principle, one could specify a “flat” prior on the constrained space, but since the

constraints are given in terms of the roots where as the likelihood is in terms of the

coefficient matrices, implementation is difficult. Such a prior lacks flexibility and

may not guarantee propriety of the posterior. Other options include truncating

general priors to the constrained space by rejecting samples that do not satisfy

the constraints (Gelfand, Smith and Lee (1992)). Such methods can be highly

inefficient for complex constraints, such as that of causality or invertibility in

the VARMA setting, and inefficiency of the algorithm may increase greatly when

parameters are near the boundary (Marin and Robert (2007); Albert (2009)). To

increase efficiency of computation one could project samples falling outside back

to the boundary of the constrained space (Dunson and Neelon (2003)) which

would lead to prior mass on the boundary. In the VARMA example, having

mass on the boundary means that the prior is entertaining non-stationary mod-

els for a stationary causal process. Therefore neither direct maximization of the

likelihood nor direct prior specification are possible when the parameter space is

P.

3. Parameterization

Parameterization of Causal Invertible VARMA(p, q)

We first establish a characterization of Schur-stable polynomials in Sm,k ob-

tained in terms of positive definite block Toeplitz matrices. The characterization

will help us define the bijection from P to a Euclidean space.

3.1. Block Toeplitz parameterization

For j ≥ 1, take U j to be a symmetric block Toeplitz matrix of order j:

U j =


U(0) U(1) · · · U(j)

U(1)′ U(0) · · · ·
...

. . .
. . .

...

U(j)′ · · · U(1)′ U(0)

 , (3.1)

where U(0), U(1), . . . , U(j) are arbitrary m×m matrices and U(0) ∈ Sm, where

U0 = U(0). For j ≥ 1, we will take advantage of the nested representations of

U j in terms of U j−1: the lower representation given by

U j =

(
U(0) ξ′j
ξj U j−1

)
, (3.2)
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and the upper representation given by

U j =

(
U j−1 κj
κ′j U(0)

)
. (3.3)

Here ξ′j = (U(1), . . . , U(j)) and κ′j = (U(j)′, . . . , U(1)′). Set ξ0 and κ0 equal to

zero matrices. The Schur complements of U j−1 in U j in the two representations

(3.2) and (3.3) are

Cj = U(0)− ξ′jU−1j−1ξj , (3.4)

Dj = U(0)− κ′jU−1j−1κj . (3.5)

Take C0 = D0 = U(0). Let Tm,k denote the set of m(k+1)×m(k+1) symmetric

block Toeplitz matrices with m-dimensional blocks,

Tm,k = {Uk ∈ Sm(k+1) : Uk is in the form (3.1)}

Also, define Tm,k++ to be the subset of Tm,k comprising the positive definite block

Toeplitz matrices of order k and m-dimensional blocks.

Theorem 1. An m-dimensional matrix polynomial A(z) = Imz
k−A1z

k−1 · · · −
Ak is Schur-stable if and only if there exists Uk ∈ Tm,k++ such that the coefficients

A = [A1, . . . , Ak] ∈ Rm×mk satisfy the Yule-Walker relation A = ξ′kU
−1
k−1.

Remark 1. This result is suggested in the scalar case, where AR parameters can

be computed in terms of partial autocorrelations as in Quenneville and McLeod

(1992). One can parameterize each partial autocorrelation to be a number in

(−1, 1), and implicitly describe the entire parameter space. The challenge in

the vector case, is determining how to parameterize a correlation matrix to fully

describe the parameter space.

Theorem 1 presents a way of parameterizing Schur-stable polynomials via

positive definite block Toeplitz matrices. Other representations of block Toeplitz

matrices are given in Constantinescu (1986) and Delsarte, Genin and Kamp

(1979). We can describe block Toeplitz matrices, Tm,k++ , and therefore Sm,k in

terms of simpler objects which lend themselves conveniently to optimization and

prior specification.

Theorem 2. A block Toeplitz matrix Uk ∈ Tm,k is positive definite if and only if

the associated Schur complement sequence Cj = U(0)− ξ′jU
−1
j−1ξj satisfies C0 ≥L

C1 ≥L · · · ≥L Ck >L 0.

