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Abstract: There is increasing interest in detecting collective anomalies: potentially

short periods during which the features of data change, before reverting back to

normal behavior. We propose a new method for detecting a collective anomaly in

the vector autoregressive (VAR) models. We focus on situations in which the change

in the VAR coefficient matrix at an anomaly is sparse, that is, a small number of

entries of the VAR coefficient matrix change. To tackle this problem, we propose a

test statistic for a local segment that is built on the lasso estimator of the change in

the model parameters. This enables us to detect a sparse change more efficiently,

and our lasso-based approach becomes especially advantageous when the anomalous

interval is short. We show that the new procedure controls the type-I error and has

asymptotic power tending to one. The practicality of our approach is demonstrated

using simulations and two data examples, involving New York taxi trip data and

EEG data, respectively.

Key words and phrases: Collective anomaly, epidemic change, high-dimensional

time series, Lasso, sparse changes, vector autoregressive model.

1. Introduction

There is a growing need for the modeling and analysis of high-dimensional

time series, because such series have become increasingly common in many ap-

plication areas. Here, applications include estimating the causal relationships

among genes and constructing gene regulatory networks (Shojaie and Michailidis

(2010)), discovering causal interactions in neuroimaging (Seth, Barrett and Bar-

nett (2015)), detecting changes in the network structure of functional magnetic

resonance imaging data (Cribben and Yu (2017)), and analyzing the network

structure of volatility interconnections in S&P 100 data (Barigozzi and Hallin

(2017)).

Most existing methods assume stationary and stable time series. However,

if there is either a structural change or a period of anomalous behavior in a time

series, detecting its location is an important task. High-dimensional changepoint
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analysis is receiving increasing attention, but is still in its early stage. The

types of changes that are of interest vary by application, and we mention only

a selection. Detecting a change in mean is the most widely studied area, with

early works including that of Bai (2010), who studies the consistency of the least

squares estimator of a single changepoint. The CUSUM procedure is popular in

changepoint analysis, with Zhang et al. (2010) and Horváth and Hušková (2012)

presenting test statistics for detecting a change in multivariate data that are based

on an l2-aggregation of the CUSUM values for the individual series. Jirak (2015)

proposes an l∞-aggregation of CUSUM statistics, and Enikeeva and Harchaoui

(2013) propose using a combination of two chi-square-type test statistics to detect

changes that affect many or only a few series. Other recent works on cross-

sectionally sparse changes include Cho and Fryzlewicz (2015), Cho (2016), and

Wang and Samworth (2018). Related topics for high-dimensional time series

include detecting changes in covariance (Aue et al. (2009); Wang, Yu and Rinaldo

(2017)) and in factor models (Chen, Dolado and Gonzalo (2014); Barigozzi, Cho

and Fryzlewicz (2018)).

One of the most popular models for high-dimensional time series is the vector

autoregressive (VAR) model (Sims (1980); Lütkepohl (2005)), due to its ability to

capture complex temporal and cross-sectional relationships. However, estimating

the coefficient matrix becomes challenging, because the number of parameters

increases quadratically with the number of time series. To overcome this, struc-

tured sparsity of the VAR coefficients is often assumed, because this assumption

dramatically reduces the number of model parameters. For example, Song and

Bickel (2011) use lasso-type penalties, that is, `1-penalties, to encourage sparsity

in the estimates of the VAR coefficients. Basu and Michailidis (2015) investigate

the theoretical properties of `1-penalized estimators for a Gaussian VAR model

and show consistency results, and Lin and Michailidis (2017) generalize the re-

sults by considering a general norm instead of being restricted to the `1-norm

for the penalty. Recently, more complex structures have been studied in the

literature. Basu, Li and Michailidis (2019) study the low-rank and structured

sparse VAR model, and Nicholson et al. (2020) impose a hierarchical structure

on VAR coefficient matrices according to the lag order, thus addressing both the

dimensionality and the lag selection issues at the same time.

Despite the large body of literature on VAR models, few works have focused

on detecting a structural change. Kirch, Muhsal and Ombao (2015) consider two

scenarios, detecting at-most-one-change and an epidemic change in the model

parameters of multivariate time series, not restricted to VAR models. Safikhani

and Shojaie (2022) consider a multiple changepoint setting for a VAR coefficient
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matrix under a high-dimensional regime, and propose a three-stage procedure

that returns consistent estimators of both the changepoints and the parameters.

Wang et al. (2019) study the same setting (i.e., when the model parameters

have a form of piecewise constant over time), and use a dynamic programming

approach to localize the changepoints and improve the corresponding error rates.

Bai, Safikhani and Michailidis (2020) study a multiple changepoint setting, but

assume a low-rank plus sparse structure on the VAR coefficient matrices, and

consider the case in which only the sparse structure changes over time, while the

low-rank parts remain constant. We explain how our proposal differs from these

existing works later in this section.

In contrast to the aforementioned earlier works, we focus on settings in which

we have plenty of information about the current or normal behavior of our time se-

ries, and wish to detect periods of different or anomalous behavior. First, this can

arise when detecting collective anomalies or epidemic changepoints. Here, we have

a potentially short period during which the behavior of our model changes, be-

fore it reverts back to its pre-change behavior. Note that both collective anomaly

and epidemic change can be modeled as two classical changepoints, for ease of

presentation, we use the terminology collective anomaly from now on.

