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Supplementary Material

In this supplemental material, we provide the proofs of Propositions 2–4

stated in Section 5 of the main document and some technical lemmas with

the proofs; see Appendices A and B. In Appendix C we provide a discussion

on how to construct the SCBs when the Nadaraya-Watson kernel smoothing

method is used to estimate the regression function.

Appendix A: Some technical lemmas

We start with some technical lemmas, which are very useful in the proofs

of Propositions 2–4. The first lemma is a well-known exponential inequality

for the martingale differences, see, for example, de la Peña (1999).

Lemma A.1 Let (dt,Ft)t≥1 be a sequence of martingale differences and

σ2
n =

∑n
t=1 E(d2

t |Ft−1). Suppose there exists a constant a1 > 0 such that

P(|dt| ≤ a1|Ft−1) = 1 for all t ≥ 2. Then,

P

(
n∑
t=1

dt > x, σ2
n ≤ y

)
≤ exp

{
− x2

2(y + a1x)

}
for all x, y > 0.

Lemma A.2 Let f(x) be a real function on a compact support [−A1, A1]

satisfying |f(x)−f(y)| ≤ C|x−y|. Under the conditions (C1) and (C3)(ii),

for any Bn ≤M0

√
n with M0 being a positive constant, we have

sup
|x|≤Bn

∣∣∣∣∣
n∑
t=1

{f [(Xt + x)/h]− f(Xt/h)}

∣∣∣∣∣ = OP (ηn log n) , (A.1)
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where

ηn =

(nBn log n)1/3 h, if Bn h log n ≥ 1,

[nh/(Bn log n)]1/3, if Bn h log n < 1.

In particular, by letting Bn = M0

√
n/ loga2 n with a2 ≥ 0, we get

sup
|x|≤M0

√
n/ loga2 n

∣∣∣∣∣
n∑

t=1

{f [(Xt + x)/h]− f(Xt/h)}

∣∣∣∣∣ = OP (
√
nh log(4−a2)/3 n). (A.2)

Proof. The proof is similar to Theorem 2.3 of Chan and Wang (2014).

Due to the condition that
∑∞

k=0 φk 6= 0 and
∑∞

k=0 |φk| < ∞, there ex-

ists a positive integer q0 such that
∑q

k=0 φk 6= 0 for all q ≥ q0. Without

loss of generality we assume q0 = 0 (otherwise it only requires a routine

modification). We start with several facts which can facilitate the proof.

F1. For any t > s, (Xt − Xs)/
√
t− s has a uniformly bounded density

ds,t(x), satisfying supx∈R |ds,t(x+ u)− ds,t(x)| ≤ C min{|u|, 1}.

F2. There exists a positive constant H0 which is independent of k1, k2, k3

and m such that

sup
x

E

(∣∣ k3∑
t=k2

f [(Xt + x)/h]
∣∣m | Fk1

)
≤ Hm

0 (m+ 1)!(k3 − k1)1/2h
[
1 +

{
(k3 − k2)1/2h

}m−1
]
, (A.3)

for all 0 ≤ k1 < k2 < k3 ≤ n and integer m ≥ 1, where Fs =

σ{ηs, ηs−1, · · · }.

F3. supx |
∑n

t=1 f [(Xt + x)/h]| = O (max {
√
nh, 1} log n) a.s.

The fact F1 is proved in Example 2.2 of Chan and Wang (2014). Using

F1 and the conditional arguments, fact F2 follows easily and the details

can be found in Lemma 5.1 of Chan and Wang (2014). Using F2 as a main

tool (taking m = log n), fact F3 can be proved by Markov’s inequality and

standard arguments (see Theorem 2.1 of Chan and Wang, 2014, for more

details).
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We are now ready to prove Lemma A.2. Let

bn =

(nBn/ log2 n)2/3, if Bnh log n ≥ 1,

(nhB2
n/ log n)2/3, if Bnh log n < 1.

Let Tn be the largest integer s such that sbn ≤ n. Furthermore write

yj = −Bn + j/m′n, j = 0, 1, 2, · · · ,mn, where m′n = [n/(hηn log n)] and

mn = [2Bnm
′
n] + 1, where ηn is defined in the lemma. It is easy to find that

Tnbn ≤ n and

mn ≤ 2Bnm
′
n + 1 ≤ Cn2, (A.4)

due to nh2 → ∞. Using the fact |f(x) − f(y)| ≤ C|x − y| and by the

standard arguments, we can show that

sup
|x|≤Bn

∣∣∣∣∣
n∑
t=1

{
f [(Xt + x)/h]− f(Xt/h)

}∣∣∣∣∣
≤ max

1≤j≤mn

∣∣∣ n∑
t=1

{
f [(Xt + yj)/h]− f(Xt/h)

}∣∣∣+Oa.s.(ηn log n)

≤ max
1≤j≤mn

∣∣∣∣∣
Tn−1∑
s=2

∆ns(yj)

∣∣∣∣∣+ max
1≤j≤mn

∆n(yj) +Oa.s.(ηn log n), (A.5)

where

∆ns(x) =

(s+1)bn∑
t=sbn+1

{
f [(Xt + x)/h]− f(Xt/h)

}
, for s = 2, . . . , Tn − 1,

∆n(x) ≤

(
2bn∑
t=1

+
n∑

t=Tnbn+1

)
|f [(Xt + x)/h]− f(Xt/h)| .

With the fact F3, it is readily seen that

max
1≤j≤mn

∆n(yj) ≤ C max{h
√
bn + |n− Tnbn|, 1} log n

≤ Cηn log n a.s.