Remark 2. This characterization allows the successive difference of the Schur

complements, Ci−1 − Ci to be nonnegative definite. For implementation we use
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the differences as parameters to be further simplified in terms of real parameters.

To this end, we will restrict to cases where the differences are strictly positive

definite, and let the non-negative definite cases be approximated by the positive

definite parameters as limiting values. From a practical vantage point there is

an advantage in dealing with the positive definite parameterization.

Let Ck = M be fixed and fully specified. Let Vj = Cj−1 − Cj for 1 ≤ j ≤ k.
Following the proof of Theorem 2,

Vj =
{
U(j)− ξ′j−1U−1j−2κj−1

}
D−1j−1

{
U(j)− ξ′j−1U−1j−2 κj−1

}′
, (3.6)

which has the solution

U(j) = ξ′j−1U
−1
j−2κj−1 + V

1/2
j QjD

1/2
j−1 (3.7)

for some orthogonal matrix Qj . Once U j and Vj are specified, the orthogonal

matrix is given by

Qj = V
−1/2
j

{
U(j)− ξ′j−1U−1j−2κj−1

}
D
−1/2
j−1 . (3.8)

Here V
1/2
j and D

1/2
j−1 are square roots of Vj and Dj−1, respectively. Then (3.7)

defines the key recursion equation that allows one to solve for U(j), j = 0, . . . , k

iteratively, once the positive definite matrices M,V1, . . . , Vk and the orthogonal

matrices Q1, . . . , Qk have been specified. At the jth stage, all quantities on the

right side of (3.7) are known; thus U(j) and U j can be computed. Subsequently

ξj , κj and Dj are obtained from U j through (3.4) and (3.5), and then used in the

(j + 1)th iteration. The telescoping sum C0 =
∑k

j=1 Vj +M allows initialization

of the algorithm with U(0) = C0.

Algorithm [VQ]: Algorithm for computing A(z) from V1, . . . , Vk, Q1, . . . , Qk

1. Set U(0) = C0 = M +
∑k

j=1 Vj .

2. Compute U(1)′ = V
1/2
1 Q1U(0)1/2 and obtain U1.

3. Compute κ1, ξ1, D1 based on U1. Here κ1 = ξ′1 = U(1) and D1 = U(0) −
U(1)′U(0)−1U(1).

4. Compute U(2) = ξ′1U(0)−1κ1 + V
1/2
2 Q2D

1/2
1 and obtain U2 from U(0),

U(1), U(2).

5. Obtain κ2, ξ2, D2 and iterate using (3.7).

6. Once U(0), U(1), . . . , U(k) and hence Uk have been obtained, compute A

using the Yule-Walker relation A = ξ′kU
−1
k−1.

The inverse algorithm is obtained by noting that Vec(Uk−1) = (I − Ã ⊗
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Ã)−1Vec(M̃) and ξ′k = AUk−1 where I is the identity of dimension (mk ×mk),

Ã =


A1 A2 · · · Ak−1 Ak
Im 0 · · · 0 0
...

...
. . . 0

...

0 0 · · · Im 0

 , (3.9)

and M̃ is Ã for (A1, . . . , Ak) = (M, 0, . . . , 0).

3.2. Generalized Stein transformation

For any square matrix A ∈ Rm×m and any symmetric matrix U ∈ Sm define

the transformation S(A,U) : Rm×m ×Sm → Sm, by

S(A,U) = U −AUA′. (3.10)

For any fixed A ∈ Rm×m, the A-Section of the transformation, defined by

SA(U) = S(A,U), is a map from Sm → Sm. It is known as the Stein trans-

formation with respect to A and has been extensively studied in the dynamical

systems literature in relation to stability of discrete dynamical systems. Stein

(1952) showed that there exists a U ∈ Sm
++ such that S(A,U) ∈ Sm

++ if and only

if A ∈ Sm
1 . Stein’s result implies that one could characterize Sm,1 in terms of ma-

trices in Sm
++. For any M ∈ Sm

++, the pre-image AM (U) = {A : S(A,U) = M}
is non-empty if and only if U ≥L M, and need not be a singleton set.