Collective anomaly detection is a problem of significant interest in appli-

cations such as genetics (Siegmund, Yakir and Zhang (2011); Jeng, Cai and Li

(2012); Bardwell and Fearnhead (2017)) and brain science (Aston and Kirch

(2012); Kirch, Muhsal and Ombao (2015)). A selection of existing works in-

clude cost function-based approaches for univariate (Yao (1993); Fisch, Eckley

and Fearnhead (2018)), independent multivariate (Fisch, Eckley and Fearnhead

(2022)), and cross-correlated multivariate (Tveten, Eckley and Fearnhead (2020))

data. Anomaly detection is also widely studied in the machine learning litera-

ture; see Chandola, Banerjee and Kumar (2009) for an extensive review. Second,

the settings we focus on have a lot of information about the normal behavior of

the time series. Such settings also arise with sequential change detection (Lai

(1995)), when we observe data in real time and wish to detect a change away

from the current behavior as quickly as possible. Although our primary focus

is on a posteriori collective anomaly detection, we show how our method can be

extended to the online framework in Section 5. The key feature of our detec-

tion problem is that we have substantially more information about the current

or normal behavior than we do about the anomaly. This suggests that we should

potentially use different procedures to estimate the parameters of the VAR model

for the normal behavior than we use for the anomaly. We do this by assuming

that it is the change in the VAR parameters that is sparse.
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We focus on improving the detection power when the difference between the

coefficient matrices at the anomaly point is sparse (i.e., a small number of entries

of the VAR coefficient matrix change). To tackle this problem, we propose a test

statistic for a local segment that is built on a lasso estimator of the change in the

model parameters. This enables us to detect a sparse change more efficiently, be-

cause the sparsity of the change is considered when establishing the test statistic.

Moreover, our lasso-based approach becomes more advantageous over, say, the

standard likelihood-ratio test statistic for shorter anomalous intervals, because we

have fewer observations with which to estimate the new VAR coefficient matrix.

Conversely, our approach becomes more like a high-dimensional problem in which

the number of observations is similar to or less than the number of parameters

that need to be estimated.

In Section 4, we compare our approach with a method built on estimating

the change in the VAR matrix using an ordinary least squares (OLS) estimator,

finding that our method outperforms the other method when detecting a sparse

change. As we consider a setting in which a relatively longer region exhibits

normal behavior than anomalous behavior, it is reasonable to assume that the

underlying VAR coefficient matrix is sufficiently well estimated. Thus, we first

develop our method when the normal behavior is assumed to be known, and

then extend it to the case in which we use an appropriate estimator for the VAR

coefficient instead. Our theory in Section 3 shows the validity of this approach,

providing that the estimator for the VAR coefficient is close enough to the true

one. Although our main focus is on single anomaly detection, we show in Section

2.1 that the new method can be extended to detect multiple anomalies.

Among the relevant works introduced earlier in this section, those of Safikhani

and Shojaie (2022) and Bai, Safikhani and Michailidis (2020) are most closely

related to our work in that they also control the change in the VAR parame-

ters using a lasso penalty. However, their approaches differ from ours in sev-

eral ways. To obtain the initial estimate of the changepoints before screening,

Safikhani and Shojaie (2022) use a fused lasso penalty on a full model that con-

siders all time points as changepoint candidates. Thus, their objective function

controls the sparsity of the VAR parameters and the sparsity of its difference

at the same time. Bai, Safikhani and Michailidis (2020) follow a similar proce-

dure to Safikhani and Shojaie (2022) under a multiple changepoint framework.

They use a block fused lasso penalty by assuming that the model parameters

in a block are fixed, whereas our objective function controls only the sparsity

of the change when building a test statistic, and we search many segments
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to find an anomalous interval. In addition, Safikhani and Shojaie (2022) and Bai,

Safikhani and Michailidis (2020) assume that the l2-norm of a change in a VAR

parameter is bounded away from zero, whereas our assumption on the l2-norm

of a change is related to the sparsity of the change, which is in line with the

assumptions used in Wang et al. (2019). Although those changepoint detection

methods were not designed for the anomaly setting we consider here, we com-

pare our performance with theirs and present the results in the Supplementary

Material. Our method works best, especially when the underlying VAR coeffi-

cient matrix is dense, but the change is sparse and, surprisingly, even when the

VAR coefficient matrix has a low rank plus sparse structure and only a sparse

component changes. Full details can be found in the Supplementary Material.

The remainder of the paper is organized as follows. Section 2 gives a full

description of our procedure, and the relevant theoretical results are presented

in Section 3. The supporting simulation studies are described in Section 4, and

we demonstrate our methodology using two datasets in Section 5. Section 6

concludes the paper. The proofs of our main theoretical results are provided in

the Supplementary Material.

2. Methodology

2.1. Problem setting

We consider a zero-mean, stationary, p-dimensional multivariate time series

xt = (x1t, . . . , xpt)
′ generated by a VAR(1) model:

xt = Atxt−1 + εt, εt
i.i.d.∼ N(0,Σε), t = 1, . . . , T, (2.1)

where {At}Tt=1 is a p × p matrix and Σε is a positive-definite matrix. We as-

sume that the high-dimensional VAR model shows an anomalous behavior at

t ∈ [η1, η2], such that 0 < η1 < η2 < T . Then, the sequence {At}Tt=1 forms

piecewise-constant coefficient matrices, as follows:

A(1) = A1 = · · · = Aη1−1, A(2) = Aη1 = · · · = Aη2 , A(1) = Aη2+1 = · · · = AT ,

where A(1) 6= A(2) and A(1),A(2) ∈ Rp×p. The model in equation (2.1) can be

represented as the following linear regression:
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x′1
x′2
...

x′T


T×p

=



x′0 0
...

...

x′η1−2 0

x′η1−1 x
′
η1−1

...
...

x′η2−1 x
′
η2−1

x′η2 0
...

...

x′T−1 0


T×2p

(
θ(1)

′

θ(2)
′

)
2p×p

+


ε′1
ε′2
...

ε′T


T×p

, (2.2)

where θ(1) = A(1), θ(2) = A(2) −A(1). The model, as written in equation (2.2),

is a linear regression of the form Y = XΘ + E. As such, it can be represented

as YTp×1 = XTp×2p2Θ2p2×1 + ETp×1, where X = Ip ⊗ X and ⊗ is the tensor

product of two matrices.