This, together with (A.5), implies that (A.1) will follow if we prove

max
1≤j≤mn

∣∣ Tn∑
s=2

s is even

∆ns(yj)
∣∣+
∣∣ Tn∑

s=3
s is odd

∆ns(yj)
∣∣
 = OP (ηn log n). (A.6)
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We next only prove (A.6) for the case that s is even. The other case

can be dealt with similarly, and the details are thus omitted. To this end,

let F∗n,ν = Fn,(2ν+1)bn for ν ≥ 0, and

∆′ns(x) = ∆n,2s(x)I {|∆n,2s(x)| ≤ C∗ ηn} ,
∆∗ns(x) = ∆′ns(x)− E

(
∆′ns(x) | F∗n,s−1

)
,

where C∗ is a positive constant which will be specified later. With these

notation, to prove (A.6) when s is even, it suffices to show

λ1n ≡ max
1≤j≤mn

∣∣ Tn/2∑
s=1

∆∗ns(yj)
∣∣ = OP (ηn log n) , (A.7)

λ2n ≡ max
1≤j≤mn

∣∣∣∣∣∣
Tn/2∑
s=1

E
(
∆n,2s(yj) | F∗n,s−1

)∣∣∣∣∣∣ = OP (ηn log n) , (A.8)

λ3n ≡ max
1≤j≤mn

∣∣∣∣∣∣
Tn/2∑
s=1

∆n,2s(yj)I {|∆n,2s(yj)| > C∗ηn}

∣∣∣∣∣∣+

max
1≤j≤mn

∣∣∣∣∣∣
Tn/2∑
s=1

E
[
∆n,2s(yj)I {|∆n,2s(yj)| > C∗ηn)}

]∣∣∣∣∣∣
= OP (ηn log n) . (A.9)

We first give the proof of (A.8). Letting sn = (2s− 1)bn, note that, for
any 2sbn < t ≤ (2s+ 1)bn,

∣∣E {f [(Xt + x)/h]− f(Xt/h)} |F∗n,s−1
]∣∣

=
∣∣∣E{f [(Xt + x)/h]− f(Xt/h)

}∣∣∣Fn,sn

]∣∣∣
=

∣∣∣∣∫ ∞
−∞

{
f [(Xsn + y

√
t− sn + x)/h]− f [(Xsn + y

√
t− sn)/h]

}
dsn,k(y)dy

∣∣∣∣
≤ h√

t− sn

∫ ∞
−∞

f(Xsn/h+ y)
∣∣dsn,k [(hy − x)/

√
t− sn

]
− dsn,k(hy/

√
t− sn)

∣∣ dy
≤ C|x|h/(t− sn), (A.10)
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due to the fact F1. It is readily seen that

λ2n ≤
Tn/2∑
s=1

max
1≤j≤mn

|E
(
∆n,2s(yj) | F∗n,s−1

)
|

≤ CTnbnhb
−1
n max

1≤j≤mn

|yj|

≤ Cnhb−1
n Bn ≤ Cηn log n, (A.11)

which yields (A.8).

We next consider the proof of (A.9). Using (A.3) in the fact F2 with

k1 = 0, k2 = 2sbn + 1 and k3 = (2s+ 1)bn, for any integer m ≥ 1,

sup
x

E|∆n,2s(x)|m ≤ Hm
0 (m+ 1)!b1/2

n h
[
1 + (b1/2

n h)m−1
]
.

Using this fact, we have

E[λ3n] ≤ 2
mn∑
j=1

Tn/2∑
s=1

E [|∆n,2s(yj)|I {|∆n,2s(yj)| > C∗ηn}]

≤ 2(C∗ηn)(1−m)

mn∑
j=1

Tn/2∑
s=1

E|∆n,2s(yj)|m

≤ Cη(1−m)
n (H0/C∗)

m(m+ 1)!mnTn max{1, (b1/2
n h)m}

≤ Cn3(log n)1−m(H0/C∗)
m(m+ 1)!,

due to (A.4) and the definitions of ηn and bn. By taking m = log n and

C∗ ≥ H0 e
5, it follows from the Stirling approximation of (m+ 1)! that

E[λ3n] ≤ Cn3e−5 logn
√

2π(m+ 1)
(m+ 1

e

)m+1

(log n)1−m

≤ Cn−2 log5/2 n = O(ηn log n), (A.12)

which implies (A.9).

Finally, we consider the proof of (A.7). Note that, similarly to the proof

of (A.10),

Ik,j ≡ |E ({f [(Xj + x)/h]− f(Xj/h)} | Fn,k)|

≤ h√
k − j

∫ ∞
−∞

f(Xj/h+ y)
∣∣∣dk,j[(hy − x)/

√
j − k]− dk,j(hy/

√
j − k)

∣∣∣ dy
≤ C|x|h/(j − k),
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for any k < j. This, together with (A.3) with k1 = (2s−1)bn, k2 = 2sbn+ 1
and k3 = (2s+ 1)bn, implies that, for any x ∈ R, that

E
[
∆∗2ns(x) | F∗n,s−1

]
≤ 2E

[
∆2

n,2s(x) | Fn,(2s−1)bn

]
≤ 2

(2s+1)bn∑
t=2sbn+1

E
({
f [(Xt + x)/h]− f(Xt/h)

}2 | Fn,(2s−1)bn

)
+ 4

∑
2sbn+1≤t1<t2≤(2s+1)bn∣∣∣E({f [(Xt1 + x)/h]− f(Xt1/h)

}{
f [(Xt2 + x)/h]− f(Xt2/h)

}
| Fn,(2s−1)bn

)∣∣∣
≤ C b1/2n h+ 4

∑
2sbn+1≤t1<t2≤(2s+1)bn

E
(∣∣f [(Xt1 + x)/h]− f(Xt2/h)

∣∣It1,t2 | Fn,(2s−1)bn

)
≤ Cb1/2n h+ Cb−1/2

n |x|h2
∑

2sbn+1≤t1<t2≤(2s+1)bn

(t2 − t1)−1

≤ Cb1/2n h(1 + |x|h log bn).

Hence, we have

max
0≤j≤mn

Tn/2∑
s=1

E
[
∆∗2ns(yj) | F∗n,s−1

]
≤ CTnb

1/2
n h

(
1 + h log bn max

0≤j≤mn

|yj|
)

≤ Cnb−1/2
n h(1 +Bnh log n) ≤ Cη2

n log n.

