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Abstract: A class of new statistics for testing independence of bivariate circular data
is obtained by averaging a “weighted Kendall’s tau” over its marginals. The averag-
ing is done by first fixing the two origins, calculating a Weighted Kendall’s tau rank
statistic and then averaging over cyclic permutations of the two sets of ranks. These
statistics are based on ranks, are distribution-free, and are invariant under different |
choices of origin and rotation. They could, for instance, be applied to testing in-
dependence of bird flight and prevailing wind direction. We obtain the asymptotic
distribution of our rank statistic as a special case of a general class of statistics,
called weighted degenerate U-statistics. Let Z1,...,Zn be i.i.d. r.v.’s with E(Z))=0
and Var(Z;) = 1, and E(Zf) < oco. We define a weighted degenerate U-statistic as
WU, = Z#j dijnh(Zi, Z;). Here, {di;n} are non-stochastic weights and h is degen-
erate in the sense that Var[E(h(Zi, Z2)|Z2)] = 0. Under regularity conditions, the
limit distribution of WU, is shown to be a linear combination of independent chi
square random variables. It is interesting that a special case (using equal weights)
of our general procedures, a Circular Kendall’s tau, turns out to be equivalent to a
statistic proposed by Fisher and Lee (1982). A power study and an application are
presented.

Key words and phrases: Directional data, Kendall’s tau, limit distribution, rank cor-
relation.

1. Introduction

Researchers are sometimes confronted with bivariate circular data, for in-
stance, the direction of bird flight and the prevailing wind direction occurring
in biology. A problem of concern is whether or not these two directions are in-
dependent. Many test statistics have been proposed, but not many of them are
distribution-free (Jupp and Mardia (1980) and Jupp and Spurr (1985)). When
there is no natural joint distribution for the two orientations, the distribution-
free property is desirable. In this paper, we introduce a class of distribution-free
statistics for testing coordinate independence of bivariate circular data. In Sec-
tion 2, these statistics are derived from a “weighted Kendall’s tau”. These statis-



730 G. S. SHIEH, R. A. JOHNSON AND E. W. FREES

tics are invariant under different choices of origin and direction of rotation. When
the origin of a circle is fixed, each circle is equivalent to a line. For any fixed
origins of the two circles, these statistics are functions of ranks. Further, these
statistics are invariant under different choices of origin and direction of rotation
on both circles. Hence they are distribution-free on the torus which is the cross
product of the two unit circles. To obtain their limit distributions, which are lin-
ear combinations of independent chi square variates with one degree of freedom,
new results are derived concerning weighted degenerate U-statistics. Section 3
is devoted to developing these limit distributions. In Section 4, we investigate
the asymptotic and finite sample properties of a particular test statistic which is
derived from Kendall’s tau. We term it a Circular Kendall’s tau. A power study
and an application of Circular Kendall’s tau to estimate angular-angular associ-
ation in a set of isotropic data are presented. We conclude with some remarks
in Section 5.

1.1. The problem of testing independence

Let X; = (0,,9,),1 <17 < n, be a vector of angles, for instance of bird flight
and wind direction, observed at time i. Further, let R, = (RO;, R®,) be the
vector of ranks of ©; and ®; with respect to some fixed but arbitrary origins on
the two circles, respectively. We assume that ©,’s and ®;’s are i.i.d. r.v.’s with
continuous distributions F' and G, respectively. These marginal distributions
may be uniform (0, 27), a wrapped normal distribution on the unit circle, or any
number of other distributions. Further, denote the joint distribution of ©,’s and
®;’s by H. The problem of testing independence may be formulated as:

Hy: H(0:,¢1) = F(6,)G(¢1) for all (61, ,) versus
H,: H(0,,¢1) # F(6,)G(¢:) for some (6:, ;).

Under independence, the joint distribution will factor whatever the choice of the
two origins.