Now, our interest is in estimating the collective anomaly [η1, η2]. Our moti-

vation is scenarios in which we have a substantial amount of information about

the normal or pre-change behavior of the data. Thus, for ease of presentation, we

first assume that θ(1) in (2.2) is known. In practice, we use an estimate of θ(1),

and our theory shows that our approach exhibits good asymptotic properties if

we plug in a suitably accurate estimate of θ(1) in the following procedure. We

assume that the change θ(2) is sparse in that it has a small number of nonzero

entries, which are formulated in a later section. Assuming the base coefficient

matrix A(1) is known, we can rewrite the model as


x′1
x′2
...
x′T


T×p

−



x′0θ
(1)′

...

x′η1−2θ
(1)′

x′η1−1θ
(1)′

...

x′η2−1θ
(1)′

x′η2θ
(1)′

...

x′T−1θ
(1)′


T×p

=



0
...
0

x′η1−1
...

x′η2−1
0
...
0


T×p

(
θ(2)

′)
p×p +


ε′1
ε′2
...
ε′T


T×p

, (2.3)

which can be represented as Y − X (1)θ(1)
′

= X (2)θ(2)
′
+ E. With a slight abuse

of notation, by using different definitions of Y , X, and Θ, we can rewrite (2.3)

as
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YTp×1 = XTp×p2Θp2×1 +ETp×1, (2.4)

where X = Ip ⊗X (2).

2.2. Lasso-based approach

To detect a collective anomaly, we derive a test for whether the data in

an interval of time are anomalous. Then, we apply this test to data from a

set of suitably chosen intervals, JT,p(L). To help with the presentation of the

theory in Section 3, we parameterize this set by the length, L, of the smallest

interval it contains. For any interval J ∈ JT,p(L), by extracting the corresponding

rows from each matrix in (2.3), the linear regression form can be rewritten as

YJ −X (1)
J θ(1)

′
= X (2)

J θ(2)
′
+EJ , which can be vectorized as YJ = XJΘ +EJ , as

in (2.4).

One of the standard ways of detecting a change or epidemic changes in regres-

sion models is to use a likelihood ratio test (Kim and Siegmund (1989); Siegmund

and Venkatraman (1995); Yau and Zhao (2016); Baranowski, Chen and Fryzlewicz

(2019); Dette and Gösmann (2020)), and these methods can be applied in the

VAR setting. To detect a collective anomaly in a set of intervals, our procedure

calculates the likelihood ratio statistic for each interval J ∈ JT,p(L) as

− 2

{∑
s∈J

ls
(
Θ = 0,Σε

)
−
∑
s∈J

ls
(
Θ̂,Σε

)}
, (2.5)

where Θ̂ is the maximum likelihood estimator and the likelihood function has

the form∑
s∈J

ls
(
Θ,Σε

)
= −1

2

{
|J |p log(2π) + |J | log |Σε|+ (YJ −XJΘ)>(Σ−1ε ⊗ I )(YJ −XJΘ)

}
.

As we consider only Θ varying, the first two terms are constant and cancel out

in the test statistic. It is common to assume Σε is the identity matrix, in which

case the maximum likelihood estimator of Θ is the OLS estimator. Alternatively,

we can estimate the variance from the residuals obtained when estimating the

parameters of the VAR model on the training data. For ease of presentation, we

assume Σε is an identity matrix from now on, but our theoretical results are still

valid if this assumption is not correct. Furthermore, the theory can be extended

to situations in which we either assume that Σε is any positive identity matrix,

or we use an estimate of Σε. We now present the likelihood ratio statistic and
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our suggested improvement based on a penalized estimation of the change in the

VAR coefficients.

The OLS method. Before introducing the lasso-based approach, we consider a

test statistic based on the least squares estimator, which we refer to as the OLS

method. The OLS estimator is popular in the changepoint detection literature.

For example, in a linear model setup, CUSUM-type approaches built on the least

squares estimator are studied by Horváth et al. (2004), Aue et al. (2006), and

Fremdt (2015). For any interval J ∈ JT,p(L), the test statistic of the OLS method

takes the form

T (J) = ‖YJ‖22 −min
Θ

{
‖YJ −XJΘ‖22

}
, (2.6)

which is the same as the likelihood ratio statistic in (2.5) when Σε is the identity

matrix. Here, T (J) has a χ2
p2 distribution under the null, Θ = 0. We cannot use

the classical least squares estimator Θ̂ = argminΘ

{
‖YJ −XJΘ‖22

}
in (2.6) when

the dimension p is greater than T . Note that Θ̂ also depends on J , but this is

suppressed in the notation for simplicity.

The Lasso method. To more effectively handle the case when Θ is sparse, we

propose the following test statistic based on a lasso estimator:

T lasso(J) = ‖YJ‖22 −min
Θ

{
‖YJ −XJΘ‖22 + λ‖Θ‖1

}
. (2.7)

To detect a collective anomaly, we calculate this test statistic for a collection of

intervals, JT,p(L). We detect an anomaly if the maximum value of these test

statistics is above a predetermined threshold. If we detect an anomaly, we esti-

mate its location as the interval in JT,p(L) with the largest test-statistic value.

The detailed procedure is given in Algorithm 1.

There are two general ways to set the collection of intervals JT,p(L) in

Step 1: randomly generated intervals (Fryzlewicz (2014); Baranowski, Chen and

Fryzlewicz (2019)), and a deterministic construction of intervals (Kovács et al.

(2020)). We use both methods and compare their performance in Section 4.

2.3. Extensions to VAR(q) model and multiple anomaly detection

Our method can be extended to deal with a VAR(q) model and multiple

anomaly detection. The details can be found in Section S1 of the Supplementary

Material.
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Algorithm 1: Single anomaly detection

INPUT: X matrix in (2.4), L, λ
thr

Step 1 : Set a collection of intervals JT,p(L), where L is the minimum length of
intervals.

