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Supplementary Material

This supplementary material outlines the proofs of Theorems 1 and 2 and provides more details

about an R package glmMIC that implements MIC, on which basis a comparison study on

computing time is also included.

S1 Proofs

The asymptotic properties of MIC can be conveniently derived by following

similar arguments of Fan and Li (2001) and utilizing the properties of the

hyperbolic tangent penalty.
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S1.1 Proof of Theorem 1

We first establish (i) by checking conditions in Theorem 1 of Fan and Li

(2001). Note that the quantity pλn(|βj|) corresponds to

pλn(|βj|) =
ln(n)

2n
· w(γj)

in MIC. Some quantities involved in the reparameterization β = γw(γ) are

summarized below:



ẇ = dw(γ)/dγ = 2anγ(1− w2)

ẅ = d2w(γ)/dγ2 = 2an(1− w2)(1− 4anγ
2w)

w = tanh(anγ
2) =

(
eanγ

2 − e−anγ2
)
/
(
eanγ

2
+ e−anγ

2
)

1− w2 = sech(anγ
2) = 2/

(
eanγ

2
+ e−anγ

2
)

Since an = O(n), γ → β and w(γ)→ 1 for β 6= 0. It follows that, for β 6= 0,

ṗλn(|β|) =
dpλn(|β|)
d β

=
ln(n)

2n

ẇ

w + γẇ

=
ln(n)

n

anγ(1− w2)

w + 2anγ2(1− w2)

=
ln(n)

n

2anγ

eanγ2 + e−anγ2 + 4anγ2

=
ln(n)

n
O
{
ane

−anγ2
}

= o(1/
√
n).
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Hence, maxj {ṗλn(|β0j|) : β0j 6= 0} = o(1/
√
n). Similarly, it can be shown

that, for β 6= 0,

p̈λn(|β|) =
d2pλn(|β|)
d β2

=
ln(n)

2n

wẅ − 2ẇ2

(w + γ ẇ)3
p−→ 0.

and so is maxj {p̈λn(|β0j|) : β0j 6= 0}.

Therefore, there exists a local minimizer β̃ of Qn(β) such that ‖ β̃ −

β0 ‖= Op(1/
√
n) by Theorem 1 of Fan and Li (2001). �

To establish sparsity of β̃(0) in (ii), it suffices to show that, for any
√
n-

consistent β = (βT(1),β
T
(0))

T such that ‖ β(1) − β0(1) ‖= Op(1/
√
n) and

‖ β(0) ‖= Op(1/
√
n), we have

∂Qn(β)

∂βj
=


> 0 if βj > 0

< 0 if βj < 0

(S1.1)

for any component βj of β(0) with probability tending to 1 as n→∞.

Consider

∂Qn(β)

∂βj
= − 2

n

∂l(β)

∂βj
+

ln(n)

n
· ∂w(γj)

∂βj
= I + II

for j = (q + 1), . . . , p when evaluated at β. Note that βj = Op(1/
√
n) yet

βj 6= 0 for βj ∈ β(0). By standard arguments (see Fan and Li, 2002) and

using the fact that ‖ β − β0 ‖= Op(1/
√
n), it can be shown that the first

term I is of order Op(1/
√
n) under the regularity conditions. For the second
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term II, the analysis is more subtle, depending on whether anγ
2 goes to 0,

a constant, or ∞. Since it is desirable that

∂w(γj)

∂βj
=

ẇj
wj + γjẇj

=
2aγj(1− w2

j )

wj + 2aγ2j (1− w2
j )

=
4anγ

eanγ2 + e−anγ2 + 4anγ2
(S1.2)

is Op(
√
n) or even higher order to have sparsity, neither the choice anγ

2 =

o(1) or anγ
2 → ∞ is not allowable because in either scenario, ∂w(γj)/∂βj

is o(1). Now set anγ
2 = Op(1). The condition γw(γ) = γ tanh(anγ

2) = β =

Op(1/
√
n) leads to the rate γ = 1/

√
n and hence an = O(n). Therefore,

the O(n) rate for an seems to be the unique choice after taking all the side

conditions into consideration.

In this case, ∂w(γj)/∂βj = Op(
√
n). The second term becomes II =

Op

(
ln(n)n1/2/n

)
= Op (ln(n)/

√
n). Moreover, it can be easily seen that the

sign of ∂w(γj)/∂βj in (S1.2) is determined by ẇj and hence γj or βj, because

wj ≥ 0 and γjẇj ≥ 0. Put together, ∂Qn(β)/∂βj in (S1.1) is dominated by

the second term II and its sign is determined by βj. Therefore, the desired

sparsity of β̃ is established. �

To show asymptotic normality of β̃(1) in (ii), a close look at the proof

of Theorem 2 in Fan and Li (2001) reveals that it suffices to show that the

contribution from the penalty term to the estimating equation is negligible
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relative to the gradient of the log-likelihood function. More specifically, if

we can show that

ln(n)

n

∂w(γj)