Note that |∆∗ns(yj)| ≤ 2ηn and for each j, {∆∗ns(yj),F∗n,s} forms a sequence
of martingale differences. It follows from the martingale exponential in-
equality in Lemma A.1 that, there exists an M∗ > 0 sufficiently large such
that, as n→∞,

P(λ1n ≥M∗ηn log n)

≤ P

λ1n ≥M∗ηn log n, max
0≤j≤mn

Tn/2∑
s=1

E[∆∗2ns(yj) | F∗n,s−1] ≤ Cη2n log n


≤

mn∑
j=0

P

Tn/2∑
s=1

∆∗ns(yj) ≥M∗ηn log n,

Tn/2∑
s=1

E[∆∗2ns(yj) | F∗n,s−1] ≤ Cη2n log n


≤ mn exp

{
− M2

∗ log2 n

2C log n+ 2M∗ log n

}
≤ Cn2 exp {−M∗ log n} → 0, (A.13)

where the last inequality follows from (A.4). This yields λ1n = OP (ηn log n).

Combining (A.11)–(A.13), we prove (A.6). �
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Lemma A.3 Let f(x) be a real function on a compact support [−A1, A1]

satisfying |f(x)−f(y)| ≤ C|x−y|. Under the conditions (C1) and (C3)(ii),

we have

sup
|x|≤M0

√
n/ log4 n

∣∣∣∣∣
n∑
t=1

f [(Xt + x)/h]

∣∣∣∣∣ = OP

(√
nh
)
, (A.14)

where M0 is a positive constant.

(i) If, in addition,
∫ A1

−A1
f(x)dx 6= 0, then(

inf
|x|≤M0

√
n/ log4 n

∣∣∣∣∣
n∑
t=1

f [(Xt + x)/h]

∣∣∣∣∣
)−1

= OP

[
(
√
nh)−1

]
. (A.15)

(ii) If, in addition,
∫ A1

−A1
f(x)dx = 0, then

sup
|x|≤Bn

∣∣∣∣∣
n∑
t=1

f [(Xt + x)/h]

∣∣∣∣∣ = OP

[
ηn log n+ (nh2)1/4

]
(A.16)

for any Bn ≤ M0

√
n, where ηn is defined as in Lemma A.2. In particular,

by letting Bn = M0

√
n/ loga2 n, we have

sup
|x|≤M0

√
n/ loga2 n

∣∣∣∣∣
n∑

t=1

f [(Xt + x)/h]

∣∣∣∣∣ = OP

[√
nh log(4−a2)/3 n+ (nh2)1/4

]
, (A.17)

for any a2 ≥ 0.

Proof. Under the condition (C1) and the condition on f(x), it follows from

Corollary 2.2 of Wang and Phillips (2009) that

1√
nh

n∑
t=1

f(Xt/h)→D

∫ A1

−A1

f(x)dxLW (1, 0),

where LW (s, t) is the local time of the standard Brownian motion W (x),

defined by

LW (s, t) = lim
ε→0

1

2ε

∫ t

0

I(|W (x)− s| ≤ ε)dx.

The results (A.14) and (A.15) follow easily from (A.2) and the fact that

P (LW (1, 0) > 0) = 1. Similarly, the results (A.16) and (A.17) follows from
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(A.1) and the fact that

E

∣∣∣∣∣
n∑
t=1

f(Xt/h)

∣∣∣∣∣
2

≤ C
√
nh,

whenever
∫ A1

−A1
f(x)dx = 0 (see, for example, Proposition 3.1 of Wang and

Phillips, 2011). We have thus completed the proof of Lemma A.3. �

Lemma A.4 Suppose that (i) {fn(x, y)} is a sequence of real functions

satisfying supx,y,n |fn(x, y)| < ∞ and there exists an α > 0 such that,

whenever |y − y1| is sufficiently small,

sup
x,y,n
|fn(x, y)− fn(x, y1)| ≤ Cnα|y − y1|; (A.18)

(ii) there exist positive constant sequences γn → ∞ and B∗n = O(nk) for

some k > 0 such that

sup
|y|≤B∗n

n∑
t=1

f 2
n(Xt, y) = OP (γn). (A.19)

Furthermore, suppose that the condition (C4) is satisfied. Then, for any

nγ−pn logp−1 n = O(1) with p defined in (C4)(i), we have

sup
|y|≤B∗n

∣∣∣∣∣
n∑
t=1

utfn(Xt, y)

∣∣∣∣∣ = OP

[
(γn log n)1/2

]
. (A.20)

where ut = et or |et| − E[|et|] or e2
t − 1. Consequently, under the conditions

of Theorem 1, we have, for j = 0, 1, · · · ,

sup
|x|≤M0

√
n/ log4 n

∣∣∣∣∣
n∑

t=1

Kj [(Xt − x)/h]ut

∣∣∣∣∣ = OP

[
(nh2)1/4 log1/2 n

]
, (A.21)

sup
|x|≤M0

√
n/ log4 n

∣∣∣∣∣
n∑

t=1

Kj [(Xt − x)/h]
σ(Xt)− σ(x)

σ(x)
ut

∣∣∣∣∣ = OP

[
h(nh2)1/4 log1/2 n

]
,(A.22)

where M0 is a positive constant and Kj(x) = xjK(x).

Proof. The proof of (A.20) is similar to Theorem 2.1 of Wang and Chan

(2014), and we thus omit the details. In order to prove (A.22), let

fn(x, y) =
σ(x)− σ(y)

σ(x)
K[(x− y)/h].
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Due to K(x) = 0 for |x| ≥ A and (2.2) in the condition (C4), it is easy

to verify that fn(x, y) satisfies (A.18) and (A.19) with γn = h2(nh2)1/2 and

then the result (A.22) follows from (A.20). The proof of (A.21) is similar

and hence the details are omitted. �

Lemma A.5 Under the conditions (C1), (C3)(ii) and (C5), we have

Υ1n ≡ sup
|x|≤M0

√
n/(h logc0 n)

∣∣∣∣∣ 1

S2
n(xh)

n∑
t=1

K(Xt/h− x)− λ1

λ2

∣∣∣∣∣
= OP [log−33 n], (A.23)

and for any |s| ≤ 2A,

Υ2n ≡ sup
|x|≤M0

√
n/(h logc0 n)

∣∣∣∣∣
n∑
t=1

Zt(s+ x)Zt(x)− r(s)

∣∣∣∣∣
= OP [log−33 n], (A.24)

where r(s) =
∫
K(x)K(x + s)dx/λ2 defined as in (2.3) of the main docu-

ment, c0 > 103, λ1 and λ2 are defined in Section 2 of the main document,

and M0 is a positive constant.