Step 2 : For any interval J ∈ JT,p(L), calculate T lasso(J) as in (2.7).

Step 3 : Using a prespecified threshold λ
thr

, pick the candidate set

I∗ =
{
J ∈ JT,p(L) : T lasso(J) > λ

thr
}
.

If I∗ 6= ∅, reject the null hypothesis (no anomaly exists) and save the estimator
of the anomaly interval,

Î = argmax
J∈JT,p(L)

T lasso(J). (2.8)

OUTPUT: Î.

3. Theoretical Results

In this section, we explore the asymptotic behavior of the proposed method.

We show that our method controls the familywise error under the null (i.e., when

no anomaly exists) with an appropriate threshold, and give conditions under

which the asymptotic power of the method tends to one. These results are based

on the following assumptions.

Assumption 1. For each j = 1, 2, let Γj(`) be the population version of the lag-`

covariance matrix of xj, where xj is x1 = {x1, . . . ,xη1−1}, and x2 = {xη1 , . . . ,xη2}.
For κ ∈ [−π, π], there exist the spectral density matrices

fj(κ) =
1

2π

∑
l∈Z

Γj(l) exp−
√
−1κl .

In addition, maxjM(fj) = maxj{ess supκ∈[−π,π] Λmax(fj(κ))} < +∞ and minj
m(fj) = minj{ess infκ∈[−π,π] Λmin(fj(κ))} > 0, where Λmax(A) and Λmin are the

largest and smallest eigenvalues, respectively, of the symmetric matrix A.

This first condition is needed to control the stability properties of the VAR

models. This is a spectral density condition that is not only valid for a VAR

model, but also holds for a large class of general linear processes. Basu and

Michailidis (2015) use the same assumption, but for a stable VAR setting, without

considering anomalies. We extend it to the single collective anomaly setting by
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assuming a spectral density function for each common and anomalous segment

separately.

In order to bound the power of our method, we need conditions on the size

and length of any anomaly and the set of intervals we use. Essentially, we need

at least one interval of sufficient length to be contained within the anomaly. To

this end, we introduce the following:

Assumption 2. The dimensionality p satisfies p ∼ Tα, for some fixed α ∈ [0,∞).

Assumption 3. There exists at least one interval J ∈ JT,p(L), such that J ⊆
[η1, η2] and the choice of L for a set of intervals JT,p(L) satisfies log(T ∨ p)/L→ 0

as T →∞, where any interval J ∈ JT,p(L) has length at least L.

Assumption 4. The sparsity of change is fixed; ‖Θ‖0 = d0.

Assumption 5. For any ξ > 0, L · ‖Θ‖22 > C2 · d20 · log1+ξ (T ∨ p), where C2 > 0

is a constant.

Assumption 4 gives a condition on the number of nonzero entries of the

coefficient matrix, where the sparsity parameter d0 affects the signal-to-noise

ratio condition in Assumption 5. Our Assumption 5 is similar to the conditions

required in other changepoint problems in high-dimensional VAR models. For

example, Wang et al. (2019) study a multiple changepoint setting, and their

signal-to-noise ratio assumption becomes equal to ours when a single changepoint

is considered. Safikhani and Shojaie (2022) assume ‖Θ‖2 is bounded away from

zero.

Assumption 6. For the estimator θ̂(1),
∥∥θ(1)− θ̂(1)∥∥∞ < C

√
log(T ∨ p)/L with

probability approaching one as T →∞ and p→∞, where C > 0 is a constant.

Assumption 6 states the necessary condition on the estimation error bound

on θ̂(1), and is only used to extend our theoretical results to the case when we

estimate θ(1). Such error bounds are presented in Proposition 4.1 of Basu and

Michailidis (2015) and Lemma 15 of Wang et al. (2019): when θ(1) is assumed to

be sparse with the condition ‖θ(1)‖0 = k, then its lasso estimator, θ̂(1), satisfies∥∥θ(1) − θ̂(1)∥∥
2
≤ c
√
k
√

log(T ∨ p)/T with probability tending to one, where θ̂(1)

is obtained from a sample of size T . This estimation error bound in the `2-norm

implies our Assumption 6 presented in the `∞-norm when the sparsity k is fixed.

We now present our main theoretical results; the proofs can be found in Sec-

tion S2 of the Supplementary Material. The following theorem gives conditions

on the lasso penalty to ensure that the procedure asymptotically controls the

familywise error when there is no anomaly.
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Theorem 1. Let Assumptions 1–3 hold. If no anomalies exist, for a tuning

parameter λ = C3

√
L(2 log p+ log T ) with a constant C3 large enough, we have

P

(
max

J∈JT,p(L)
T lasso(J) ≤ λthr

)
≥ P

(
max

J∈JT,p(L)
T lasso(J) = 0

)
≥ 1− C4 exp(−C5(2 log p+ log T )),

where C4, C5 > 0, λthr > 0 and λ is a tuning parameter in (2.7).

In Theorem 1, it is clear that our result applies to any positive threshold

λthr. In the proof of Theorem 1 in the Supplementary Material, we show that the

familywise error is controlled under an appropriate tuning parameter λ, and the

argument still holds if we use λJ = C3

√
|J |(2 log p+ log T ) instead of λ, where λJ

varies with each interval J . We now turn to the asymptotics of the test statistic

under the alternative.

Theorem 2. Let Assumptions 1–5 hold. If an anomaly exists, with a tuning

parameter λ = C2

√
L(2 log p+ log T ) for a large enough C2, as T →∞, then

P

(
max

J∈JT,p(L)
T lasso(J) ≤ λthr

)
→ 0 and P (Î ∩ [η1, η2] 6= ∅)→ 1,

where λthr has the order of
√
L · log(p ∨ T ), the estimated anomaly Î is as in

(2.8), and λ is a tuning parameter in the lasso regression in (2.7).