1.2. Short literature review

Test statistics for coordinate independence of bivariate circular data or cir-
cular correlation coefficients may be classified into the following three types. The
first type consists of functions of the corrected covariate matrix of p-dimensional
directions x and y. Statistics proposed by Downs (1974), Johnson and Wehrly
(1977), Mardia and Puri (1978) and Jupp and Mardia (1980) fall into this class.
The second type consists of functions of the uncorrected covariance matrix. Some
examples include those introduced by Watson and Beran (1967), Epp et al.
(1971), Stephens (1979), Rivest (1982), Fisher and Lee (1983, 1986) and Jupp
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and Spurr (1985). The third type consists of statistics based on the empiri-
cal distribution function (EDF) and “axial EDF”. Test statistics introduced by
Rothman (1971), Puri and Rao (1977) and Fisher and Lee (1982) belong to this
class. For further background on testing independence of bivariate circular data,
see Jupp and Mardia (1989) and Shieh (1990). The test statistic that we in-
troduce below falls into the third category. Its limit distribution is derived via
the more general limit theory for “weighted degenerate U-statistics”. Weighted
degenerate U-statistics are an extension of U-statistics in the sense that they are
the weighted average of degenerate kernels, while U-statistics are just averages
of kernels. Let Z;, Z,,... be i.i.d. r.v.’s. Assume that F(Z;,) =0, Var(Z;) = 1,
and EZ} < co. Let h(z,y) be a real valued function with finite second moment.
A weighted U-statistic has the form

WU, =Y dijnh(Zi, Z;). (1)
1#]

Here, {d;;,} are non-stochastic weights. The statistic WU, is called a weighted
degenerate U-statistic if the kernel h is degenerate in the sense that Var[h,(Z:)] =
0, where hy(z1) = Eh(z1, Zs).

Gregory (1977) and Serfling (1980) independently established the limit dis-
tribution of degenerate (equal-weighted) U-statistics. Weber (1981) established
the limit distribution of incomplete degenerate U-statistics which is a special
case of (1) with weights equal to 0 or T(nli‘ﬂ Janson (1984) extended Weber’s
(1981) result to incomplete U-statistics with weights which may be random. For
weighted non-degenerate U-statistics, the asymptotic normality result is due to
Shapiro and Hubert (1979).

2. Main Results

Two well-known rank statistics for testing independence of linear data are
Kendall’s tau (7) and Spearman’s rho (p), where

1

T = m ;&gn(@l - @j)sign(q)i - @J)
and
12 = n+1 n+1
p = m;(R@i_ 2 )(Rcb,-— 2 )

However, for directional data, values of 7 and p vary as the choice of origin varies,
an important disadvantage when testing independence of bivariate circular data.
Our approach is to modify a weighted Kendall’s tau, thus forming a class of rank
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statistics by averaging it over cyclic permutations of the marginal ranks. We
define a (linear) weighted Kendall’s tau statistic as

ty = cijnsign(®; — ©;)sign(®; — &,), (2)
i

where ¢;;n, = ¢j;n. The following notations are useful in the derivation of a, class of
statistics, that are invariant under the choice of origins and separate continuous
one-to-one transformations of each circle onto itself. These transformations must
preserve the clockwise say, orientation between any two points on a single circle
(all points transversed will have their images transversed).

First define the lth cyclic permutation of a rank vector R as

Ci(R) = (Ci(Ry),...,Ci(R,)), where
Ci(R;) = R;+1 (modulo n), for 1 <i< n.

Second, let ACg be the operation that averages a function of ranks over all cyclic
permutations of the ranks of @, i.e.,

ACo[f(RO, R®)] = %i f[C/(R®), R®], where

=1

RO = (RO,,...,RO,) and R® = (R®,,. .., R¥,).

Similarly, ACy is defined as

n

AC,[f(R®,R®)] = %Z f[R®, C/(R®)].

=1

Let AC be the operation of averaging over both sets of cyclic permutations. By
the definitions of ACe and ACSs,

AC = ACoACs = AC3ACs.

For any fixed choices of origins, separate continuous monotone 1-1 transforma-
tions of the coordinates lead to the sets of ranks as invariants. Because orientation
preserving transformations can change the origins, the sets of permuted ranks are
appropriate invariants. Distribution-free test statistics must be constant on these
sets of permuted ranks. We note that shifting the origin counter-clockwise across
one datum corresponds to a cyclic permutation of the ranks. Thus, to modify a
weighted Kendall’s tau into a class of test statistics for circular data, we average
the evaluations of t,, with respect to all possible origins, i.e., apply AC to t,.
This is in the spirit of “a permutation test conditional on the marginals” (Jupp
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(1987)). The resulting statistic is distribution free under the null hypothesis with
any of the n! permutations being equally likely for R® and for R®.