We define a generalization of the Stein transformation on the set of positive

definite block Toeplitz matrices, allowing characterization of stability properties

in high order monic matrix polynomials. Fix a set of coefficient matrices A =

[A1, . . . , Ak] ∈ Rm×mk associated with a polynomial A(z) = Imz
k−A1z

k−1−· · ·−
Ak, and a symmetric matrix U ∈ Smk with U11 as the upper left m ×m block

of U . Define the Generalized Stein Transformation S̃k(A,U) : Rm×mk ×Smk →
Smk by

S̃k(A,U) = U − ÃUÃ′, (3.11)

so S̃k(A,U) = S(Ã, U). Take Sk(A,U) = U11−AUA′ to be the upper left m×m
block of S̃k(A,U). The Generalized Stein Transformation reduces to the Stein

transformation for the case k = 1. Analogous to Stein (1952), one can characterize

Schur-stability of A(z) from properties of the transformation.

Theorem 3. A matrix polynomial A(z) = zk−A1z
k−1−· · ·−Ak with coefficients

A = [A1, . . . , Ak] is Schur-stable if and only if there exists a positive definite block

Toeplitz matrix Uk−1 ∈ Tm,k−1++ , such that the Generalized Stein Transformation

S̃k(A,Uk−1) ∈ Smk
+ and Sk(A,Uk−1) ∈ Sm

++.
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Remark 3. In general, for self-dual cones in finite-dimensional Hilbert space

with a Euclidean Jordan algebra, characterization of Stein-type operators can

be done (Schneider (1965)). However, due to the special structure of Ã a more

refined result on positivity of the generalized transformation can be obtained.

Remark 4. The quantity Sk(A,Uk−1) is precisely the Schur-complement Ck
under the conditions of Theorem 1. Also, from the proof of Theorem 3 it is

clear that if Uk−1 satisfying the conditions of Theorem 3 exists, then necessarily

S̃k(A,U) will be of the form

S̃k(A,U) =

(
Sk(A,U) 0

0 0

)
.

3.3. The role of M

For any fixed known M ∈ Sm
++, consider the pre-image

AM (Uk−1) = {A : Sk(A,Uk−1) = M}.

The set is non-empty: Theorem 2 describes the construction of a positive definite

block Toeplitz matrix Uk with Ck = M for general M. Then, by Theorem 1, any

A of the form A = ξ′kU
−1
k−1 will be a member of the pre-image. Additionally,

Sm,k =
⋃

Uk−1∈T
m,k
++

AM (Uk−1).

The result is established by noting that given A ∈ Sm,k and M ∈ Sm
++,

one can construct a causal VAR(k) model with A as the coefficients and M

as the innovation variance, and then Uk−1 = Γk−1 will satisfy the Generalized

Stein Transformation. This reinforces the point that the class of Schur-stable

polynomials can be parameterized by the class of positive definite block Toeplitz

matrices, which in turn is accomplished using Theorem 2.

3.4. Further reparametrization

Since the objective is to map the constrained space P to a Euclidean space,

further parametrization of (V,Q,Σ) in terms of unrestricted real numbers is de-

sirable. For the positive definite matrices, one could use the forms described in

Lindstrom and Bates (1988) or Leonard and Hsu (2002). Alternatively, other

forms of decomposition given in terms of eigenvalues and eigenvectors can be

pursued. The parameterization of positive definite matrices in terms of their

Cholesky decomposition given in Lindstrom and Bates (1988) is particularly use-
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ful. The specific form for the m×m positive definite matrix V is

V = LDL′, (3.12)

where L and D are given by

L =


1 0 · · · 0

l2,1 1 · · · 0
...

...
. . . 0

lm,1 lm,2 · · · 1

 , D =


ed1 0 · · · 0

0 ed2 · · · 0
...

...
. . . 0

0 0 · · · edm

 .

The representation, which has
(
m+1
2

)
free parameters of the positive definite

matrix V in terms of the
(
m
2

)
unconstrained real numbers in l = (l2,1, . . . , lm,m−1)

and m unconstrained real numbers in d = (d1, . . . , dm), is a bijection.

