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Abstract: Inference about a scalar parameter of interest typically relies on the

asymptotic normality of common likelihood pivots, such as the signed likelihood

root, the score and the Wald statistics. Nevertheless, the resulting inferential pro-

cedures are known to perform poorly when the dimension of the nuisance parameter

is large relative to the sample size, and when the information about the parameters

is limited. In many such cases, using the asymptotic normality of analytical modifi-

cations of the signed likelihood root is known to recover the inferential performance.

Here, we prove that the parametric bootstrap of standard likelihood pivots results

in inferences as accurate as those of analytical modifications of the signed likelihood

root do in stratified models with stratum-specific nuisance parameters. We focus

on the challenging case in which the number of strata increases as fast or faster

than the size of the stratum samples. We further show that this equivalence holds

regardless of whether we use the constrained or the unconstrained bootstrap. In

contrast, when the number of strata is fixed or increases more slowly than the stra-

tum sample size, we show that using the constrained bootstrap corrects inference

to a higher order than when using the unconstrained bootstrap. Simulation exper-

iments support the theoretical findings and demonstrate the excellent performance

of the bootstrap in extreme scenarios.

Key words and phrases: Incidental parameters, location and scale adjustment, mod-

ified profile likelihood, profile score bias, two-index asymptotics.

1. Introduction

Standard likelihood inference about a scalar parameter of interest is based

on the asymptotic normality of likelihood pivots, such as the signed likelihood

root, the score and the Wald statistics. However, this asymptotic approxima-

tion can be quite inaccurate in the presence of many nuisance parameters. An

alternative, which guarantees higher accuracy, is based on the asymptotic nor-

mality of analytical modifications of the signed likelihood root, generally termed
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the modified signed likelihood root (see, for instance, Severini (2000, Chap. 7)).

In a two-index stratified asymptotic setting, in which both the dimension of the

data and the number of nuisance parameters grow, the modified signed likelihood

root has been proved to be highly accurate, even in extreme scenarios with many

nuisance parameters and very limited information (Sartori (2003)).

Parametric bootstrap methods provide an alternative assessment of tail prob-

abilities of likelihood pivots. Furthermore, in standard asymptotic settings, where

the number of nuisance parameters is fixed and regularity conditions are satisfied

(Severini (2000, Sec. 3.4)), parametric bootstrap methods have been shown to

guarantee a level of asymptotic accuracy equivalent to that of analytical modi-

fications of the signed likelihood root (see Young and Smith (2005, Chap. 11)).

Two main variants of parametric bootstrap are the constrained bootstrap and

the unconstrained bootstrap (also known as the conventional bootstrap). In the

latter variant, the sampling distribution of the statistic is computed at the full

maximum likelihood estimate, and, in the former, is computed at the constrained

maximum likelihood estimate for a given value of the parameter of interest. In

standard asymptotic settings, the constrained bootstrap (DiCiccio, Martin and

Stern (2001); Lee and Young (2005)) corrects inference about a scalar parameter

in the presence of nuisance parameters to a higher order than the unconstrained

bootstrap does. On the other hand, numerical differences are rarely detectable.

Although bootstrap methods are typically more computationally demanding than

analytical approximations to the distribution of pivots, they are available in some

nonregular cases in which the modified signed likelihood root is not computable.

We investigate the properties of the parametric bootstrap in models for strat-

ified data in a two-index asymptotic setting, where both the number q of strata

and the sample size m of each stratum grow. In this setting, the usual likelihood

pivots are asymptotically standard normal provided that q = o(m), whereas the

condition for the modified signed likelihood root is q = o(m3) (Sartori (2003)). If

q = O(mα), then for 0 ≤ α < 1, the asymptotic normality of standard likelihood

pivots still holds, with an error of order Op(m
(α−1)/2) (Sartori (2003, formula

(8))), whereas the asymptotic normality fails in the highly stratified case with

α ≥ 1. In this case, the aim of higher-order solutions is to recover the first-order

validity of the inferential procedures.