Proof. We only prove (A.24) as the proof of (A.23) is similar but simpler.

Let

g2(y) = λ2

[
K(y)K(y − s)− r(s)K2(y)

]
and B�n = M0

√
n/(h logc0 n). By the condition (C5), g2(y) has a compact

support on [−A,A] with |g2(x) − g2(y)| ≤ C|x − y| and
∫ A
−A g2(y)dy = 0.

Letting

An(x, s�, s) =
1

S2
n(xh+ s�h)

·
n∑
t=1

K(Xt/h− x− s)K(Xt/h− x)

with s� = s or 0, it follows from Lemma A.3 with f(x) = g2(x) and a2 =

c0 > 103 that, for any |s| ≤ 2A,

sup
|x|≤B�n

|An(x, s�, s)− r(s)|

=

[
λ2 inf
|x|≤B�n

n∑
t=1

K2(Xt/h− x− s�)

]−1

sup
|x|≤B�n

∣∣∣∣∣
n∑
t=1

g2(Xt/h− x)

∣∣∣∣∣
= OP [log−33 n]. (A.25)
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Due to (A.25), we have

sup
|x|≤B�n

∣∣A1/2
n (x, s�, s)− r1/2(s)

∣∣ ≤ sup
|x|≤B�n

∣∣An(x, s�, s)− r(s)
∣∣∣∣A1/2

n (x, s�, s) + r1/2(s)
∣∣

= OP

[
log−33 n

]
and thus

Υ2n = sup
|x|≤B�n

∣∣A1/2
n (x, s, s)A1/2

n (x, 0, s)− r(s)
∣∣

≤ sup
|x|≤B�n

∣∣[A1/2
n (x, s, s)− r1/2(s)

]
A1/2
n (x, 0, s)

∣∣+

sup
|x|≤B�n

∣∣r1/2(s)
[
A1/2
n (x, 0, s)− r1/2(s)

]∣∣
= OP [log−33 n],

as required. �

To introduce Lemma A.6, let H(a) = H2(a) be defined as in Lemma

A3 of Bickel and Rosenblatt (1973). It follows that

lim
a↓0

a−1H(a) = 1/
√
π.

Further denote by Pξ the conditional probability given ξ = (ηk;−∞ < k <

∞) and PA(B) = P(B ∩A) for any event B. Set

a
(1)
j = j/(log n)8, 1 ≤ j ≤ [(log n)8w],

a
(2)
j = ja/xn, 1 ≤ j ≤ wxn/a,

where a > 0 is a constant, xn = dn + z/(2 log h̄−1)1/2 for z ∈ R and w > 0

is a constant such that

inf{s−2(1− r(s)) : 0 ≤ s ≤ w} > 0. (A.26)

It is clear that such w exists, and is finite due to (2.3) in the main document.

Furthermore, write

m = max
{

[(log n)6w], wxn/a
}

10
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and

A =

{
max
i=1,2

max
1≤j≤m

sup
x∈In

∣∣∣∣∣
n∑
t=1

Zt(x+ a
(i)
j )Zk(x)− r(a(i)

j )

∣∣∣∣∣ ≤ (log n)−33,

inf
x∈In

n∑
t=1

K(Xt/h− x) ≥
√
nh log−1/2 n,

sup
x∈In

n∑
t=1

K(Xt/h− x) ≤
√
nh log1/2 n

}
. (A.27)

It follows from Lemmas A.3 and A.5 that P(A)→ 1 as n→∞.

Lemma A.6 For any a > 0 and 0 < t ≤ w with w defined as that in
(A.26), under the conditions of Theorem 1, we have

PA

[wxn/a]⋃
j=1

{
M̃n(v + a

(2)
j ) ≥ xn

}  = xnψ(xn)
H(a)

a
C

1/2
0 w + o(xnψ(xn)), (A.28)

PA

(
sup

0≤s≤w
M̃n(v + s) > xn

)
=

1√
π
xnψ(xn)C

1/2
0 w + o(xnψ(xn)) (A.29)

and

PA

[wxn/a]⋃
j=1

{
M̃n(v + a

(2)
j ) ≥ xn

}
,

[wxn/a]⋃
j=1

{
M̃n(v + a

(2)
j ) < −xn

} = o(xnψ(xn)) (A.30)

uniformly over |v| ≤ h̄−1 − w, where ψ(x) = e−x
2/2/(
√

2π). On the other
hand, we also have

PA

[wxn/a]⋃
j=1

{
M̃n(v + a

(2)
j ) < −xn

}  = xnψ(xn)
H(a)

a
C

1/2
0 w + o(xnψ(xn)) (A.31)

and

PA

(
inf

0≤s≤w
M̃n(v + s) < −xn

)
=

1√
π
xnψ(xn)C

1/2
0 w + o(xnψ(xn)). (A.32)

Proof. We only prove (A.29) as the proofs of the other results are similar.

Throughout the proof, we let tn = [(log n)8w] + 1, sj = j/(log n)8, 1 ≤ j ≤
tn − 1 and stn = w. Then

PA

(
sup

0≤s≤w
M̃n(v + s) > xn

)
11
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≤ PA

(
max

1≤j≤tn
M̃n(v + sj) > xn − (log n)−2

)
+

PA

(
max

1≤j≤tn
sup

sj−1<s≤sj
|M̃n(v + s)− M̃n(v + sj−1)| > (log n)−2

)
≡ Ξn1 + Ξn2.

Using the notation in Section 5 of the main document, we may write

M̃n(v + s)− M̃n(v + sj−1) =
n∑
t=1

Wt(v, j)e
′
t,

where Wt(v, j) = Zt(v+s)−Zt(v+sj−1). Note that, on A, for any |v| ≤ h̄−1

and sj−1 ≤ s ≤ sj,

|Wt(v, j)e
′
t| ≤ 2(nh2)−1/4(log n)3/2

and

n∑
t=1

Wt(v, j)
2 E(e′t)

2 ≤ S−2n (vh+ sh)

n∑
t=1

[
K
(
Xt/h− v − s

)
−K

(
Xt/h− v − sj−1

)]2
+

n∑
t=1

K2
(
Xt/h− v − sj−1

)[
1/Sn(vh+ sh)− 1/Sn(vh+ sj−1h)

]2
≤ C log−32 n.