2.1. A class of invariant statistics

Consider the weighted statistic ¢,, with weight matrix in the class C, as
specified in Equation (3) below. Define

Cmn = (ccij(m))nxn,

where
o _{1, |t — j| =m or n —m,
@Wm) = 10, otherwise,
for m = 1,2,...,[n/2]. Note that C,,, contains only elements which are m or

(n —m) apart from the diagonal. Let C, be the collection of matrices which are
linear combinations of C,,,,, i.e.,

M
C, = {Z kmCmn : km depends on m and n and is of order n'z}, (3)

m=1
for M = 1,2,...,[n/2]. We note that taking pairwise angles for ¢, as in (2)

implies that C,,, assumes a special form. This special form yields a group,
(Cpn,+,0), under addition. That is, for any two matrices in C,, their linear
combination is still in C,. If we believe that closer pairs of observations would
contribute more to the correlation than those further apart, then we may take
ki > ... > ky. However, if we believe that any pair of observations should
contribute equally, then we may take k; = --- = kpy = O(n™?), M = [n/2]. Thus
C, in (3) is a fairly rich family for weight matrices when defining a weighted
Kendall’s tau. The following notation is needed for Property 1 below. Recall
that X; = (©;,®;). For any real valued function f, ¥;,—;, denotes summation of
f over all distinct indices in (4,2, 13,%4) €xcept that ¢3 may equal 14, i.e.,

Z f(Xil?X'iz)X’i3,Xi4) = Zf(xi17Xi2>Xi37Xi3) + Zf(xi17xi27xi3’ Xi4)v
i3=i4 p(3) p(4)
(4)

where () sums over all distinct permutations of {i1,...yim} from {1,...,n}
and m is the number of distinct i;’s in f. Property 1 shows that an invariant
statistic may be derived from t,, with any weight matrix in C,.

Property 1. For any weighted statistic t,, with weight matriz in the class C,
(defined in (3)), let T,, be the statistic resulting from a cyclic permutation of t,,
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i.e., T, = AC(t,,). For any constant 1 < M < [n/2] and for any integer n > 2,

(1) Tw =n"? Z k Z cczlzg(m Xn ) ngangax )
- n—z Z ciliz hw (Xil b Xiz’ Xia) Xi4)7
where (¢i,i,) € Cn, (cCiriy(m)) € Comn,
hw(Xla Xz, X3, X4) = Csign(@l, @2, @g)Csign(f[)l, @2, @4) (5)
and
csign(z,y, z) = [sign(z — y) + sign(y — z) + sign(z — z)]. (6)

(ii) T, ts invariant under different choices of origin and direction of rotation.
The proof is in Appendix 1.

Averaging the “weighted Kendall’s tau” over cyclic permutations of each
coordinate is in the spirit of a permutation test conditional on the marginals.
Property 1 (ii) states that a permutation test conditional on the marginals is
invariant, as suggested in Jupp (1987). In the following, we present two interest-
ing test statistics derived from a weighted Kendall’s tau after a special choice of
weights. The first one, presented in Corollary 1 below, is derived from Kendall’s
tau (i.e., t in (2) with equal weights ¢;; = ).

Corollary 1. Let T, = AC(7). Then

——2(n3: 2 P, (7)

where T and p, defined in Section 2, are Kendall’s tau and Spearman’s rho,

T.=7-—

respectively.

Applying cyclic permutations to one coordinate of Kendall’s tau, say the
RO;’s, we obtain 7 — 2%ﬂ"—'—l—)p. Note that p, after being averaged over all cyclic
permutations with respect to any coordinate, equals 0. Due to this special prop-
erty of p, ACs(T.) yields T, again. The invariance of T, is easily seen from (7),
since AC(p) = 0 and thus AC(T,) = AC(7) =T..

The following is the second invariant test statistic derived from the weighted
Kendall’s tau with weights in (8) below.

0 b 0 - b7
b 0 b 0
n=? 0 60 , (8)
0 b 0
0 : 0 b
Lb 0 b 0]

nxn
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where 0 < b. Suppose we now consider that observations are taken adjacent in
time. Instead of using equal weight in Kendall’s tau, we shall put more weight
on adjacent observations than on non-adjacent observations. We note that the
constant b in (8) accommodates the above intuition and the fact that the nth
and first rank sit adjacently, which in turn accommodates the nature of cyclic
time series data. The index ‘a’ in T, indicates that T, is derived from ¢, with
autocorrelation weight matrix (8).