We show here that parametric bootstrap leads to valid inference when q =

O(mα) for α < 3. In particular, if 0 ≤ α < 1, the constrained bootstrap is

theoretically more accurate than the unconstrained bootstrap, and both improve

over standard first-order asymptotic results. On the other hand, when 1 ≤ α < 3,

both variants of the parametric bootstrap are equally accurate, recovering first-



PARAMETRIC BOOTSTRAP FOR STRATIFIED MODELS 1071

order accuracy with the same order of error as that of higher-order analytical

solutions.

Our theoretical results are supported by extensive simulation studies, which

illustrate that using the parametric bootstrap is at least as accurate as using

the modified signed likelihood root, and provide evidence that the constrained

bootstrap can be even more accurate in some extreme scenarios.

2. Background

Let l(θ; y) be the log-likelihood function for a parameter θ based on a sam-

ple y of size n, which is considered to be a realization of a random vector

Y . We examine the case in which the vector of parameters is partitioned as

θ = (ψ, λ>)>, where ψ is a scalar parameter of interest and λ is a vector

of nuisance parameters, and denote the maximum likelihood estimate of θ as

θ̂(y) = (ψ̂(y), λ̂(y)>)> and the constrained maximum likelihood estimate of

θ, for fixed ψ, as θ̂ψ(y) = (ψ, λ̂ψ(y)>)>. We let U(θ; y) = ∇l(θ; y) denote

the score vector, and j(θ; y) = −∇∇>l(θ; y) denote the observed information,

with i(θ) = Eθ{j(θ;Y )} denoting the expected information. The argument θ

is dropped when no ambiguity arises, and the components of the vectors and

blocks of matrices are denoted by subscripts. For instance, Uψ(θ; y) denotes the

component of the score vector corresponding to ψ. Furthermore, the argument

y is dropped whenever the evaluation is at the random variable Y instead of

the sample y. For example, Uψ = Uψ(θ;Y ), Uλ = Uλ(θ;Y ), iψψ = iψψ(θ) and

iψλ = iψλ(θ) are the (ψ,ψ) and (ψ, λ) blocks, respectively, of i(θ), and so on.

The signed likelihood root, the score and the Wald statistics for inference

about ψ are

R(ψ; y) = sign
(
ψ̂(y)− ψ

)√
2
{
l(θ̂(y); y)− l(θ̂ψ(y); y)

}
, (2.1)

S(ψ; y) =
Up(ψ; y)√
iψψ|λ(θ̂ψ(y))

, (2.2)

T (ψ; y) = (ψ̂(y)− ψ)

√
jp(ψ̂(y); y) , (2.3)

respectively, where Up(ψ; y) = Uψ(θ̂ψ(y); y) is the profile score, jp(ψ; y) =

−dUp(ψ; y)/dψ is the profile observed information, and iψψ|λ = iψψ − iψλi−1λλ iλψ
is the partial information about ψ. Although (2.1) and (2.2) are invariant under

reparameterizations that preserve the parameter of interest, (2.3) is not.

Computing the p-values and confidence intervals for ψ requires the distribu-
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tion of the statistics (2.1), (2.2), and (2.3). In standard asymptotic settings, one

possibility is to rely on the first-order asymptotic normal approximation to their

distribution. For instance, prθ{R(ψ) ≤ R(ψ; y)} = Φ(R(ψ; y)){1 + O(n−1/2)},
where Φ(·) denotes the standard normal distribution function. The accuracy can

be improved by using higher-order modifications R∗(ψ; y) of R(ψ; y), such that

prθ{R(ψ) ≤ R(ψ; y)} = Φ(R∗(ψ; y)){1 + O(n−1)}. Barndorff-Nielsen (1986) de-

veloped a modified signed likelihood root R∗(ψ), which is standard normal with

error of order O(n−3/2). Following this seminal work, several alternative versions

of R∗(ψ; y) have been proposed (see Pierce and Bellio (2017), for an overview).

An alternative to the asymptotic approximations of the distributions of (2.1),

(2.2), and (2.3) is the parametric bootstrap, which provides higher-order approx-

imations for p-values, such as prθ{R(ψ) ≤ R(ψ; y)}. There are two main variants

of parametric bootstrap: i) the unconstrained bootstrap, where samples are sim-

ulated from the model at θ̂(y), and ii) the constrained bootstrap, where samples

are simulated at θ̂ψ(y) (see DiCiccio, Martin and Stern (2001); Lee and Young

(2005); Young and Smith (2005, Chap. 11)).