Then, as in the proof of Proposition 3 (see Appendix B below), we have

Ξn2 → 0 as n→∞.

For Ξn1, by Theorem 1.1 in Zäıtsev (1987) and letting ϑn = xn −
2(log n)−2, we have

Pξ

(
max

1≤j≤tn
M̃n(v + sj) > xn − (log n)−2

)
I{A}

≤ Pξ

(
max

1≤j≤tn
Yn(v + sj) > ϑn

)
I{A}+ Ct5/2n exp

(
− C(nh2)1/4

t
5/2
n (log n)4

)
,

where ξ = (ηk; k = 0,±1,±2, · · · ) and Yn(·) is separable Gaussian processes

with mean zero and covariance function

Covξ(Yn(s1), Yn(s2)) =
n∑
t=1

Zt(s1)Zt(s2).

12
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Set

σij =
1

Sn(vh+ sih)Sn(vh+ sjh)

n∑
t=1

K
(Xt

h
− v − sj

)
K
(Xt

h
− v − si

)
.

It is easy to see that, on A, uniformly in v and i, j,∣∣∣σi,j − r(sj − si)∣∣∣ ≤ C(log n)−33. (A.33)

Therefore, using Lemma A4 in Bickel and Rosenblatt (1973), we have on A

Pξ

(
max

1≤j≤tn
Yn(j) > ϑn

)
≤ P

(
max

1≤j≤tn
Ỹn(sj) > ϑn

)
+
Ct2ne

−ϑ2n/2

(log n)33/2

≤ P

(
max

1≤j≤tn
Ỹn(sj) > ϑn

)
+ Ch(log n)−1/2,

where Ỹn(·) is a separable stationary Gaussian processes with mean zero

and covariance function r(·). Furthermore, by Lemma A3 in Bickel and

Rosenblatt (1973), we have

P

(
max

1≤j≤tn
Ỹn(sj) > ϑn

)
≤ P

(
sup

0≤s≤w
Ỹn(s) > ϑn

)
=

1√
π
xnψ(xn)C

1/2
0 w + o(xnψ(xn)).

This implies the upper bound in (A.29) [Lemma A3 in Bickel and Rosenblatt

(1973) assumes that C0 = 1. For general C0 > 0, one only needs to use

a simple scale transform]. The lower bound in (A.29) can be obtained

similarly. �

Appendix B: Proofs of Propositions 2–4

We next give the proofs of Propositions 2–4 stated in Section 5 of the

main document.

Proof of Proposition 2. By the condition (C5), Bn =
√
n/(logc0 n) with

c0 > 103, and using Lemma A.3, we have

inf
|x|≤Bn

S−2
n (x) = OP

[
(nh2)−1/2

]
, (B.1)

inf
|x|≤Bn

V −1
n2 (x) = OP

[
(nh2)−1/2

]
, (B.2)

sup
|x|≤Bn

|Vn1(x)| = OP

[
(nh2)1/2 log−33 n

]
. (B.3)

13
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Consequently, by (A.21) of Lemma A.4, we have

sup
|x|≤Bn

|Γ2n(x)| = OP (log−32 n). (B.4)

Similarly, it follows from (A.22) of Lemma A.4 that

sup
|x|≤Bn

|Γ3n(x)| ≤ sup
|x|≤Bn

1

Sn(x)
·

∣∣∣∣∣
n∑

t=1

K[(Xt − x)/h][σ(Xt)− σ(x)]et/σ(x)

∣∣∣∣∣+

sup
|x|≤Bn

|Vn1(x)|
Sn(x)Vn2(x)

·

∣∣∣∣∣
n∑

t=1

K1[(Xt − x)/h]
σ(Xt)− σ(x)

σ(x)
et

∣∣∣∣∣
= OP (h log1/2 n) = OP (log−2 n), (B.5)

due to the fact that nh10 log8 n = O(1). For Γ1n(x), by noting

n∑
t=1

wt(x)(Xt − x) = 0,

the conditions (C2) and (C3)(iii), (B.1)–(B.3) as well as Lemma A.3, we
have

sup
|x|≤Bn

|Γ1n(x)| = sup
|x|≤Bn

1

Sn(x)Vn2(x)
·

∣∣∣∣∣
n∑

t=1

wt(x) [g(Xt)− g(x)− g′(x)(Xt − x)]

∣∣∣∣∣
≤ OP

[
(nh2)−1/4

]
sup
|x|≤Bn

|g0(x)| sup
|x|≤Bn

1

Vn2(x)
·

n∑
t=1

|wt(x)| · |Xt − x|2

≤ OP

[
h2(nh2)−1/4

]
sup
|x|≤Bn

|g0(x)|

[
sup
|x|≤Bn

n∑
t=1

K2[(Xt − x)/h]+

sup
|x|≤Bn

|Vn1(x)|
Vn2(x)

·
n∑

t=1

|K3[(Xt − x)/h]|

]
= OP

([
nh10 sup

|x|≤Bn

g40(x)
]1/4)

= OP (log−2 n). (B.6)

By (B.4)–(B.6), we complete the proof of Proposition 2. �

Proof of Proposition 3. Letting ĕt = et− êt− ẽt with ẽt defined in (5.2)

of the main document and

êt = etI{|et| ≥ (nh2)1/4(log n)−4} − E
[
etI{|et| ≥ (nh2)1/4(log n)−4}

]
,

we have

Mn(x)− M̃n(x) =
1

Sn(xh)

n∑
t=1

K(Xt/h− x)

{
êt + ĕt + ẽt

[
1− 1

E(ẽ2
t )

1/2

]}
.

14
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Note that, by the conditions (C3)(ii), (C4)(i) and (C5),

E
[

sup
x∈In
|

n∑
t=1

K(Xt/h− x)êt|
]

≤ CnE|e1|I{|e1| ≥ (nh2)1/4(log n)−4}
≤ C(nh2)1/4(n1/2−δ0h)−p n1−δ0 p(log n)4(2p−1)E|e1|2p

= o
(
(nh2)1/4n1−δ0 p(log n)4(2p−1)

)
.