Let O(m) denote the group of m ×m orthogonal matrices. Let the special

orthogonal group SO(m) be the set of matrices in O(m) with determinant equal

to one. The orthogonal matrix Q ∈ O(m) is neither suitable for optimization

nor for prior specification. Any element in O(m) can be connected to one in

SO(m) through a single Householder reflection. Let Eδ = Im − 2δe1e
′
1, where

δ ∈ {0, 1}, and e1 = (1, 0, . . . , 0)′. Then any element Q ∈ O(m) can be viewed as

Q = EδR, for some δ ∈ {0, 1} and some R ∈ SO(m). Other options describing

SO(m) include Givens rotations (angles) or the Cayley representation, which

excludes any R ∈ SO(m) with an even number of negative one eigenvalues.

Gallier (2013) provides a complete parameterization of SO(m) given by R =

[(Im − S)(Im + S)−1]2 for some skew-symmetric matrix S. Every orthogonal

matrix Q ∈ O(m) can be given a modified Cayley form

Q = Eδ[(Im − S)(Im + S)−1]2, (3.13)

for some skew-symmetric matrix S and some reflection Eδ. The inverse transfor-

mation that determines S from R can be defined in an injective manner following

Proposition 1.3 in Gallier (2013). Let S = 2(Im + R1/2)−1 − Im be the inverse

image of R for the transformation (3.13), where R1/2 is the unique square root

of R in SO(m) without any negative one eigenvalues. The matrix R1/2 is defined

following the normal form algorithm in Proposition 1.3 in Gallier (2013). The

mapping of Q to the (m(m−1))/2 unrestricted elements in s = (s21, . . . , sm,m−1)

and the binary parameter δ is a bijection. Thus, if we define the map

τ(V,Q) = (l, d, s, δ) (3.14)

then τ is a bijection that maps Sm
++ ×O(m) to Rm(m+1)/2 × {0, 1}.
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3.5. Family of bijections

The Cholesky transformation (3.12) and the transformation (3.13) provide

the final steps in mapping the coeffcient matrices of a Schur-stable polynomial to

unrestricted real numbers. The mapping depends on the positive definite matrix

M chosen to define the first step of the mapping from the Schur-stable space to

the space of positive definite block Toeplitz matrices. The family of mappings

from the Schur-stable space to the real numbers is indexed by positive definite

matrices. The following theorem shows that for each M > 0 the map is bijective,

and hence there is no loss of information in the proposed parameterization.

Theorem 4. For each m×m postive definite matrix M , there exists a bijection

fM : Sm,k 7→ Rkm2 ×{0, 1}k. The bijection can be decomposed as fM = τ ◦ψM ◦
φM where

τ : (Sm
++)k ×O(m)k 7→ Rkm2 × {0, 1}k,

ψM : Tm,k++ (M) 7→ (Sm
++)k ×O(m)k,

φM : Sm,k 7→ Tm,k++ (M).

All are bijections and can be described as follows.

1. For each A ∈ Sm,k, φM (A) is Uk, the variance matrix of Y ′ = (Y ′1 , . . . , Y
′
k)′

where {Yt} is a VAR(k) process with coefficient matrices given by A and

innovation variance equal to M.

2. For each Uk ∈ Tm,k++ (M), ψM (Uk) = (V1, . . . , Vk, Q1, . . . , Qk) where Vj , Qj ,

j = 1, . . . , k, are given iteratively at (3.6) and (3.8).

3. For each set of (V1, . . . , Vk, Q1, . . . , Qk) ∈ (Sm
++)k ×O(m)k the map τ is

τ(V1, . . . , Vk, Q1, . . . , Qk) = (l, d, s, δ).

The quantities l and d are the parameters of the Cholesky transformation

(3.12) for the set of all Vj and the quantities s and δ are the parameters of

the transformation (3.13) for the set of all Qj .

4. Numerical Computation

Numerical Computation and Estimation

Even without the constraints of causality and invertibility, numerical com-

putation and estimation for autoregressive moving average models with nonzero
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moving average components have traditionally been quite challenging. This diffi-

culty in computation is due to the non-linearity of the likelihood with respect to

the moving average parameters. The parameterization described in the previous

section provides a feasible way for carrying out likelihood based estimation for

parameters of a causal invertible VARMA(p, q) process. Before proceeding we

describe our convention for denoting the parameters associated with the autore-

gressive part and the moving average parts, respectively.