In standard asymptotic settings, the unconstrained bootstrap provides second-

order accuracy. Let Gθ(·) denote the distribution function of R(ψ) at θ, so that

Gθ(R(ψ)) is exactly uniform. If we simulate samples yk from the model with

parameter θ̂(y), for k = 1, . . . ,K, then the p-values for (2.1), calculated as

p̂R1 (ψ) =
1

K

K∑
k=1

I{R(ψ̂(y); yk) ≤ R(ψ; y)} , (2.4)

are Monte Carlo estimates of Gθ̂(R(ψ)), which is uniform on (0, 1) under repeated

sampling, with an error of order O(n−1), that is,

prθ
(
Gθ̂(R(ψ)) ≤ u

)
= u+O(n−1) . (2.5)

In (2.4), I{·} is the indicator function.

In contrast, the constrained bootstrap provides third-order accuracy. If we

simulate samples yk from the model with parameter θ̂ψ(y), for k = 1, . . . ,K, the

p-values for (2.1), calculated as

p̂R2 (ψ) =
1

K

K∑
k=1

I{R(ψ; yk) ≤ R(ψ; y)} , (2.6)

are Monte Carlo estimates of Gθ̂ψ(R(ψ)), which is uniform on (0, 1) under re-

peated sampling, with an error of order O(n−3/2) (Lee and Young (2005)), that
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is,

prθ

(
Gθ̂ψ(R(ψ)) ≤ u

)
= u+O(n−3/2) . (2.7)

Similar results hold for S(ψ) and T (ψ) (Lee and Young (2005); Young (2009))

with p-values p̂S1 and p̂S2 , and p̂T1 and p̂T2 , respectively.

As Young and Smith (2005, Sec. 11.4) note, the theoretical advantage of using

the constrained over the unconstrained bootstrap is rarely supported by numerical

evidence, because both types improve equally over the first-order results.

The advantage of the bootstrap p-values in (2.4) and (2.6) over using analyt-

ical modifications to common statistics is that the bootstrap does not require any

additional, often tedious, algebraic derivation and implementation of the neces-

sary modifications. Moreover, there are nonstandard modeling settings, in which

R(ψ; y) is computable, whereas R∗(ψ; y) is not. One instance is when one or

more components of θ̂(y) are on the boundary of the parameter space. The main

disadvantage of the bootstrap is the additional computation typically required

for the repeated model fits, which can be partly mitigated by parallel computing.

In some special cases, the distributions of (2.1), (2.2), and (2.3) depend only

on ψ, so that the constrained bootstrap, as well as simulating data at (ψ, λ̂(y)>)>,

or even at (ψ, λ>0 )> for arbitrary nuisance vectors λ0, produces samples from the

hypothesized model. This is the case when the model for fixed ψ is a transfor-

mation model (see Severini (2000, Sec. 1.3)). For instance, if y is a realization of

Y = (Y1, . . . , Yn)> with independent and identically distributed (i.i.d.) compo-

nents from a shape and scale model with generic density

g(yi;ψ, λ) =
1

λ
g0
(
yi
λ

;ψ

)
,

we may write Yi = λY 0
i , with Y 0

i ∼ g0(yi;ψ) = g(yi;ψ, 1). Hence, owing to the

equivariance of the maximum likelihood estimator, λ̂ and λλ̂0 have the same dis-

tribution, where λ̂0 is the maximum likelihood estimator of λ based on Y 0
1 , . . . , Y

0
n .

The same representation holds for λ̂ψ, so that the profile likelihood ratio

exp{l(ψ̂, λ̂)− l(ψ, λ̂ψ)} =

n∏
i=1

λ̂ψg
0(Yi/λ̂; ψ̂)

λ̂g0(Yj/λ̂ψ;ψ)

has the same distribution as

n∏
i=1

λλ̂0ψg
0(λY 0

i /(λλ̂
0); ψ̂)

λλ̂0g0(λY 0
i /(λλ̂ψ);ψ)

=

n∏
i=1

λ̂0ψg
0(Y 0

i /λ̂
0; ψ̂)

λ̂0g0(Y 0
i /λ̂ψ;ψ)

,
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which depends only on ψ.