Corollary 2. Let t, be t, with weights in (8) and define T, = AC(t,). Define
Xo =X, and X, = X;. Then,

2% I LM
Ta = —’I’;,_ Z Z Z hw(X117xi1——17Xi3’Xi4)’

11=113=114=1

3. Limit Distributions for Weighted Degenerate U-statistics

The motivation for this section is to establish a limit distribution for the test
statistic T, with weights satisfying (3). It turns out that the limit distribution is
an immediate application of the result for weighted degenerate U-statistics. To
see this connection, define

. —2\2 «
T, = (nn ) Z Cirip P (Xiy, X)) (9)
11702
with

~

hu (X1, X:) = (sign(©; — ©2) — 2[F(©1) — F(6))))
- (sign(®; — ;) — 2[G(®1) - G(cpz)]).

The statistic 7, is the projection of T,,. In Appendix 2, we show that E[n(T, —
T,)]? = O(n™1), thus
n(T, — T,) —p 0. (10)

In Appendix 2, we also show that the kernel, ﬁw, is degenerate. Hence Tw is a
weighted degenerate U-statistic as defined in (1). We conjecture but have been
unable to prove that the operation, averaging t,, over the cyclic permutations of
its marginal ranks, results in the degeneracy of T,,’s, and hence the degeneracy of
T.,’s. The degeneracy of h,, implies that the limit distribution of nT,, be, instead
of a normal, a linear combination of independent chi square r.v.’s. We explore
its limit distribution below. ‘

We now consider a general weighted degenerate U-statistic (WU, ). Similar
to Serfling (1980), we use the theory of linear operators (Dunford and Schwartz
(1963)) and Fourier series (Kufner and Kadlec (1971)) to expand h into an infinite
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weighted sum of eigenfunctions. This infinite series is asymptotically equivalent
to its finite version (a quadratic form) in L,, since the kernel is assumed to have
finite second moments, i.e.,

E[h(Z,,2,))? < . (11)

Thus, h may be used to define an operator A in the functional space L,(R, F),
by

Ad(z) = /_oo i~z(z1, 20)@0(z3) dF(2,5), for any z; € R, ¢ € L.

Let ¢;’s be the distinct eigenfunctions of A and «;’s the corresponding eigen-
values. Assuming that h satisfies (11), we may expand the centered kernel,
h = h — Eh, as a weighted sum of product of eigenfunctions, i.e.,

Z’n Z;) zak¢k Z;).

See Serfling (1980, p.196) or Dunford and Schwartz (1963) for further details.
Define Z;; = ¢x(Z;). Thus we may write

WU, = Z dijn Z (e PVARY A

1#j k=1

The following notations are used in the statement of Theorem 1 below. Let B,, =
(bimn) and D, = (d;;jn), where bjp, € R, fori=1,...,n; m,n = 1,2,.... Here,
B, is an orthogonal matrix such that B, D,B, = A,, where A, is a diagonal
matrix with A,,, as the mth diagonal element. Assume lim,_, Apmn = A and
use the notation é,, = 1, if kK = m, and é;,, = 0 otherwise.

Theorem 1. Assume that E[h(Z,, Z,)]* < 0o and the following conditions hold:
(1) maxi<i<n [Dimn| — 0 as n — oo for each m,
(ii) >, bzmnb,kn — Omi s m — 00 for all m, k,

i=

(111) 21— Z] =1 zyn Z:::l )\fn < o0,

(IV) Ez:l Z]=1 dz]nbzmnbjmn - )‘m asn— oo, fO’f‘ all m.

Then - -
WU, =p Go= (Y ar| 3 An(¥E, - 1)]),

k=1 m=1
where the Yy, ’s are independent N(0,1) variates. The proof is in Appendix 3.
By Theorem 1 of Verrill and Johnson (1988), (ii)-(iv) are conditions for

weights of quadratic forms such that D,, — {A,,} — B, have an approximate sym-
metric matrix-eigenvalues-eigenvectors relationship. Condition (i) is the central
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limit theorem negligibility condition that ensures the asymptotic normality of
B! Zy,, where Z}, = [Zy1,. .., Zrn), for each fixed k.