Theorem 2 states that the test statistic corresponding to the intervals in the

candidate set is greater than the prespecified threshold if the interval is located

within the true anomaly. In other words, it shows that the individual test has

asymptotic power one. The argument in the proof of Theorem 2 still applies if

we make λ vary with the interval J by replacing L with |J | in the definition of λ.

The following theorem shows that our method has large power when detecting a

sparse collective anomaly.

Theorem 3. Assume that xt follows (2.3) and let Assumptions 1–5 hold. Let

the null hypothesis hold. Then, for any {J : J ∈ JT,p(L), J ∩ [η1, η2] = ∅}, the

test statistic of the OLS method in (2.6) follows a χ2
p2 distribution. Consequently,

we have an asymptotic level-α test if the null hypothesis is rejected for T (J) >

χ2
p2;(1−α), where χ2

p2;(1−α) is the (1−α)-quantile of a chi-squared distribution with

p2 degrees of freedom. Under the alternative, for any J ∈ JT,p(L), such that

J ⊆ [η1, η2], the upper bound on the power of the OLS method is given by
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E
(
‖YJ‖22 − ‖YJ −XJΘ‖22

)
Wp

, (3.1)

where Wp = Op(p).

Note that Wp in (3.1) is linked to the false positive rate, because it is an

approximation of χ2
p2;(1−α)−p

2. See the proof in Section S2 of the Supplementary

Material for further details.

Theorem 3 states the asymptotic behaviors of the test statistic of the OLS

method under the null and alternative hypotheses. Furthermore, Theorem 3

implies that, when the change is sparse, the test statistic built on the lasso esti-

mator can detect weaker anomalies than that based on the OLS estimator can.

Intuitively, the test statistic of the OLS method in (2.6) can be written as

‖YJ‖22 − ‖YJ −XJΘ‖22 +
{
‖YJ −XJΘ‖22 − ‖YJ −XJΘ̂‖22

}
, (3.2)

and E(‖Y ‖22 − ‖Y −XΘ‖22) needs to be at least as large as Op(p) to have high

power. By comparison, if we denote the lasso estimator of Θ by Θ̂, then the test

statistic of the lasso method in (2.7) can be written as

‖YJ‖22 − ‖YJ −XJΘ‖22 − λ‖Θ‖1
+
{
‖YJ −XJΘ‖22 + λ‖Θ‖1 − ‖YJ −XJΘ̂‖22 − λ‖Θ̂‖1

}
. (3.3)

Noting that the term in {}s in (3.3) is positive, the lasso-based test statistic

requires that ‖Y ‖22 − ‖Y −XΘ‖22 should be at least as large as Op(λ‖Θ‖1) and

λ = C2

√
L(2 log p+ log T ). The following corollary states that the assertions

in Theorems 1 and 2 remain true if we replace θ(1) with an estimator θ̂(1) that

satisfies the condition in Assumption 6.

Corollary 1. Theorems 1 and 2 hold with a different constant if we use θ̂
(1)

to

calculate the test statistic instead of using the true parameter θ(1), where θ̂(1)
′

is

an estimator fulfilling Assumption 6.

4. Simulation Study

4.1. Parameter choice and setting

We compare the performance of our lasso-based approach with that of the

OLS method described in Section 2.2. Whilst there are other methods for de-

tecting changes in a VAR model, such as those of Safikhani and Shojaie (2022)

and Bai, Safikhani and Michailidis (2020), they are not designed for the collective

anomaly setting that we consider. For completeness, we compare their perfor-
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mance with ours; the details can be found in Section S3 of the Supplementary

Material. Perhaps because they are not designed for the collective anomaly set-

ting, we find that these alternative methods perform substantially worse than the

proposed method does, particularly when the underlying matrix A(1) is dense, but

the change is sparse.

In practice, the underlying parameter A(1) is often unknown and needs to

be estimated. In this case, because the accuracy of our method depends on how

accurately we estimate A(1), considering two extreme cases gives upper and lower

bounds on our method: A(1) is known, and A(1) is estimated from a relatively

small amount of data using a ridge or lasso penalty, depending on the given

sparsity of A(1). In the latter case, the training data set is the same size as the

test data set that we examine to detect an anomaly.

The threshold of each test is selected by choosing the 99% quantile of the test

statistics obtained from the 100 simulation runs performed under the null. This

can be done easily when A(1) is known. A näıve approach when A(1) is unknown

is to simulate data from the model with the estimator Â(1) obtained from the

training set. However, this ignores the estimation error in A and, consequently,

leads to thresholds that are too low. To overcome this, we use a two-stage simu-

lation procedure. We simulate a data set using the estimator Â(1) obtained from

the training set, and re-estimate A from this data set. This estimate is denoted

by Ã(1). Then, we use data simulated from Ã(1) as the data simulated under the

null used to obtain the threshold.

For the error variance, we set Σε as the identity matrix. In the following

sections, we report the results when Σε is known. The results for when Σε is

estimated can be found in Section S3 of the Supplementary Material.

As presented in Theorems 1 and 2, the performance of the lasso-based method

depends on the selection of the tuning parameter. Our theoretical results hold

under both λ = C
√
L(2 log p+ log T ) and λJ = C

√
|J |(2 log p+ log T ), where

λ is a fixed tuning parameter for all intervals of different lengths and λJ varies

with the length of each interval J . Based on our empirical experience, we use

λJ with the default constant C = 0.15, because this achieves stable performance

across the different settings, as presented in the following section. In practice,

similar performance is obtained for any C ∈ [0.05, 0.25]. Using a fixed constant

C is advantageous over optimizing λJ for each interval (e.g., by minimizing cv),

because doing so makes the algorithm faster, especially when both T and p are

large, and leads to stable performance, especially when |J | is substantially small.