An example with a stratified gamma model is provided in the Supplemen-

tary Material, where simulation results confirm the exactness of the constrained

bootstrap.

3. Two-Index Asymptotic Theory for Stratified Models

We consider a stratified setting with q independent strata, each with m ob-

servations. Therefore, the total number of observations is n = mq. The models

considered here have λ = (λ1, . . . , λq)
> as nuisance parameter, where λi is a

stratum-specific parameter. Let yi = (yi1, . . . , yim)>, for i = 1, . . . , q, denote the

vector of observations in the ith stratum, and let y = (y>1 , . . . , y
>
q )>. The vec-

tors y1, . . . , yq are assumed to be realizations of independent random variables

Y1, . . . , Yq from a parametric model with densities g1(y1;ψ, λ1), . . . , gq(yq;ψ, λq),

respectively. The observations within the strata are also assumed to be realiza-

tions of independent random variables, so that gi(yi;ψ, λi) =
∏m
j=1 gij(yij ;ψ, λi),

where gij(·) may be conditional on a covariate vector xij . Under this specifi-

cation, for fixed ψ, the likelihood has separable parameters λ1, . . . , λq, so that

Up(ψ) =
∑q

i=1U
i
ψ(ψ, λ̂iψ), where U iψ is the contribution to Uψ from the ith stra-

tum.

We work in a two-index asymptotic setting, where q increases with m as

q = O(mα), for α > 0. The case α = 0 corresponds to the standard asymp-

totic setting. Sartori (2003, Sec. 4) showed that R(ψ), S(ψ), and T (ψ) are

asymptotically equivalent to order op(1) for α ≥ 0. Specifically, when 0 ≤ α <

1, the equivalence of the three quantities holds with a relative error of order

Op(n
−1/2) = Op(m

−(α+1)/2), and these are asymptotically standard normal. On

the other hand, when α ≥ 1, the asymptotic equivalence of R(ψ), S(ψ), and

T (ψ) holds with an error of order Op(m
−1). More critically, the three statistics

are not asymptotically standard normal, so that, for instance, Φ{R(ψ)} is not

asymptotically uniform.

The derivation of the results is more straightforward for S(ψ), because the

profile score is the sum of the strata profile scores. However, the same results

hold for R(ψ) and T (ψ), because they are both asymptotically equivalent to S(ψ).

Let Fθ(·) denote the distribution function of S(ψ) under θ, so that Fθ(S(ψ)) is

exactly uniform.

The main result of this study is that the asymptotic validity of both the

constrained and the unconstrained bootstrap is guaranteed, even in a two-index

asymptotic setting, provided that α < 3, that is, q = o(m3). The latter condition
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is the same as that required for the validity of inference based on the modified

signed likelihood root R∗(ψ) (Sartori (2003)). In particular, we show that, when

0 < α < 1,

prθ

(
Fθ̂ψ(S(ψ)) ≤ u

)
= u+O(m(α−3)/2) (3.1)

and

prθ
(
Fθ̂(S(ψ)) ≤ u

)
= u+O(m−1) , (3.2)

whereas, when 1 ≤ α < 3,

prθ

(
Fθ̂ψ(S(ψ)) ≤ u

)
= u+O(m(α−3)/2) (3.3)

and

prθ
(
Fθ̂(S(ψ)) ≤ u

)
= u+O(m(α−3)/2) . (3.4)

Hence, when 1 ≤ α < 3, the same order of error is obtained with both the con-

strained bootstrap and the unconstrained bootstrap, in contrast to what happens

when 0 ≤ α < 1. The case α = 0 corresponds to the standard asymptotic setting

in which n = O(m), and (3.1) and (3.2) reduce to (2.7) and (2.5), respectively. In-

tuitively, the reason why the two types of bootstrap have the same accuracy when

α ≥ 1 is because the major effect of both bootstrap procedures is to remove the

diverging bias term of the statistic, which overshadows any minor differences in

theoretical performance that are present when 0 ≤ α < 1. A formal development

of the result is given below.

In the following, we concentrate on the more extreme case, α ≥ 1. The proof

of (3.1) and (3.2) for the case 0 < α < 1 is given in the Supplementary Material.