Since the kernel of T), is degenerate and the weights satisfy the conditions in
Theorem 1, the limit distribution of nT,, is immediate from Theorem 1. Hence,

nTy —p iak [ i An(¥2, = 1) (12)

Equations (10) and (12) yield the limit distribution of nT,, stated in Corollary 3
below.

Corollary 3. Let (¢;,s,) € Cn. Then, the limit distribution of T, ts given by

nT, —p iak{ i A (Y2 — 1)], (13)

where oy, \m are the kth eigenvalue and the mth limiting eigenvalue of the
kernel and the weight matriz, respectively.

4. Circular Kendall’s Tau (T,,)

We have obtained limit distributions of T,, with general weights in C,. In
this section, asymptotic and finite sample properties of Circular Kendall’s tau
(T,) are investigated, where T, = 22T, and T, is derived from applying cyclic
permutations to each set of ranks for Kendall’s tau. We apply Theorem 1 to
obtain the limit distribution of T,,. In Property 2 (i) below, using an expression
of U-statistics, it is shown that T, is equal to the test statistic (An) in Fisher
and Lee (1982).

Property 2. Let T, = :—fiTe. Then

-1
0T =8u= () TicsersX0 X, %),
where §(X1, X3, X3) = sign(©, — ©,)sign(0; — O3)sign(Os — ©,)
x sign(®; — ®,)sign(P, — P3)sign(Ps — P1).

(i) -1 < T, < 1.

(iii) T, = 1, if both directions are of identical order, i.e., RO; = R®;, for
1<1<n.

(iv) T,, = —1, if both directions are of reverse order, i.e., RO; = R®,,,_;, for
1< < n.

(v) The limit distribution of nT, is given by

nTn'—"szii

k=1 m=1

kmﬂz (Eim + T]}%m - sz - wim)? whe'f‘e é-kma nkm’ Ckm
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and W, are i.i.d. N(0,1) variates.

The proof of statement (i) is in Appendix 4. The proof of statements (ii)-(v)
can be found in Fisher and Lee (1982) and Shieh (1990).

From Property 2 (v), the limit distribution of n7, is the sum of independent
variates with zero means and variances W—f’,;%. By straight-forward calculation,
the asymptotic variance of T, is equal to 2. For tables of critical values of T,

see Fisher and Lee (1982).
Since A, =T, from (7) and the definition of T,,, we have
1

A, = ——{8n7 —2(n + 1)p},

i.e., A, is a linear combination of Kendall’s tau and Spearman’s rho. Note that
for T, derived from t,, with non-equal weights, those T, can not be expressed in
terms of A,. This is easily seen from the following case. Take n = 4,

Cis _{1) |Z_Jl=2’
“Wm) 7~ 10, otherwise.

4.1. Power study — comparison of T, to Hillman’s (1974) 7,,

In Hillman (1974), a test statistic with a form related to T, was proposed,
namely
1
Tee = MaX ——— Y sign(©;,; — 0,,;)sign(®; ., — P..,).
e n(n—l); gn(Oiv j+1)sign(®qy j+m)
In this section, the power of the statistics 7,, and 7,, are compared via a Monte
Carlo study for sample size n = 10. The model of dependence considered is

® = O + von Mises (0, 27; k),

where © is uniform (0, 27), the probability density function g of the von Mises
(0,27; k) distribution is

1

_ keos(n—po) < p< 2, k>0, 0< < 2,
2o (k) =T -

9(m; pos k)

Io(k) = 3720 -5(£)? is the modified Bessel function of the first kind and or-

der zero, and k = 2,5 and 10. Note that larger k indicates higher degree of
dependence.

For n = 10, £ = 0, 4000 values of 7,, and T, were generated to obtain

5% critical values. Under the one-sided alternative hypothesis that there exists
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positive correlation between © and ®, for n = 10, T,, exhibits better power
(0.58,0.91 and 0.98 for k£ = 2,5 and 10, respectively) than 7,, (0.57, 0.80 and
0.87). We note that the Hillman’s statistic is not invariant under the alternative
hypothesis. Its power varies when the mode of the von Mises distribution varies.
The powers of 7,, shown above are the highest we have obtained thus far.

4.2. Example

In the following, we apply T, to estimate angular-angular association in one
set of isotropic data.
Ezample 1 (Fisher and Lee (1986)). Magnetic remanence at 680°C and 685°C
in each of 52 rock specimens was measured. The estimated association between
the 680°C and 685°C is T,, = 0.0120, and it is significant at the 5% level. An
approximate 95% confidence interval for T, is (0.0105,0.0135).