We also examine how the choice of the set of intervals, JT,p(L), affects the

performance. We vary both the number of intervals, which we denote by s, and
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Table 1. Simulation settings, where ∆1 = |A(2) − A(1)|, ∆2 = |A(3) − A(1)| and ‖Θ‖0 is
the number of nonzero elements of Θ.

T p [η1, η2] [η3, η4] η2 − η1 η4 − η3 ∆1 ∆2 ‖Θ‖0
M1 500 10 [227, 272] 45 0.35 10

M2 500 10 [233, 266] 33 0.35 10

M3 500 10 [133, 166] [333, 366] 33 33 0.6 0.6 5

M4 500 10 [33, 66] [433, 466] 33 33 0.5 0.5 5

M5 500 20 [222, 277] 55 0.55 19

M6 500 20 [229, 270] 41 0.55 19

M7 100 50 [44, 55] 11 1.1 49

M8 100 70 [40, 60] 20 1.1 69

the way we choose the intervals, randomly or deterministically, with a prede-

termined minimum length of interval. For the deterministic construction of the

intervals, we use the technique proposed in Definition 1 of Kovács et al. (2020)

with the decay parameter 1/a = 1.1, 1.2. Regardless of how we choose the inter-

vals, we force the minimum length of the intervals to be greater than p in order

to compare our approach with the OLS method. To deal with high-dimensional

settings (such as M7 and M8 in Table 1), we set the minimum length of the

intervals to be greater than dp/10e, and report only the results of the lasso-based

method.

4.2. Simulation settings

We simulate data from eight settings, presented in Table 1. The true coeffi-

cient matrices of some settings are shown in Table 2. The settings are categorized

into two scenarios: (1) A(1) is dense (M1–M4), and (2) A(1) is sparse (M5–M8);

where the number of nonzero elements is large in (1) and small in (2).

In the settings M1–M4, we consider the case in which all entries of A(1)

are nonzero. The coefficient matrix is generated randomly using the algorithm

proposed by Ansley and Kohn (1986), and implemented using the R package

gmvarkit, which forces the resulting VAR model to be stationary, where the

range of the entries of A(1) is obtained as [−0.67, 0.58]. Under the settings M1

and M2, we consider the single anomaly [η1, η2], with the corresponding coefficient

matrix A(2). However, we assume two collective anomalies, [η1, η2] and [η3, η4],

for both M3 and M4, with coefficient matrices A(2) and A(3), respectively. To

detect multiple anomalies, we use Algorithm 3, presented in Section S1 of the

Supplementary Material. As stated in Assumption 4, only a few (10 for M1–M2

and 5 for M3–M4) entries in the VAR coefficient matrix change in an anomalous
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Table 2. The underlying coefficient matrices for some of the simulation settings described
in Section 4.2, where A(2) and A(3) correspond to anomalies and X’s indicate which
elements change.

M1, M2

A(1) A(2) A(1)

X

X

X

X

X

X

X

X

X

X

M3, M4

A
(1)

A
(2)

A
(1)

A
(3)

A
(1)

X

X

X

X

X

X

X

X

X

X

M5, M6

A
(1)

A
(2)

A
(1)

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

interval; see Table 1.

Under the settings M5–M8, we consider the case in which A(1) is sparse,

that is, a smaller number of entries are nonzero. Similar to the settings used in

Safikhani and Shojaie (2022), the one-off diagonal values of the coefficient matrix

are nonzero as shown in Table 2. M7 and M8 are high-dimensional settings in the

sense that the width of an anomaly (η2−η1) is less than the dimension (p). When

A(1) is unknown, we estimate it from the training data, using a ridge penalty for

M1–M4 and a lasso penalty for M5–M8. In the following section, we present the

simulation results for all settings.

4.3. Results

Tables 3 and 4 summarize the simulation results for the single and multiple

anomaly cases, respectively. As shown in Table 3, the lasso-based method tends to

detect an anomaly more often than the OLS-based approach does in all settings,

regardless of the sparsity of A(1), the way we choose the intervals, or whether A(1)

is known or estimated. The lasso-based method also outperforms the OLS-based

approach in terms of the distance between the estimated and the true anomaly

and its variance. As expected, compared with the results when the true A(1)
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Table 3. Empirical power (%), the number of estimated anomalies located within the
true anomaly, and the mean (standard deviation) of dH (Hausdorff distance) from 100
simulation runs for two methods under M1, M2, and M5–M8, where s is the number
of intervals examined. Random, deterministic, lasso are shortened to R, D, and LSS,
respectively.

Empirical power mean (sd)
(# ([η̂1, η̂2] ⊆ [η1, η2]) ) of dH

A(1) known Â(1) A(1) known Â(1)

M1

R OLS 100 (19) 93 (15) 1.59 (1.31) 5.43 (12.08)
(s=1029) LSS 100 (19) 99 (17) 1.47 (0.93) 1.95 (4.62)

D OLS 100 (43) 94 (33) 0.39 (0.25) 3.55 (11.64)
(s=1029) LSS 100 (46) 99 (40) 0.35 (0.16) 0.81 (4.55)

D OLS 100 (25) 94 (19) 0.39 (0.33) 3.52 (11.65)
(s=540) LSS 100 (26) 99 (27) 0.32 (0.22) 0.78 (4.55)

M2

R OLS 98 (12) 69 (7) 2.85 (6.52) 17.67 (21.43)
(s=1029) LSS 98 (18) 89 (10) 2.63 (6.46) 7.31 (14.79)

D OLS 98 (44) 74 (31) 1.32 (6.57) 14.30 (21.31)
(s=1029) LSS 99 (50) 90 (50) 0.82 (4.67) 5.63 (14.68)