In order to prove both (3.3) and (3.4), we need some preliminary results about the

distribution function Fθ(x) of S(ψ) in the two-index asymptotic setting. From

Sartori (2003, formula (6)), Up = Up(ψ) can be expanded as

Up = Uψ|λ +B +Re , (3.5)

where Uψ|λ = Uψ − iψλi−1λλUλ = Op(
√
n) = Op(m

(α+1)/2), with zero mean and

variance iψψ|λ, B = B(θ) = Op(m
α), and, when α > 1, Re = Op(m

α−1). Details

about the orders in (3.5) are provided in the Appendix. When 0 ≤ α < 1, the

terms in (3.5) are in descending order. When 1 ≤ α < 3, B becomes the leading

term, followed by Uψ|λ. Finally, when α ≥ 3, Uψ|λ is dominated both by B and by

Re. In practice, when 1 ≤ α < 3, bootstrap procedures, as well as higher-order

analytical solutions, are able to correct for B, so that Uψ|λ is again the leading

term in the expansion in (3.5).

Let M(θ) = Eθ(S(ψ)) and Varθ(S(ψ)) be the expectation and variance, re-
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spectively, of S(ψ). The asymptotic expansions in the Appendix can be used to

show that

M(θ) =
b(θ)

iψψ|λ(θ)1/2
+M1(θ) +O(m(α−5)/2) (3.6)

Varθ(S(ψ)) = 1 + v(θ) +O

(
1

m2

)
, (3.7)

where b(θ) = Eθ(B) = O(mα), M1(θ) = O(m(α−3)/2), and v(θ) = (Varθ(B) +

2 Eθ(Uψ|λB))/iψψ|λ = O(m−1). The cumulants of S(ψ) of order r ∈ {3, 4, . . .} are

O
(
m(α+1)(1−r/2)) = O(n1−r/2), as in standard asymptotics.

For the development here, we assume that the distribution function of S(ψ)

admits a valid Edgeworth expansion. Severini (2000, Sec. 5.1–5.4) gives the

conditions and details for the extension of the Edgeworth expansions for i.i.d.

random variables to likelihood pivots, such as R(ψ), S(ψ), and T (ψ). The basic

requirement in the continuous case is that an Edgeworth expansion exists for the

joint distribution of log-likelihood derivatives up to the third order, implying

Fθ(x) = prθ (S(ψ) ≤ x) = Φ

(
x−M(θ)√
Varθ(S(ψ))

)
+O(m−(α+1)/2) , (3.8)

where the order of the remainder term is that of the third cumulant of S(ψ). Let

x∗(θ) = (x−M(θ))/
√

1 + v(θ). Then,

x−M(θ)√
Varθ(S(ψ))

=
x−M(θ)√

1 + v(θ) +O(m−2)
= x∗(θ) +O(m−2)

and

Fθ(x) = Φ (x∗(θ)) +O
(
m−min(2,(α+1)/2)

)
. (3.9)

We first focus on the constrained bootstrap. From (3.9),

Fθ̂ψ(x) = Φ
(
x∗(θ̂ψ)

)
+Op

(
m−min(2,(α+1)/2)

)
. (3.10)

The Taylor expansions in the Appendix give

M(θ̂ψ) = M(θ) + ∆ +Op

(
m−min(1,(5−α)/2)

)
(3.11)

and

v(θ̂ψ) = v(θ) +Op(m
−2) , (3.12)

where ∆ = Op(m
(α−3)/2) is given in expression (A.9) of the Appendix. Using
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(3.11) and (3.12), we can write x∗(θ̂ψ) = x∗(θ)−∆ +Op(m
−min(1,(5−α)/2). As a

result, if α < 3, then the following Taylor expansion of (3.10) holds:

Fθ̂ψ(x) = Fθ(x)− φ(x∗(θ))∆ +Op(m
−1) , (3.13)

where the error is of order Op(m
−1), because, for α < 3, min (1, (5− α)/2) = 1,

whereas the error term in (3.10) is op(m
−1) whenever α > 1.