As p > 1 + [1/δ0] assumed in the condition (C4)(i), it follows that

sup
x∈In

∣∣∣∣∣
n∑
t=1

K(Xt/h− x)êt

∣∣∣∣∣ = oP
(
(nh2)1/4 log−2 n

)
.

This, together with the fact that P(A) → 1 where A is defined in (A.27),

implies that Proposition 3 can be proved if we show that

PA

{
sup
x∈In

∣∣∣∣∣
n∑
t=1

K(Xt/h− x)e∗t

∣∣∣∣∣ ≥ 1

2
(nh2)1/4(log n)−2

}
= o(1), (B.7)

where e∗t = ĕt + ẽt
[
1− 1/E(ẽ2

t )
1/2
]
.

The proof of (B.7) is similar to (A.21) by making use of the expo-

nential inequality in Lemma A.1. Hence, we next only sketch the proof

to save space. Let ωj = −an + j m−1
n , j = 1, 2, · · · , 2anmn, where an =

h−1
√
n/ logc0 n, mn = n5. Note that

E
[
(e∗1)2

]
≤ 2E

[
ĕ2

1

]
+ 2E

{
ẽ2

1

[
1− 1

E(ẽ2
1)1/2

]}
≤ CE

[
e2

1I {|e1| ≥ log n}
]
≤ C log−7 n

due to the condition (C4)(i) with p > 1 + [1/δ0] > 5 (δ0 < 1/4), and for

given η1, η2, · · · and conditional on A, (e∗t ) forms a martingale difference

with the conditional variance

V
2

n =
n∑
t=1

K2(Xt/h− ωj)E[(e∗t )
2] ≤ C

√
nh log nE[(e∗1)2]

≤ C
√
nh log n/ log7 n = C

√
nh/ log6 n.

It is readily from Lemma A.1 that

PA

{
max

1≤j≤mn

|
n∑

t=1

K(Xt/h− ωj)e
∗
t | ≥

1

2
(nh2)1/4(log n)−2

}

15
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≤ 2

mn∑
j=1

PA

{
n∑

t=1

K(Xt/h− ωj)e
∗
t ≥ (nh2)1/4(log n)−2/2, V

2

n ≤ C
√
nh/ log6 n

}
≤ 2mn exp

{
− C(log n)2

}
= o(1),

where we have used the fact that |K(Xt/h− ωj)e∗t | ≤ C(nh2)1/4/ log4 n. By

recalling |K(x)−K(y)| ≤ C|x− y|, the above result and standard Taylor’s

expansion yield (B.7). The proof of Proposition 3 is thus completed. �

Proof of Proposition 4. Recall xn = dn + z/(2 log h̄−1)1/2 for z ∈ R and

P(A)→ 1, as n→∞. It suffices to show that, for any z ∈ R,∣∣PA

(
M̃n ≥ xn

)
− (1− e−2e−z

)
∣∣→ 0. (B.8)

As in Bickel and Rosenblatt (1973), we split the interval In into 2N

subintervals:

W1,V1, · · · ,WN ,VN
with the length of Wi being w > 0, length of Vi being v > 0, and N =

b|In|/(w + v)c, where w is defined as in (A.26) and v is sufficiently small.

We can ignore the last two incomplete intervals in view of Lemma A.6,

which implies that

sup
x∈In

M̃n(x) = max
1≤k≤N

sup
x∈Wk∪Vk

M̃n(x),

and

inf
x∈In

M̃n(x) = min
1≤k≤N

inf
x∈Wk∪Vk

M̃n(x).

It can be verified that∣∣∣∣PA

(
sup
x∈In

M̃n(x) ≥ xn or inf
x∈In

M̃n(x) < −xn
)
−

PA

(
max

1≤k≤N
sup
x∈Wk

M̃n(x) ≥ xn or min
1≤k≤N

inf
x∈Wk

M̃n(x) < −xn
)∣∣∣∣

≤ PA

(
max

1≤k≤N
sup
x∈Vk

M̃n(x) ≥ xn

)
+ PA

(
max

1≤k≤N
inf
x∈Vk

M̃n(x) < −xn
)

≡ Rn1 +Rn2.

Without loss of generality, assume thatWk = [ak, ak +w). We further have∣∣∣∣PA

(
max

1≤k≤N
sup

x∈Wk

M̃n(x) ≥ xn or min
1≤k≤N

inf
x∈Wk

M̃n(x) < −xn
)
−

16
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PA

 N⋃
k=1

[wxn/a]⋃
j=1

{
M̃n(ak + a

(2)
j ) ≥ xn

}
or

N⋃
k=1

[wxn/a]⋃
j=1

{
M̃n(ak + a

(2)
j ) < −xn

}∣∣∣∣∣∣
≤

N∑
k=1

∣∣∣∣∣∣PA

(
sup

x∈Wk

M̃n(x) ≥ xn
)
− PA

[wxn/a]⋃
j=1

{
M̃n(ak + a

(2)
j ) ≥ xn

}∣∣∣∣∣∣+
N∑

k=1

∣∣∣∣∣∣PA

(
inf

x∈Wk

M̃n(x) < −xn
)
− PA

[wxn/a]⋃
j=1

{
M̃n(ak + a

(2)
j ) < −xn

}∣∣∣∣∣∣
≡ Rn3 +Rn4.

Recalling lima↓0 a
−1H(a) = 1/

√
π, N ≤ C1h̄

−1 and xnψ(xn) ≤ C2h̄, where

C1 and C2 are two positive constants, it follows easily from Lemma A.6 that

lim
v→0

lim sup
n→∞

(Rn1 +Rn2) = 0,

lim
a→0

lim sup
v→0

lim sup
n→∞

(Rn3 +Rn4) = 0.

Combining the above facts, the result (B.8) follows if we prove, for any

z ∈ R,

lim
a→0

lim sup
v→0

lim sup
n→∞

∣∣∣PA

(
N⋃
k=1

Ak

)
− (1− e−2e−z

)
∣∣∣ = 0, (B.9)

where Ak =
⋃[wxn/a]
j=1 Bk,j and

Bk,j =
{
M̃n(ak + a

(2)
j ) ≥ xn

}
∪
{
M̃n(ak + a

(2)
j ) ≤ −xn

}
.