The matrix valued parameters associated with the autoregressive part are

denoted as (V 1
1 , . . . , V

1
p ) and (Q1

1, . . . , Q
1
p), whereas those associated with the

moving average part are denoted as (V 2
1 , . . . , V

2
q ) and (Q2

1, . . . , Q
2
q), respectively.

The innovation variance is denoted by Σ. The matrix M, needed to start the

parameterization of the Schur-stable polynomials is taken as the identity ma-

trix Im for both the autoregressive and the moving average polynomials. Fol-

lowing notations developed earlier, the scalar valued parameters associated with

Cholesky decomposition of the V matrices for the autoregressive part are denoted

as l1,j = (l1,j2,1, . . . , l
1,j
m,m−1) and d1,j = (d1,j1 , . . . , d1,jm ) for j = 1, . . . , p, and as l2,j =

(l2,j2,1, . . . , l
2,j
m,m−1) and d2,j = (d2,j1 , . . . , d2,jm ), j = 1, . . . , q for the moving average

part. Similarly the scalar parameters associated with the orthogonal matrices are

denoted as s1,j = (s1,j2,1, . . . , s
1,j
m,m−1) and δ1,j , j = 1, . . . , p, for the autoregressive

part, and as s2,j = (s2,j2,1, . . . , s
2,j
m,m−1) and δ2,j for j = 1, . . . , q for the moving

average part. The Cholesky parameters associated with the innovation variance

are written as l0 = (l02,1, . . . , l
0
m,m−1) and d0 = (d01, . . . , d

0
m). All together the real

scalar parameters are then (l, d, s) where l = (l1,1, . . . , l1,p, l2,1, . . . , l2,q, l0), and

d, s are similarly defined.

4.1. Maximum likelihood

The standard optimization methods are either gradient-based stepping al-

gorithms or direct search algorithms. Gradient-based methods for the VARMA

model may have difficulty due to the non-linear nature of the likelihood. Di-

rect search methods may fail due to the high number of parameters. For max-

imum likelihood computation it is convenient to use the Cholesky form for

the positive definite part of the parameterization. The parameters l, d and

s, are unrestricted real numbers. For a VARMA(p, q) the δ parameters δ =

(δ1,1, . . . , δ1,p, δ2,1, . . . , δ2,q) lie in {0, 1}p+q providing 2p+q possible values for the

parameters. Suppose the VARMA likelihood is written as L(Φ,Θ,Σ), a function

of the parameters l, d, s and δ via the bijection fM given in Theorem 4. The
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maximum likelihood estimators of the scalar parameters are defined as

(l̂, d̂, ŝ, δ̂) = arg max
δ∈{0,1}p+q

arg max
l,d,s

L(Φ,Θ,Σ),

and hence that of the matrix parameters are

(Φ̂, Θ̂, Σ̂) = f−1M (l̂, d̂, ŝ, δ̂).

For all computations we use M = Im. When 2p+q is moderate, a profile

approach is recommended, computing maximizers for each value of δ and then

taking the largest likelihood value. In practice, initial estimates on the 2pδ values

associated with the autoregression can be fixed and only the 2q values might

need be considered. We initialize with a crude but fast estimate of Φ and Θ,

and if the estimates do not satisfy the constraints they are shrunk towards the

constrained space following the algorithm [SHRINK] given in the supplementary

material. A fast consistent estimator is provided by the Hannan and Rissanen

(1982) algorithm.

4.2. Bayesian prior specification and computation

For the VAR model, Normal-Inverse Wishart (NIW) distributions are pop-

ular choices for priors on the coefficient matrices and the innovation variance.

The Minnesota prior (Litterman (1980)) also follows normal specifications for

coefficients of individual equations in the VAR model. Prudent choice of the

hyperparameters in these specifications can lead to better forecasting properties

for the BVAR. However, none of the current prior choices restrict the prior, and

thereby the posterior, to the causal invertible space. More specifically, as de-

scribed in Section 3, the posterior probability of estimating a model with unit

root or roots outside the unit circle remain significant when the sample size is

small.