Readers interested in further applications may refer to a recent review paper
on circular correlation by Hanson et al. (1992).

5. Concluding Remarks

We have derived a new class of statistics for testing independence with bi-
variate circular data. These statistics are derived via averaging over cyclic per-
mutations of the weighted Kendall’s tau in (2). These statistics are distribution-
free. Further, they have the desirable property of being invariant under different
choices of origin and direction of rotation. Among these statistics, we explore
the asymptotic and finite sample properties of a Circular Kendall’s tau. Its limit
distribution is obtained via weighted degenerate U-statistics. Our asymptotic re-
sult concerning weighted degenerate U-statistics extends the theory of degenerate
U-statistics.

Appendix: Proofs

Appendix 1: Proof of Property 1

To prove Property 1 (i), we first work with T,, a special case of ¢, in (2),
which is derived from t,, with autocorrelation weights in (8). i.e.,take M = m =1
and k; = %. Applying result in the derivation of T, in Shieh (1990), we have

2b &
I, =

ﬁ ¢=1{ [Sign(Rei - R@i+1) - 2(R6i ;R@H-l)}

x [sign(R@ — R®;y,) — (A.1.1)

2(R®; — R<I>,-+1)] ¥

n
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By (A.210) of Lehmann (1975),

n+1

1N, .
RO, = 3 kgl[&gn(@i - 0] +
Thus
: 2 =
[Slgl’l(@i — @H—l) - ;;(R@,L - R@i+1)] = ’I'L_1 Z csign(@i, @i+17 ek), (A12)
k=1 .

where csign(©;, ©;11, ©;) is defined in (6). Putting this in (A.1.1), we have

‘n

a - n4 Z Z Z CSlgn(@w @z+17 @k)C31gn(®,, @H_l, ) )

i=1 k=1 1=1

Define X, = X, and X,,,; = X;. Now, for fixed k,

Zcmgn (0:,0,41,60) = Zc&gn(@zﬂ, ©;,0;) = chign(@i,@i_l, Ok).

=1 i=1

Likewise, the above equality holds for ®,’s, for 1 < ¢ < n. Thus

Z Z Z CSign(ei7 @H-la @k)CSign((ﬁig ¢i+1, (I)l)

i=1 k=1 I=1
= Z Z Z csign(©;, ©,_;, Ok)csign(®;, ®;_1, ;).
i=1 k=1 =1
SO n n n n
=n"? Z Z Z Z cijcsign(©;, ©;, O )csign(®;, @, 9)),
i=1 j=1 k=1 l=1
where ¢;; = n% for |i —j| = 1 or n—1, and ¢;; = 0, otherwise. Substitute

ho(Xi, X5, X, X;) in (5) for csign(©;,0;, O )csign(®;, ®;,P;) and replace in-
dices 1,7, k,l by 11,15, 13,44. Further, note that h,(X,,,X,,,X,,,X;,) = 0, for
any two identical X; ’s except X;, = X,,. Thus

- Z c'1112 Xh’X‘LQ)X’La,Xz‘l) (A].B)

13—14
where ¥,,;, is defined in (4).
Note that the above result may be generalized to

[isign(@i — Oy )sign(®P; — ‘1)1'+m)],

=1
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for any 1 < m < M. Thus by (A.1.3),

T, = w) =n"2 Z ko Z CCiyip(m) P (X, Xy s Xy, X5,
23—14
n=? Z Ciria P (X, X, Xy, Xs,),

where (cci iy(m)) = 1, if iy — i2| = m or n — m and cc;,i,(m) = 0, otherwise, and
Ci i, € C, as specified in (3).