∂βj

∣∣∣∣
βj=β̃j

= op

(
1√
n

)
, (S1.3)

for j = 1, . . . , q, then Slutsky’s theorem can be applied to complete the

proof. Equation (S1.3) holds since, for any non-zero βj ∈ β0(1), we have

β̃j = βj + Op(1/
√
n) and hence γ̃j = γj + op(1) by the continuous map-

ping theorem, where β̃j = γ̃jw(γ̃j) and βj = γjw(γj). It follows that

∂w(γ̃j)/∂βj = op(1) in this case as shown earlier in the proof of (i). There-

fore ρ̇n(β̃j) = op{ln(n)/n} = op(1/
√
n). The proof is completed. �

S1.2 Proof of Theorem 2

According to the definition, γ0 is a constant that depends on n via an. In

view of γ − β = γ − γw(γ) = γ{1− tanh(an γ
2)} = 2γ/{exp(2anγ

2) + 1)},

it follows that |γ0j − β0j| = O{exp(−2anγ
2
0j)} for γ0j 6= 0 and 0 otherwise.

Hence

‖ γ0 − β0 ‖2 ≤ ‖ γ0 − β0 ‖1 =

q∑
j=1

|γ0j − β0j|

≤ 2qmax1≤j≤q βj
exp{2an min1≤j≤q γ20j}+ 1

= O

{
exp{−2an min

1≤j≤q
γ20j}

}
.
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Moreover, since the function β = γw(γ) is continuous and so is its inverse,

the continuous mapping theorem yields ‖ γ̃ − γ0 ‖= op(1).

To study the asymptotic property of γ̃, we consider γ̃ as a local mini-

mizer of the objective function Qn(·) = −2L(Wγ) + ln(n) · tr(W) as stated

in (2.1). Since Qn(γ) is smooth in γ, γ̃ satisfies the first-order necessary

condition ∂Qn(γ̃)/∂γ = 0, which gives

− 2

n

∂L(β̃)

∂β

∂β̃

∂γ
+

ln(n)

n

∂
∑

j w(γ̃j)

∂γ
= 0

=⇒ ∇L(β̃) diag (wj + γ̃jẇj) =
ln(n)

2

(
dwj
dγj

)p
j=1

=⇒ ∇L(β̃) =
ln(n)

2

(
ẇj

wj + γ̃jẇj

)p
j=1

. (S1.1)

Next, applying Taylor’s expansion of the LHS ∇L(β̃) at γ0 gives

ln(n)

2

(
ẇj

wj + γ̃jẇj

)p
j=1

= ∇L(β0) +∇2L(β0)

(
∂β

∂γ

∣∣∣∣
γ=γ0

)
(γ̃ − γ0) + rn,

where rn denotes the remainder term. It follows that

(
diag(wj + γjẇj)|γ=γ0

)
(γ̃ − γ0) = {−∇2L(β0)}

−1 ·{
∇L(β0)−

ln(n)
2

(
ẇj

wj + γ̃jẇj

)p
j=1

+ rn

}
.

Therefore,

√
n [D(γ0)(γ̃ − γ0) + bn] =

{
−∇

2L(β0)

n

}−1 ∇L(β0)√
n

+ r′n, (S1.2)
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where D(γ0) and bn are defined in (3.3) and (3.4), respectively, and the

remainder term is

r′n =

{
−∇

2L(β0)

n

}−1
rn√
n
.

Under regularity conditions, standard arguments yield {−∇2L(β0)/n}
−1 p−→

I−1(β0); ∇L(β0)/
√
n

d−→ N {0, I(β0)} ; and r′n = op(1) as n→∞. Bring-

ing these results into (S1.2) and an appeal to Slutsky’s Theorem give the

desired asymptotic normality in (3.2).

Note that the elements Djj of the diagonal matrix D(γ0) in (3.3) are

evaluated at γ0. We have

Djj = w(γ0j) + γ0j ẇ(γ0j) =
eanγ

2
0j − e−anγ20j − 4anγ

2
0j

eanγ
2
0j + e−anγ

2
0j

.

Since an = O(n), it can be seen that limn→∞Djj = 1 if γ0j 6= 0 and 0

otherwise.

To study the limit of bias bn, we rewrite (3.4) as

bn =

{
−∇

2L(β0)

n

}−1
ln(n)

2
√
n

(
1√
n

ẇj
wj + γ̃jẇj

)p
j=1

. (S1.3)

Note that {−∇2L(β0)/n}
−1 p−→ I−1(β0) � 0 is evaluated at the constant

β0 or γ0 while the last term of bn, with components ẇ/{
√
n (w + γẇ)}, is

evaluated at γ̃. For γ0j 6= 0, we have γ̃j = γ0j + op(1); for γ0j = 0, we have
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γ̃j = Op(1/
√
n). Consider the term

ẇ

w + γẇ
=

4anγ

exp(anγ
2)− exp(−anγ2) + 4anγ

2

=


Op(an e

−anγ20j) = op(1) if γ̃j = γ0j + op(1),

Op(1/γ̃j) = Op(
√
n) if γ̃j = Op(1/

√
n).