The parameterization given in this article restricts the prior to the causal

invertible space for a general VARMA model. An advantage of the transforma-

tion is that standard normal priors can be used for all the scalar parameters

(including the reflection δ by writing it as I(z > 0) for a standard normal variate

z). For prior specification one could directly use the parameterization based on

matrices or use those based on scalar parameters. For the positive definite part of

the matrix-valued parameterization there are several options with obvious prior

choices being Wishart or Inverse-Wishart. For the orthogonal matrices belong-

ing to O(m) the choices are more limited. For prior specification on SO(m) one

could specify the uniform prior which is proper due to compactness of SO(m).



470 ROY, MCELROY AND LINTON

Other options for direct prior specification on SO(m) include Chikuse (2003), the

Bingham-von Mises-Fisher (BMF) distribution (Hoff (2009)), and those involving

the Langevin density on SO(m) (Chiuso, Giorgio and Soatto (2008)).

5. Simulation and Data Analysis

Simulation and Data Analysis Simulation and Data Examples

In this section we present simulation results to illustrate the performance of

MLEs and constrained Bayesian estimators computed using the proposed param-

eterization. We compare with a Yule-Walker estimator, which is causal. Lastly

a dataset is analyzed with a causal invertible VARMA model.

5.1. Two-dimensional VAR(1)

We consider the simplest model in the VARMA(p, q) class, namely a first

order two-dimensional vector autoregression:

Xt =

(
Φ11 0

1 0.8

)
Xt−1 + Zt, (5.1)

where Zt
iid∼ N(0, I2). We varied the upper diagonal entry Φ11, because it is

also one of the eigenvalues of Φ1. The values of Φ11 were chosen from the

set {−0.95,−0.95,−0.9,−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99}
to examine performance over a varying parameter space. Maximum likelihood

estimation was done using the optim L-BFGS-B function in R. The initial values

of the pre-parameters were chosen to be those calculated from the Yule-Walker

estimate. We used box constraints with upper and lower bounds for the real pa-

rameters. The bounds were ±1e+30 for the l and s pre-parameters and ±1e+10

for the d parameters. A tighter bound for the d parameter would prevent the

iterations from generating near singular values of the V matrix. For Bayesian

estimation, the N(0, 5) prior was specified for all the pre-parameters except δ,

which was assigned a Bernoulli(0.5) prior. The Bayesian updates were done with

Metropolis random walk for the real parameters and via independent sampling

with a jump distribution of Bernoulli(0.5) for δ. Metropolis chains reported were

for length 20,000, with a burn-in of 5,000.

Let the Mean Square Error for the VAR(p) polynomial coefficient matrices

be defined as N−1
∑N

j=1

∑p
k=1 ‖Φ̂j,k − Φk‖2, where ‖ · ‖ is the Frobenius norm

of a matrix and Φ̂j,k is the jth Monte Carlo estimate of Φk. For a single en-

try in a coefficient matrix the Monte Carlo MSE was defined as the average



CAUSAL INVERTIBLE ARMA 471

ϕ

Figure 1. Overall RMSE, nN−1
∑N

j=1 ‖Φ̂− Φ‖2, for different estimators of Φ compared
with the corresponding asymptotic value. The RMSE is plotted as a function of Φ11 in
model (5.1).

square distance of the estimated value to the true value where the average is

over N = 1,000 Monte Carlo replications. We report the square root of the MSE

(RMSE) as a function of Φ11 and compare the overall RMSE with the asymptotic

value obtained based on the asymptotic variance of the individual entries of Φ.

The RMSE is plotted as a function of Φ11 in Figure 1. From the figure we see

that the likelihood-based estimators are performing better than the Yule-Walker

estimator, particularly when the largest root is close to unity in magnitude. All

three estimators are causal and have similar bias, but the gain in efficiency for

the MLE and Bayes estimates are largely due to reduction in variance. In terms

of the overall RMSE, the likelihood-based estimators are nearly twice as efficient

as the Yule-Walker estimator when the largest root of the VAR coefficient is close

to one.