In the following, we prove Property 1 (ii): T, is invariant. By (A.1.3) and
the LHS of (A.1.2), T, can be expressed as

To=n"2Y ¢, sign(ROn — RO») — 20 (ROy ~ RO,)]
. [sign(R®, — R®.5) — 20~ (R®:y — RS.0)).
Since
ACe|sign(RO; — RO;)] = i[sign(R@i — RO;) — 2n"' (RO, — RO;)]
i=1

and
ACo[RO; — RO, [ZCI (R&:) — 3" Ci(RO;)),
=1

ACe(T,) = T,. Similarly, ACs(T,) = T,. Hence AC(T,) = T,. This is
sufficient for Property 1 (ii).
Appendix 2: Proof of E[n(T, — T,,)]> = O(n™1)

We first show that T, in (9) is the projection of T,, into the family of
{)(,’1 y Xiz}, i.e.,

= Z Ciria B [T (X s Xy X, X)) | Xy, X, ],
‘i3=’i4
where ¢;; = Ef‘,{zlkmccij(m) and cc;jim) = 1, if |i—j| = m or n—m, and cCijim) = 0,
otherwise. After straightforward algebra, we have
E[hw(xiuxizaxiaa Xi4) | Xl = (617 ¢1)’ X2 = (62a ¢2)]
:{f1(91>92)f2(¢1a¢2)7 (i1’i2) = (172) or (271)7
0, otherwise,

where

{ f1(61,6;) = sign(6, — 6,) — 2[F(6:) — F(62)],
f2(@1, ¢2) = sign(dr — ¢2) — 2[G(¢1) — G(2)].
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Let ﬁw(xuxz) = f1(61,62) f2(¢1, ¢2). Thus,
Z E[hw(xil’xiwxis?Xh}) ’ X17X2] - 2(n - Q)ZBW(Xth)?

13=14
since fixing 7; and 7,, there are (n — 2)? terms from summing over i and 7,. This
yields (9). Note that

E[f1(61,¢1)f2(@2,q’2) l X = (91,¢1)]
= Ex. [ {sign(6,— 02)— 2(F (6:)— F(8:)] Hsign(s: ~ :)— 2(G(¢:) - G(@2))}]
= {2F(6:)— 1= 2[F(6:) - 1/2]H{2G(¢) — 1- 2[G(¢) - 1/2]} = 0.

Thus, h,, is degenerate.
Alternatively, 7., may be expressed as

A ~

Tw = ’I'L_2 Z Ci1i2hw (Xil,Xiz)'

i3=i4
Let H(le ) Xig) Xi33 Xi4) = hw(Xil 3 Xiz’ X’is ’ Xi4) - iI’w<Xz‘1 3 Xig)-
- ~ 2
E[T, - T,)? = n—4E[ 3 Ciria(hw — hw)] (A.2.1)
= n~4 Z {CizligE[H(Xil ’ Xiz’ Xis? Xi4)]2
+ Z zc‘iliz lesz[H(Xil ) Xiz’ X'is ’ Xi4)H(X.7'1 > ij’ st’ Xj4)]}'
J3a=7Ja

Let i = (iy,12,13,%4) and j = (J1,J2, 3, Js). Note that for 0,1 and 2 common
indices in i and j,
EH(XiﬂX’iz?Xis? Xi4)EH(Xj1’xj2> st?Xj4) = 0’
EE[H(Ximxiz’Xis?xi4)H(Xi1>Xj2’st’Xj4) I Xh] =0
and .
EE[H(X'L'NXizvXiaaXi4)H(Xi1>Xi2’Xja>Xj4) l Xi17xi2] = 0.

Accordingly, the second term in the RHS of (A.2.1) vanishes except when there
are 3 or 4 indices in common between i and j.

Thus
EIT, - T,] =n~{ 3 [, EH*(X,,,X,,, X,,, X,,)
+ Z 1261'211'2 EH(X’Ll ’ X’iz’ Xia ) Xi4 )H(Xn ) Xiza Xiaa Xj4)

Jja=1

-+ i 126,'”'2 Ciy 5o EH(th s Xiz 3 X'i:s? Xi4 )H(Xll 9 sza Xisa Xi4 )] }

J2=1
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Note that
|H (X, Xy, Xig, X, )| £ K < 00,

and for |i; — i3] =m or n —m,

2

Ciyi, = km = Cyn™ 7, where C,,,’s are constants for each fixed m.

Let CO = maXlSms[n/g] Cm

E[T,-T,)?< [Iigor{nz(n —1)(n—-2)n"* +24n*(n — 1)(n — 2)(n — 3)n_4}

= O(n™%).