In order to prove (3.3), note that Fθ̂ψ(S(ψ)) ≤ u is equivalent to S(ψ) ≤ su,

with su the u-quantile of Fθ̂ψ(·), such that Fθ̂ψ(su) = u. Let s0u be the u-quantile

of Fθ(·). It is useful to express su in terms of s0u. Using (3.13),

u = Fθ(s
0
u) = Fθ̂ψ(su) = Fθ(su)− φ(s∗u(θ))∆ +Op(m

−1) ,

where s∗u(θ) = (su −M(θ))/
√

1 + v(θ). Hence, Fθ(su) − Fθ(s0u) = φ(s∗u(θ))∆ +

Op(m
−1). On the other hand, letting F ′θ(x) = dFθ(x)/dx, from

Fθ(s
0
u) = Fθ(su) + (s0u − su)F ′θ(su) +Op((s

0
u − su)2)

and

F ′θ(x) =
φ(x∗(θ))√

1 + v(θ)
+O(m−(α+1)/2) = φ(x∗(θ)) +O(m−1) ,

we get

su = s0u + ∆ +Op(m
−1) +Op(m

α−3) ,

where the Op(m
α−3) term on the right-hand side comes from Op((s

0
u − su)2).

Hence, S(ψ) ≤ su is equivalent to S(ψ) ≤ s0u + ∆ +Op(m
−1) +Op(m

α−3), and

prθ

(
Fθ̂ψ(S(ψ)) ≤ u

)
= prθ

(
S̄(ψ) ≤ F−1θ (u)

)
,

with S̄(ψ) = S(ψ) −∆ + Op(m
α−3) + Op(m

−1), and where ∆ is given by (A.9)

and is such that Eθ(∆) = O(m(α−3)/2). Moreover, we have

Eθ(S̄(ψ)) = Eθ(S(ψ)) +O(m(α−3)/2) , (3.14)

Varθ(S̄(ψ)) = Varθ(S(ψ)−∆) +O(m−2)

= Varθ(S(ψ)) + Varθ(∆)− 2Covθ(S(ψ),∆) +O(m−2)

= Varθ(S(ψ)) +O(m−2) , (3.15)

because Varθ(∆) = O(m−2) and Covθ(S(ψ),∆) = O(m−2), where the order of

the latter is determined by the orthogonality between Uψ|λ and the leading term
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of b1(θ) in (A.7). Finally, (3.3) holds because

prθ
(
S̄(ψ) ≤ F−1θ (u)

)
= prθ

(
S(ψ) ≤ F−1θ (u)

)
+O(m(α−3)/2) +O(m−2)

= prθ
(
S(ψ) ≤ F−1θ (u)

)
+O(m(α−3)/2)

= u+O(m(α−3)/2) .

The proof of (3.4) for the unconstrained bootstrap is obtained using the same

steps as above. In particular, the expansion (A.12) holds for Fθ̂(x), having the

same form as (3.13), with ∆ replaced by ∆1, which is still of order Op(m
(α−3)/2).

Details are given in the Appendix. However, although (3.14) is still true, (3.15)

holds with an error of order O(m−1), because there is no orthogonality between

Uψ|λ and the leading terms of b2(θ), given in (A.10). Therefore, for the uncon-

strained bootstrap, we have

prθ
(
S̄(ψ) ≤ F−1θ (u)

)
= prθ

(
S(ψ) ≤ F−1θ (u)

)
+O(m(α−3)/2) +O(m−1)

= prθ
(
S(ψ) ≤ F−1θ (u)

)
+O(m(α−3)/2)

= u+O(m(α−3)/2) .

Hence, when α ≥ 1, the errors in (3.3) and (3.4) are of the same order, because the

O(m(α−3)/2) error in the mean of S̄(ψ) dominates the O(m−2) and O(m−1) errors

in the variance of S̄(ψ) in the constrained and unconstrained cases, respectively.

However, the different errors in the variance of S̄(ψ) may have some effects, and

explain why the constrained bootstrap is sometimes numerically more accurate

in extreme settings.

The arguments used in the proofs of (3.3) and (3.4) suggest that the location

and scale adjustments to the statistic, as done for R(ψ) in a standard asymp-

totic setting by DiCiccio, Martin and Stern (2001) and Stern (2006), are the key

requirement to recovering the approximate uniformity of the p-values. In this

respect, a bootstrap location and scale adjustment of R(ψ), S(ψ), or T (ψ) is

expected to be as effective as bootstrapping the distribution of the statistic. This

conjecture is confirmed by the numerical results in the following section and in

the Supplementary Material.