We next give the proof of (B.9), which is similar to the relevant argu-
ment in Liu and Wu (2010). Let

Dk,j =
{
Yn(ak + a

(2)
j ) ≥ xn

}
∪
{
Yn(ak + a

(2)
j ) ≤ −xn

}
,

D±k,j =
{
Yn(ak + a

(2)
j ) ≥ xn ± (log n)−2

}
∪
{
Yn(ak + a

(2)
j ) ≤ −xn − (±(log n)−2)

}
,

D̃k,j =
{
Ỹn(ak + a

(2)
j ) ≥ xn

}
∪
{
Ỹn(ak + a

(2)
j ) ≤ −xn

}
,

D̃
±
k,j =

{
Ỹn(ak + a

(2)
j ) ≥ xn ± (log n)−2

}
∪
{
Ỹn(ak + a

(2)
j ) ≤ −xn − (±(log n)−2)

}
,

where, conditioning on ξ = (ηk; k ∈ Z), Yn(·) is separable Gaussian pro-

cesses with mean zero and covariance function

Covξ(Yn(s1), Yn(s2)) =
n∑
t=1

Zt(s1)Zt(s2),

17
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and Ỹn(·) is separable stationary Gaussian processes with mean zero and

covariance function r(s) =
∫
K(x)K(x+ s)dx/λ(K2).

By Bonferroni’s inequality, we have for fixed 1 ≤ l ≤ N/2,

2l∑
d=1

(−1)d−1
∑

1≤i1<···<id≤N

PA

(
d⋂
j=1

Aij

)
≤ PA

(
N⋃
k=1

Ak

)

≤
2l−1∑
d=1

(−1)d−1
∑

1≤i1<···<id≤N

PA

(
d⋂
j=1

Aij

)
.

To estimate the probability PA

(⋂d
j=1 Aij

)
, recall Wk = [ak, ak + w). Let

qj = ij+1 − ij for 1 ≤ j ≤ d− 1 and define

Σ′ =

{
1 ≤ i1 < · · · < id ≤ N : min

1≤j≤d−1
qj ≤ b2/w + 2c

}
. (B.10)

Let 0 ≤ d0 ≤ d− 2 and

Σ′d0 =
{

1 ≤ i1 < · · · < id ≤ N : the number of j such that qj > b2/w + 2c is d0

}
.

We have Σ′ = ∪d−2
d0=0Σ′d0 and the number of elements in the sum

∑
Σ′d0

PA

(⋂d
j=1 Aij

)
is bounded by CNd0+1 = O(h̄−d0−1), where C is a positive constant inde-

pendent of N . Suppose now i1, · · · , id are in Σ′d0 . Note that

d⋂
j=1

Aij =

[wxn/a]⋃
j1=1

· · ·
[wxn/a]⋃
jd=1

{Bi1,j1 ∩ · · · ∩Bid,jd} .

Without loss of generality, assume that q1 ≤ b2/w + 2c, q2 > b2/w +

2c, · · · , qd0+1 > b2/w + 2c. By Theorem 1.1 in Zäıtsev (1987), on A, we

have

Pξ (Bi1,j1 ∩ · · · ∩Bid,jd) ≤ Pξ
(
D−i1,j1 ∩ · · · ∩D−id,jd

)
+ C exp

{
−(log h̄−1)2

}
.

(B.11)

Set σlk =
∑n

t=1 Zt(ail + a
(2)
jl

)Zt(aik + a
(2)
jk

). Recalling the definition of Zt(s),

we have, on A, for 3 ≤ k ≤ d0 + 1, l = 1, 2, σlk = 0; for 3 ≤ k 6= s ≤ d0 + 1,

σsk = 0; for 1 ≤ k ≤ d0 + 1, σkk = 1; and∣∣∣σ12 − r
(
ai2 − ai1 + (j2 − j1)ax−1

n

) ∣∣∣ ≤ C(log n)−33.
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For notational simplicity, we set

Yk = Yn(aik + a
(2)
jk

), 1 ≤ k ≤ d, 1 ≤ jk ≤ [wxn/a].

Using the estimations of the covariance above, we get the covariance matrix

Vn of (Yk)1≤k≤d0+1 satisfying∣∣∣Vn −V
∣∣∣ ≤ C(log n)−33, (B.12)

where

V =

(
V1 0

0 Id0−1

)
, V1 =

(
1 µ

µ 1

)
,

µ = r (ai2 − ai1 + (j2 − j1)ax−1
n ). By (B.12), we have∣∣V−1

n −V−1
∣∣ ≤ C(log n)−33,

∣∣∣√det(V)−
√

det(Vn)
∣∣∣ ≤ C(log n)−33.

(B.13)
Let pn(y) denote the density function of (Yk)1≤k≤d0+1, and p(y) denote the
density function of the Gaussian random vector with covariance matrix V.
Then, by (B.13), we have

|pn(y)− p(y)| ≤ C
[
(log n)−2p(y) + exp

(
−yV−1y′/2

) ∣∣exp
{
C(log n)−2|y|2

}
− 1
∣∣] .

(B.14)

Note that |j2 − j1|ax−1
n ≤ w and aj2 − aj1 ≥ w + v. It is readily seen that

|µ| ≤ supt≥v |r(t)| < 1. Then it follows from Lemma 2 in Berman (1962)

that, for some δ > 0, we have

P
(
D−i1,j1 ∩ · · · ∩D−id,jd

)
≤ C(1 + (log n)−2)

∫
Ξ−
p(y)dy + C exp

{
−(log h̄−1)2

}
≤ Ch̄d0+1+δ, (B.15)

where y = (y1, · · · yd0+1) and

Ξ± =

d0+1⋂
j=1

[{
yj ≥ xn + (± log n)−2d

}
∪
{
yj ≤ −xn − (± log n)−2d

}]
.