Hence the last term of bn is Op(1) in both cases. As a result, bn = op(1) as

n→∞. Its componentwise convergence rates are exponential for estimates

of nonzero γ0j’s and Op{ln(n)/
√
n} for estimates of zero coefficients. This

completes the proof. �

S2 MIC Implementation

We have made available an R package glmMIC that implements the pro-

posed MIC method, for which some details are provided in Section S2.1.

Section S2.2 presents a comparison study on computing time.

S2.1 R Package glmMIC

We put together an R package glmMIC based on our implementation

of MIC, which is now available from GitHub: https://github.com/xgsu/

glmMIC. The package can be easily installed with the facility from R package

devtools (Wickham et al., 2016) as follows:
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devtools::install_github("xgsu/glmMIC")

library(glmMIC)

The main function glmMIC has the following arguments:

glmMIC(formula, preselection=NULL, family=c("gaussian",

"binomial", "poisson"), data, beta0=NULL,

select.intercept=T, criterion="BIC", lambda0=NULL,

a0=NULL, rounding.digits=4, use.GenSA=F,

lower=NULL, upper=NULL, maxit.global=100,

maxit.local=50, epsilon=1e-06, se.gamma = T,

CI.gamma=T, conf.level=0.95,

se.beta=T, fit.ML=FALSE, details=F)

Details about the options can be obtained with the help file ?glmMIC, where

several real examples (i.e., results presented in Table 4) can also be found.

In particular, we have made two optimization methods available for MIC.

The first is to use the simulated annealing algorithm implemented by the

method="SANN" option in R function optim followed by a local optimiza-

tion BFGS algorithm method="BFGS". The quasi Newton BFGS algorithm

makes sure the procedure stops at a local minimum. This is an approach

found quite useful in practice. The second is to use the generalized sim-

ulated annealing as implemented in R package GenSA. There is no need
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of additional iterations from a local optimization algorithm with this ap-

proach. In our experiences, GenSA is slightly slower but it often converges

to the same solution with different runs. Inspired by the comments from

an anonymous reviewer, the glmMIC function also includes a preselection

option that allows one to pre-select variables into the model. The output of

glmMIC is an object of S3 class glmMIC, for which generic functions print

and plot can be used.

S2.2 Comparison in Computing Time

To compare computing time, we generate data from the same models (A,

B, C) given by (4.1) and change the dimensions by adding predictors with 0

regression coefficients so that p ∈ {12, 50} and varying sample sizes so that

∈ {100, 1000}. Since the best subset selection implemented by R package

bestglm (McLeod and Xu, 2014) breaks down for p ≥ 50, we have used

one of its stepwise surrogates – the backward deletion implemented by R

function step(). Computation of LASSO, SCAD, and MCP is done via

the updated package ncvreg (Breheny and Lee, 2016).

Table 1 presents the average CUP time in seconds from six methods: the

whole model with all predictors included (Whole), the backward deletion,

MIC, LASSO, SCAD, and MCP. The default settings of these implemen-
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tations are essentially used. However, to make them comparable, we have

applied the same tolerance level ε = 0.0001 for convergence, which is the

default in ncvreg. All the computations are done on a Lenovo T450s lap-

top computer with CPU 2.60 GHz and 12GB RAM. It is no surprise to

see that MIC outperforms other selection methods for a great deal in all

the scenarios considered here. In fact, the time consumed by MIC is quite

comparable with that used in fitting the whole model via OLS or ML.
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Table 1: Computing time (in seconds) comparison among six methods: the

whole model without variable selection (Whole), backward deletion as a

surrogate of best subset selection (Backward), MIC, LASSO, SCAD, and

MCP. The computing time is averaged over five simulation runs.

Methods

Model p n Whole Backward MIC LASSO SCAD MCP

A 12 100 0.000 0.042 0.006 0.040 0.046 0.034

1000 0.002 0.074 0.012 0.152 0.154 0.170

50 100 0.000 0.656 0.094 0.190 0.292 0.274

1000 0.010 2.886 0.080 0.408 0.590 0.662

B 12 100 0.004 0.130 0.012 0.204 0.180 0.172

1000 0.008 0.548 0.060 1.074 1.080 1.028

50 100 0.016 8.614 0.028 1.152 0.684 0.436

1000 0.032 24.268 0.598 2.534 3.618 3.960

C 12 100 0.006 0.126 0.010 0.218 0.166 0.136

1000 0.014 0.512 0.022 1.032 0.894 0.878

50 100 0.006 2.966 0.146 1.782 1.328 0.952

1000 0.036 20.386 0.094 2.420 3.752 4.090