D OLS 98 (69) 72 (52) 1.27 (6.58) 15.14 (21.78)
(s=540) LSS 99 (76) 87 (71) 0.76 (4.68) 7.24 (16.77)

M5

R OLS 100 (20) 68 (12) 1.67 (1.21) 15.51 (20.22)
(s=499) LSS 100 (29) 99 (33) 1.54 (0.99) 2.08 (4.41)

D OLS 100 (46) 87 (48) 0.43 (0.24) 6.21 (15.00)
(s=499) LSS 100 (63) 100 (75) 0.34 (0.12) 0.37 (0.13)

M6

R OLS 99 (14) 16 (5) 2.59 (4.66) 39.06 (16.45)
(s=499) LSS 100 (21) 68 (32) 1.90 (1.48) 15.66 (21.07)

D OLS 100 (34) 34 (21) 0.45 (0.48) 30.63 (21.80)
(s=499) LSS 100 (65) 93 (76) 0.29 (0.40) 3.55 (11.76)

M7
R (s=367) LSS 100 (14) 91 (23) 2.53 (1.22) 6.35 (12.58)
D (s=367) LSS 100 (13) 88 (33) 1.36 (1.32) 7.01 (14.55)

M8
R (s=270) LSS 100 (25) 100 (28) 2.67 (1.43) 2.64 (1.25)
D (s=270) LSS 100 (61) 100 (84) 1.61 (0.49) 1.84 (0.37)

is known, both methods perform less well when Â(1) is used. The number of

estimated anomalies located within the true anomaly tends to be proportional

to the empirical power, and is larger when the segments are chosen determinis-

tically, rather than randomly. Although it is not shown in the table, the mean

of the Hausdorff distance computed from the estimated anomalies located within

the true anomaly tends to be smaller than the one computed from the estimated

anomalies that are not exactly located within the true anomaly. Comparing ran-

domly and deterministically chosen segments of the same size, the deterministic

way tends to give similar or slightly larger power for both methods, regardless of

whether or not A(1) is known. Note that when A(1) is estimated in Table 3, the
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Table 4. Distribution of the number of detected anomalies and the mean (standard
deviation) of dH (Hausdorff distance) from 100 simulation runs for two methods under
M3–M4, where s is the number of intervals examined. Random, deterministic, lasso are
shortened to R, D, and LSS, respectively.

#(detected anomalies) mean (sd) of dH

A(1) known Â(1)

A(1) known Â(1)

1 2 3 0 1 2

M3

R OLS 27 73 0 1 56 43 3.28 (3.10) 8.29 (9.01)
(s=1944) LSS 21 78 1 0 39 61 2.87 (3.03) 5.02 (5.86)

D OLS 24 76 0 0 53 47 2.46 (2.62) 6.73 (9.07)
(s=1944) LSS 12 86 2 0 32 68 1.97 (2.68) 3.44 (5.16)

D OLS 26 74 0 1 54 45 2.59 (2.57) 7.13 (9.27)
(s=1029) LSS 21 77 2 0 35 65 2.43 (2.66) 3.50 (4.36)

M4

R OLS 6 93 1 11 64 25 2.97 (4.53) 9.91 (4.69)
(s=1944) LSS 1 96 3 0 29 71 2.57 (5.43) 4.76 (5.22)

D OLS 4 95 1 6 59 35 1.92 (4.19) 8.59 (5.72)
(s=1944) LSS 1 96 3 0 21 79 1.50 (3.80) 3.53 (5.08)

D OLS 4 95 1 8 59 33 1.98 (4.22) 8.72 (5.61)
(s=1029) LSS 1 98 1 0 22 78 1.44 (3.68) 3.54 (5.00)

deterministically chosen intervals with a smaller sample size (s = 540) show larger

power than those chosen randomly with a larger sample size (s = 1,029), for both

methods. Furthermore, the difference becomes larger as the length of the anoma-

lous interval becomes shorter (from M1 to M2, as presented in Table 1). Table

4 shows similar interpretations. Other simulation settings that include stronger

signal-to-noise ratio scenarios (M9–M10) and changepoint scenarios (M11–M12)

are explored in Section S3 of the Supplementary Material.

5. Data Analysis

5.1. Yellow cab demand in New York City

To demonstrate the usefulness of our method, we turn to real data appli-

cations. In our first example, we apply our method to data on yellow taxi cab

trips, previously analyzed by Safikhani and Shojaie (2022). The data can be

downloaded from the New York City Taxi and Limousine Commission (TLC)

Database (https://www1.nyc.gov), and include the number of yellow taxi pick-

ups recorded from 10 randomly selected zones in Manhattan, a borough in New

York City. We aggregate the number of yellow taxi pickups every 30 minutes from

March 11, 2019, to February 29, 2020, which results in 17,088 time points. The

raw data have an anomaly on November 3, 2019, caused by a daylight-saving

time adjustment (Wu and Keogh (2021)), because the data for two hours are

https://www1.nyc.gov


1620 MAENG, ECKLEY AND FEARNHEAD

combined into a single hour when the time change occurred. To solve this, we

simply divide the number of observations by two for the corresponding hour and

use the adjusted data. To prevent the detection procedure from being affected

by other effects, we remove weekly, seasonal, and bank holiday effects by regress-

ing the raw time series onto the corresponding indicator variables, and using the

residuals. We also remove the first-order nonstationarity from the data by using

a differenced version of the time series. The first 6,835 data points are used to

estimate the underlying VAR coefficient A(1) by applying a lasso penalty. As

the true A(1) is unknown in practice, to determine the threshold, we use the

same technique proposed in Section 4.1, and choose the 99% quantile of the test

statistics from 100 deterministically chosen intervals. The remaining 10,252 data

points are used to detect a single anomaly, where the length of the smallest in-

terval is set to L = dp/4e = 3. Note that we use the same minimum length dp/4e
to analyze the EEG data under the online change detection framework in Section

5.2.