Noting that ([wxn/a])d = O((log n)2d) and by (B.11), we have for some

δ > 0,

d−2∑
d0=0

∑
Σ′d0

PA

(
d⋂
j=1

Aij

)
≤ Ch̄δ.
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We now estimate ( ∑
1≤i1<···<id≤N

−
∑
Σ′

)
PA

(
d⋂
j=1

Aij

)
. (B.16)

Since ij+1 − ij ≥ b2/w + 2c, we have aij+1
− aij ≥ (w + v)(b2/w + 2c) >

2 + w + v. Then,

σsk = 0 for 1 ≤ s 6= k ≤ d, 1 ≤ js, jk ≤ [wxn/a]. (B.17)

By Theorem 1.1 in Zäıtsev (1987), on A, we have

Pξ

(
d⋂
j=1

Aij

)
≤ Pξ

(
d⋂
j=1

D−ij

)
+ C exp

{
−(log h̄−1)2

}
(B.18)

and

Pξ

(
d⋂
j=1

Aij

)
≥ Pξ

(
d⋂
j=1

D+
ij

)
− C exp

{
−(log h̄−1)2

}
. (B.19)

By (B.17),

Pξ

(
d⋂
j=1

D±ij

)
=

d∏
j=1

Pξ(D
±
ij

)

By Lemma A4 in Bickel and Rosenblatt (1973), on A we have∣∣∣Pξ(D±ij)− P(D̃
±
ij

)
∣∣∣ ≤ Ct2n(log n)−33/2 exp

{
−(xn ± (log n)−2)2/2

}
≤ Cht2n(log n)−33/2, (B.20)

where D̃
±
ij

is defined as[wxn/a]⋃
k=1

{
Ỹn(aij + a

(2)
k ) > xn ± (logn)−2

}⋃[wxn/a]⋃
k=1

{
Ỹn(aij + a

(2)
k ) < −xn − (±(logn)−2)

} .
By Lemma A3 in Bickel and Rosenblatt (1973), we have

P(D̃
±
ij

) = (2 + o(1))xnψ(xn)
Hα(a)

a
C

1/2
0 w. (B.21)

Hence, by (B.20) and (B.21),

Pξ(D
±
ij

)I{A} = (2 + o(1))xnψ(xn)
H2(a)

a
C

1/2
0 w · I{A}
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= (2 + o(1))
√
πhwe−z

H2(a)

a
· I{A},

where o(1) is bounded by an non-random number which tends to zero.

Hence, we have ( ∑
1≤i1<···<id≤N

−
∑
Σ′

)
PA

(
d⋂
j=1

Aij

)

=

( ∑
1≤i1<···<id≤N

−
∑
Σ′

)
E

[
Pξ

(
d⋂
j=1

Aij

)
I{A}

]

=

[
(2 + o(1))N

√
πhwe−z

H2(a)

a

]d
P(A)/d!

=

[
(2 + o(1))(w + v)−1we−z

√
π
H2(a)

a

]d
P(A)/d!,

which implies the result (B.9), by letting n→∞, l→∞, v → 0 and a→ 0.

�

Appendix C: Asymptotic Gumbel distribution for the Nadaraya-

Watson estimator

We next consider using the Nadaraya-Watson kernel smoothing method to

estimate the regression function g in model (1.2), develop the asymptotic

Gumbel distribution for the maximum deviation of the estimator with ap-

propriate centering and scaling, and then give a brief discussion on how to

construct the SCBs for the function g.

The Nadaraya-Watson estimation is defined as

g̃n(x) =
n∑
t=1

K [(Xt − x)/h]Yt/
n∑
t=1

K [(Xt − x)/h] , (C.1)

where K is a non-negative kernel function and h is a bandwidth. To con-

struct the SCBs, we have to obtain the asymptotic distribution for the

normalized maximum absolute deviation

∆̃n = sup
|x|≤Bn

∣∣∣Ṽn(x) [g̃n(x)− g(x)− bg(x)] /σ(x)
∣∣∣ , (C.2)
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where Bn is a sequence of constants which may diverge to infinity,

bg(x) =
n∑
t=1

g(Xt)K [(Xt − x)/h] /
n∑
t=1

K [(Xt − x)/h]− g(x) (C.3)

is the bias term for g̃n(·) and the normalizing term

Ṽn(x) =

{
n∑
t=1

K [(Xt − x)/h]

}
/

{
n∑
t=1

K2 [(Xt − x)/h]

}1/2

. (C.4)

Similarly to the proofs in Section 5 of the main document, we may derive

the following asymptotic Gumbel distribution.

Theorem C.1. Let Conditions (C1) (C3)(i)(ii), (C4) and (C5) be satisfied.

Then, for z ∈ R,

P
{

(2 log h̄−1)1/2
(

∆̃n − dn
)
≤ z
}
→ e−2e−z

, (C.5)

where h̄ and dn are defined as in Theorem 1.

In order to use the above theorem to construct the SCBs of the un-

known regression function g, we need to consistently estimate the variance

function σ2(x) and the asymptotic bias term bg(x). The function σ2(x) can

be estimated by using (3.1) in the main document with ĝn(·) replaced by

g̃n(·), and we denote the resulting estimate by σ̃2
n(x). Furthermore, under

some smoothness condition on g, we may further show that

sup
x≤Bn

∣∣bg(x)− b�g(x)
∣∣ = oP (h2), (C.6)

where b�g(x) = g′(x)Vn1(x)
Vn0(x)

h + 1
2
g′′(x)Vn2(x)

Vn0(x)
h2, g′ and g′′ are the first and

second-order derivatives of g, and Vnj(x) is defined in Section 1 of the main

document. Note that g′ and g′′ can be consistently estimated by using the

local cubic smoothing method, and then we can obtain the estimation of

b�g(x), which is denoted by b̃g(x). Using Theorem C.1 and (C.6), for given

α, the (1− α)-SCB for g over the set {x : |x| ≤ Bn} can be constructed by[
g̃n(x)− b̃g(x)− l̃α(x), g̃n(x)− b̃g(x) + l̃α(x)

]
, (C.7)

where

l̃α(x) =
[
zα(2 log h̄−1)−1/2 + dn

]
σ̃n(x) Ṽ −1

n (x).
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and zα is defined as in Section 3 of the main document. However, Chan and

Wang (2014) showed that the performance of the local linear estimation is

superior to that of the conventional Nadaraya-Watson estimator in uniform

asymptotics for nontationary time series. Therefore, in the present paper,

we concentrate on the SCBs using the local linear smoothing method for

the regression function g.
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