5.2. Data example

The data example is based on a series analyzed by Tsay (2014). The data

is from the Federal Reserve Bank of St. Louis (FRED Data) and comprises

two series: monthly personal consumption expenditure (PCE) and disposable

personal income (DSPI) from January 1959 to January 2015. The series are

in billions of dollars and are seasonally adjusted. As argued by Tsay (2014),
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Figure 2. Plots of log differenced monthly personal consumption expenditure (PCE) and
disposable personal income (DSPI).

Table 1. Estimated parameters using the MTS method and the MLE using the proposed
parameterization for the FRED Data. The standard errors for the estimated coefficients
are given in parenthesis under the estimates.

Method Φ
(1)
11 Φ

(1)
21 Φ

(1)
12 Φ

(1)
22 Φ

(2)
11 Φ

(2)
21 Φ

(2)
12 Φ

(2)
22

MTS 0.472 0.445 0.272 0.356 0.058 0.135 0.098 −0.062
(0.093) (0.067) (0.130) (0.115) (0.050) (0.040) (0.067) (0.056)

MLE 0.457 0.411 0.284 0.357 0.060 0.139 0.116 −0.037
(0.060) (0.049) (0.104) (0.092) (0.037) (0.026) (0.052) (0.038)

Method Φ
(3)
11 Φ

(3)
21 Φ

(3)
12 Φ

(3)
22 Θ

(1)
11 Θ

(1)
21 Θ

(1)
12 Θ

(1)
22

MTS −0.017 0.191 0.091 −0.070 −0.675 −0.345 −0.195 −0.642
(0.045) (0.044) (0.065) (0.059) (0.084) (0.060) (0.121) (0.110)

MLE −0.012 0.186 0.096 −0.069 −0.650 −0.311 −0.199 −0.642
(0.030) (0.030) (0.046) (0.044) (0.054) (0.043) (0.092) (0.086)

a VARMA(3,1) model with Gaussian innovations fits the log differenced series

reasonably well. We modeled the differenced log-scale series multiplied by 100

and the growth rates in percentages. The series in this scale are plotted in

Figure 2. We compare estimated VARMA(3,1) parameters of MLE results from

our transformation approach with those obtained using the MTS package in Tsay

(2014) (denoted by MTS).

The two methods yielded similar estimates with comparable standard er-

rors, with the MLE generally having smaller standard errors. After adjusting for

multiple comparison, the list of coefficients that were deemed statistically signif-
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icantly different from zero was identical under the two methods. The estimates

of the innovation variance were very similar under the two methods (along with

nearly identical standard errors, not reported here). The estimated innovation

variances were

Σ̂MTS
1 =

(
0.269 0.085

0.085 0.458

)
, Σ̂MLE

1 =

(
0.262 0.090

0.090 0.460

)
,

for the two methods. For the proposed method, the standard errors of the es-

timated parameters in the reparametrized form were obtained using numerical

Gradient and Hessian approximations obtained from the numerical optimization

routine (R optim). Since the method is based on a transformation, the standard

error of the original parameters in terms of those for the transformed parame-

ters were obtained by using a numerical linearization of the transformation and

applying the delta method.

5.3. Estimating noncausal model using unrestricted methods

To further motivate our parameterization, we demonstrate how models from

unrestricted methods with a root close to the boundary for the Φ polynomial

frequently estimate non-causal models. To demonstrate this phenomenon we

simulated one thousand datasets generated from multiple stationary 2 dimen-

sional VAR(1) processes and fit using the R function rfvar3 used by Sims (2010).

For the VAR(1) setting, 1,000 series of length n were generated with an autore-

gressive parameter using a local-to-unity parameterization, with the largest root

and first element of Φ equal to (1−1/n) for data of length n. The data generating

process had Gaussian error and was parameterized by

Φ =

(
(1− 1/n) 0

a21 a22

)
Σ =

(
1 0

0 1

)
.

The proportion of cases where fits were non causal for various n, a21 and a22
are given in Table 2.

One thousand datasets were also generated from a causal invertible 2 dimen-

sional VARMA(1,1) processes and fit using the MTS package VARMA function.

The VARMA(1,1) model used in the simulation is given in (5.2). The moving av-

erage parameter was fixed for all cases. The error was Gaussian. The proportion

of cases for which the estimate was non-causal is given in Table 3.