The top plot in Figure 1 shows that a few spikes are observed between De-

cember 30, 2019, and January 2, 2020, where the interval within green vertical

lines is enlarged in the bottom plot. From the middle plot, we see that the largest

test statistic is obtained for a small interval that includes the spikes shown in the

top plot. The bottom plot shows that the spikes occur around New Year’s Eve,

and our method detects an anomaly between 10:30p.m. on December 31, 2019,

and 4:00a.m. on January 1, 2020. Note that this anomaly is detected even after

removing the holiday effect of 10 federal holidays from the period March 11, 2019,

to February 29, 2020, which includes January 1, 2020. From Figure 2, we see

that a sudden high demand occurred at the second and seventh zones located

near to Times Square, but there was no such change for the third zone, which is

located far from Times Square. Therefore, we interpret this to mean that there

was a sudden high demand near Times Square, where the annual New Year’s Eve

celebration takes place, and this changes the relationship between the 10 zones

we investigate.

The OLS method gives the same estimated anomaly as that identified by

the lasso-based method, although it uses a larger L = p = 10. Compared with

other methods designed to detect changes in a VAR model, Safikhani and Sho-

jaie (2022) estimate eight changes including 4:30a.m. on Jan 3, 2020, and Bai,

Safikhani and Michailidis (2020) return eleven changes, including 00:30a.m. on

Jan 1, 2020, which coincides with the anomaly estimated by our method. All

estimated changepoints can be found in Section S4 of the the Supplementary

Material.
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Figure 1. (Top) The differenced yellow taxi pickups recorded from March 11, 2019,
to February 29, 2020, in Manhattan. (Middle) The 50 largest test statistics with the
corresponding interval. The blue horizontal dashed line indicates the threshold. (Bottom)
The portion of the top plot indicated with dashed green vertical lines. Red vertical lines
show the estimated anomaly, [Dec 31, 2019, 22 : 30, Jan 1, 2020, 04 : 00].
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Figure 2. Taxi demand (Top) and differenced Taxi demand (Bottom) for the second
(black), third (blue) and seventh (green) zones in Manhattan recorded from December
30, 2019, to January 2, 2020. Red vertical lines show the estimated anomaly.
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Figure 3. (Top) EEG data recorded at 18 different channels. The blue solid vertical line
is the time at which the neurologist thinks the seizure starts, and the red dashed vertical
line is the anomaly detected in the online setting. (Bottom) The maximum test statistics
at each time point obtained using Algorithm 2. The horizontal red solid line presents
the prespecified threshold.

5.2. EEG data

We now show how our method can be used as an online changepoint detection

method. We demonstrate this using electroencephalogram (EEG) data collected

from an epileptic patient. Other ways of analyzing this data set can be found

in Ombao et al. (2001), Ombao, Von Sachs and Guo (2005), and Schröder and

Ombao (2019). The data consist of brain electrical potentials recorded by placing

electrodes on 18 locations on the scalp of the patient. The EEG signals are

recorded during an epileptic seizure, and so there is a visible change in the data,

as shown in Figure 3. The brain wave patterns are recorded over 500 seconds,

with a sampling rate of 100 Hz (i.e., 100 points per second). As in Safikhani and

Shojaie (2022), to speed up computation, we use two observations per second,

which reduces the number of time points to T = 1,000.

We separate the data into a training set of size T1 = 600 and a test set of

size T2 = 400. The first half of the training set is used to estimate the underlying

VAR coefficient A(1) by applying a lasso penalty, and the second half is used to

have a threshold that is chosen as the 99% quantile of the test statistics computed

from 327 deterministically chosen intervals. Then, we perform the single anomaly

detection using a test set.

As mentioned in Section 1, we show how our method can be applied to the on-

line framework; refer to Fisch, Bardwell and Eckley (2020) and Yu et al. (2021) for
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Algorithm 2: Online anomaly detection

INPUT: X, λ
thr

, t0
t← t0
FLAG ← 0
while FLAG = 0 do

t← t+ 1

K ←
⌊
log t/log 2

⌋
j ← 1
while FLAG = 0 and j ≤ K do

sj ← t−max(2(j−1), dp/4e)
J ← [sj , t]

FLAG ← 1{T lasso(J) > λ
thr}

j ← j + 1
end

end
OUTPUT: t.

recent works on online detection algorithms for changepoints or anomalies. In the

online setting, we make sequential decisions about the occurrence of an anomaly

whenever a new observation is obtained. Our algorithm for online anomaly de-

tection is similar to Algorithm 2 of Yu et al. (2021). The detailed procedure is

given in Algorithm 2, where we set t0 = 10. As shown in Figure 3, an anomaly

is estimated at t = 119, giving a detection delay of five time points compared

to the time at which the neurologist states a seizure occurred. When a different

lower bound of max(2(j−1), ξ) is used in Algorithm 2 with ξ = dp/2e, dp/3e, dp/5e
instead of dp/4e, it still detects an anomaly at t = 119. If a larger lower bound

is set with ξ = dpe, d1.5pe, in which case the OLS method can also be used, an

anomaly is estimated at t = 122, giving a detection delay of eight time points.

6. Discussion

Our lasso-based approach is motivated by situations in which we have sub-

stantially more data about the normal behavior of a time series than we do for any

anomaly or epidemic change. We provide numerical evidence that our method

outperforms existing competitors in terms of detecting a sparse change when A(1)

is either dense or sparse. Our method searches a set of local segments to detect

an anomalous interval, whereas existing change detection methodologies for the

VAR model perform global optimization. The local optimization aspect of our

method permits the extension to the online setting.
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Supplementary Material

The online Supplementary Material contains the technical proofs and addi-

tional simulation results.
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