Appendix 3: Proof of Theorem 1
First, we wish to show that for fixed K

sup E(WU, — WU,k)* < Ck (A.3.1)
and
K =)
WU —p Gx =3 x| Y An(¥2, = 1)], as n — oo, (A.3.2)
k=1 m=1

where Ck is a constant depending on K and Cx — 0 as K — o0, is true. Next,
we note that as K — oo,

Gk —p Gy, where Gy = G- (A.3.3)

We then argue that Theorem 1 follows immediately from (A.3.1)-(A.3.3).

To show (A.3.1), we need (A.3.4) and (A.3.5) below. For each fixed k, Z;;’s
are independent r.v.’s, by independence of Z;’s and Theorem 3.3.1 of Chung
(1974). Similarly, ZZ’s are independent. Furthermore, by the properties of
orthonormal eigenfunctions {¢(-)}, E{¢x(Z)pm(Z)} = bxm. Thus for i # j, we
have

E{Zkiij} = EZkiEij = 0. (A34)
E{Z}Z}} = EZLEZ} = 1. (A.3.5)

If d;;,,’s satisfy Condition (iii), then by straightforward calculation, and by (A.3.4)
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and (A.3.5), we have

E(WU, — WU, )?

=4B{ Y &2, | T 20y

1<g k=K+1
+ 2 Z dijndlmn[ Z akaiijH f: akalemJ}
i<j<l<m k=K+1 k=K +1
=4(Xdh)( X o)
1<J k=K+1
< C1< i ai), (uniform in n by Condition (iii))
k=K+1

where C) is a constant. Let Cx = C; 332 4, o2, then (A.3.1) holds.
Next, we show (A.3.2) and (A.3.3) hold. For fixed K and n, by change of
summation we can rewrite WU, x as

K
WU,k = Z o, Z Aijn i Lr;.

k=1 i#j

Let Y’s be N(0, 1) variates, for 1 < k, m < n. For each fixed k,d;;, and Z;’s
satisfy the conditions of Theorem 1 of Verrill and Johnson (1988). Thus

Zdijnzkiij —D Z )‘m(Ykzm - 1),
i#j m=1

which yields (A.3.2). Since > p-; ax < 00, (A.3.3) holds.
Now we are ready to show WU, —p Gy. Note that

| WU, — Go |<| WU, = WU,k | + | WUnk — Gk | + | Gk — Go | -

For any fixed K, letting n tend to infinity, by (A.3.1) and (A.3.2) we have
E(WU, - WU,k)? < Cx and WU,k — G —p 0. Then letting K tend to
infinity, we have Gx — Gy — 0. Further, since "5, a? < oo,

Cx =Cy Z a,i—»O as K — oo, for all n.

k=K+1

Thus WU, —p Gy.
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Appendix 4: Proof of Property 2(i)

To prove statement (i), we first express A, in terms of h,, namely

A, = ( > 3,Zh (X, X,,, Xs,, X, ),
p(3)
where h,, is defined in (5). From straightforward algebra, we have
T, = MUW + 3 A,
n n

1A
gAna

where U, = (§)~ " 7 ey P (Xiy Xy, X4y, X, ). Once we show that U, =
(i) holds. For n = 4, by (5) we have

Uy =
2
—{csign(©1, 02, 00 [esign(®s, @z, @) —csign(®1, Do, @) +csign(P, Do, 8s)]

)
+ csign(©4, ©,, ©4)[csign(®;, B2, P3) +csign (D1, D3, P4) —csign (P2, 3, D4)]
+ csign(©;, O3, ©,)[—csign(®;, @2, B3) +csign(P, P2, By) +csign(Ps, $3, D4))
+ csign(©2, O3, ©,)[csign(®1, D2, P3) —csign(®y, P2, P4) +csign(Py, Ps, ‘1)4)]}

Ana

QO b=t

-1

1(4

= 5 <3) Z csign(@i,@j,@k)csign(@i,<1>]-,<I>k) =

i<j<k

since csign(z, y, z) = —sign(z — y)sign(y — z)sign(z —z). Thus (i) holds for n = 4.
Let hpy be the kernel of A,. Similarly, for n > 5, the sum of () x 2 x

4 terms of csign(©;,0;, Oy )csign(®;, ®;, Px)’s can be shown equal to 2 X (n —

3) Ei<j<k hFL- Thus

—1
n
Uw:<4> Zh’ <X117X127X137X24)

p(4)
_ 2(n — 3) 1
“n(n—1)(n-2)(n-3) Z hFL_ An:

i<j<k
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