Φ =

(
(1− 1/n) 0

a21 a22

)
Θ =

(
0.5 0.2

0.2 0.5

)
Σ =

(
0.5 0

0 0.5

)
. (5.2)
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Table 2. Proportion of simulated non-causal estimates reported by rfvar3.

a21 = 0.1 n = 50 n = 100 n = 500
a22 = 0.8 0.193 0.096 0.022
a22 = 0.9 0.298 0.127 0.025
a22 = 0.95 0.367 0.186 0.039
a21 = 1.0 n = 50 n = 100 n = 500
a22 = 0.8 0.197 0.090 0.020
a22 = 0.9 0.262 0.128 0.040
a22 = 0.95 0.354 0.193 0.051

Table 3. Proportion of simulated non-causal estimates reported by MTS.

a21 = 0.1 n = 50 n = 100 n = 500
a22 = 0.8 0.098 0.041 0.018
a22 = 0.9 0.132 0.067 0.038
a22 = 0.95 0.161 0.088 0.055
a21 = 1.0 n = 50 n = 100 n = 500
a22 = 0.8 0.091 0.124 0.013
a22 = 0.9 0.142 0.166 0.029
a22 = 0.95 0.206 0.099 0.038

Tables 2 and 3 show that the proportion of non-causal estimates is substan-

tial, particularly for shorter series. In multiple settings over 10% of all datasets

fitted resulted in non-causal estimates. Although we find other software options

useful, utilizing our transformation provides similar estimates but automatically

guarantees all estimates to be causal. We also consider use of the MTS likelihood

evaluation for gains in evaluation speed, although all reported results with our

methodology use the exact VARMA likelihood.

6. Discussion

In this article we introduced a new parameterization to describe the entire

class of causal invertible VARMA processes in terms of unrestricted real-valued

parameters. The proposed parameterization is as dense as the original VARMA

parameterization in terms of nonzero parameters. The total number of param-

eters is the same as that of the original m-dimensional VARMA(p, q) process,

(p + q)m2 +
(
m+1
2

)
. For moderately large p and q, or more realistically m, as

with most multi-dimensional problems with dense parameterization, care needs

to be exercised in computation. Sparse parameterizations that maintain causal-

ity and invertibility are a topic of future research. As with most transformation
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approaches, the transformed parameters lose interpretability. This is particularly

true in the Bayesian setting where the prior is being invoked through the trans-

formed parameters. However, unlike many other common constraint spaces, such

as the positive definite matrix cone, there are no readily available distributions on

the Schur-stable space, and truncation of known distributions, (e.g. multivariate

normal on the original parameters) to the Schur-stable space lacks interpretabil-

ity as well. The transofrmation method could be thought of as a tool for making

inference under the desired restrictions. The final analysis of the VARMA esti-

mation problem remains focused on the AR and MA polynomials in their original

form.

The parameterization can be applied to many other estimation procedures

as well, including quasi maximum likelihood methods, minimum distance meth-

ods and moment-based methods. For example, an objective function measuring

the closeness of the sample autocovariances and the theoretical autocovariances

written in terms of the transformed parameters can be optimized to get causal

invertible estimates. Moreover, one may also consider objective functions in the

spectral domain, such as the integrated Frobenius norm of the difference be-

tween the observed periodograms and the spectral matrix. The advantage of

the proposed parameterization is that any estimator, obtained as a minimizer of

an objective function written in terms of transformed parameters, is guaranteed

to be causal and invertible. In future work we will demonstrate how estima-

tors can be obtained with penalized likelihoods and our parameterization, thus

simultaneously implementing sparsity constraints and causality constraints.

The proposed parameterization can potentially facilitate other aspects of

VARMA modeling, such as a reduced rank formulation (Velu, Reinsel and Wich-

ern (1986), Ahn and Reinsel (1988)). The reduced rank version of the proposed

parameterization is simple for a first order polynomial but for higher order poly-

nomials the exact formulation needs to be investigated.

Supplementary Materials

1. S1: Proofs of Theorems

2. Simpler example using VAR(1)

3. S3: Notes about implementation and additional simulation results
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