4. Simulation Studies

The finite-sample properties of the unconstrained and constrained parametric

bootstraps are assessed using extensive simulation studies for three statistical

models for stratified data. In particular, we consider a beta model, a curved

exponential family model, and a truncated regression model, with the results
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Table 1. Statistics compared in the simulation experiments. The mean µ̃R and the stan-
dard deviation σ̃R of R(ψ) are estimated using the constrained bootstrap by simulating

from the model at θ = θ̂ψ.

Statistic Plotting Description
Symbol

R(ψ) R Signed likelihood root
R∗(ψ) R∗ Modified signed likelihood root
Φ−1{p̂R1 (ψ)} Ru Transformed p-value from uncon-

strained bootstrap of R(ψ)
Φ−1{p̂R2 (ψ)} Rc Transformed p-value from constrained

bootstrap of R(ψ)
R(ψ)− µ̃R Rcl Location adjusted R(ψ)
(R(ψ)− µ̃R)/σ̃R Rcls Location-and-scale adjusted R(ψ)

for further models reported in the Supplementary Material. For each model, we

conduct nine simulation experiments, one for each combination of the number of

strata q ∈ {10, 100, 1000} and the stratum sample size m ∈ {4, 8, 16}.
Each simulation experiment involves 10,000 simulated samples under the

model at a fixed parameter vector θ0 = (ψ0, λ
>
0 )>. For each simulated sample,

17 statistics and six bootstrap-based p-values are computed to test ψ = ψ0. In

particular, we compute the following statistics: i) R(ψ), S(ψ), and T (ψ); ii)

the location- and location-and-scale-adjusted versions of R(ψ), S(ψ), and T (ψ),

where the mean and variance of each statistic are estimated using the uncon-

strained bootstrap (at θ̂) and the constrained boostrap (at θ̂ψ); and iii) R∗(φ)

and the signed likelihood root computed from the modified profile likelihood (see,

for instance, Severini (2000, Chap. 8)). The higher-order adjustment required for

the latter two statistics is obtained using the expected moments of likelihood

quantities, as in Severini (2000, Sec. 7.5). Finally, for each of R(ψ), S(ψ), and

T (ψ), we compute the unconstrained and constrained bootstrap p-values in (2.4)

and (2.6), respectively.

To conserve space, we report only the results for the six statistics based on

R(ψ) shown in Table 1. The conclusions for the remaining statistics and p-values

are qualitatively the same. Results are also presented only for (q,m) = (10, 4),

(q,m) = (100, 4), (q,m) = (1000, 4), (q,m) = (1000, 8), and (q,m) = (1000, 16),

because these combinations of q and m are sufficient for assessing the performance

of the statistics as q and m grow. The results for all of the simulation experiments

are provided in the Supplementary Material.

The above experiments involve high-dimensional parameter spaces with as

many as 1,000 nuisance parameters. As a result, the assessment of the statistics
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requiring bootstrapping is demanding in terms of computational time and cost,

even when using parallel computing with a large number of cores. Therefore, the

number of bootstrap samples is limited to 1,000 in all simulation experiments.

The three blocks of rows in Table 2 give the estimated tail probabilities of the

statistics of interest for the case q = 1000 and m = 8 for the three models consid-

ered. This combination of q and m was selected because it is the least extreme

setting (compared to the most extreme q = 1000, m = 4), where departures from

the expected behavior in terms of the distribution of the statistics starts becom-

ing apparent; the results for all other combinations of q and m are provided in the

Supplementary Material. The following sections give a more detailed discussion

on Table 2.

Table 2. Empirical tail probabilities ×100 for the statistics in Table 1 and all models
considered in the simulation studies of Section 4. The figures shown are rounded to one
decimal place, and are for q = 1000 and m = 8.

Nominal
Model Statistic 1.0 2.5 5.0 95.0 97.5 99.0

Beta

R 0.0 0.0 0.0 0.0 0.0 0.0
R∗ 0.7 1.8 3.8 93.7 96.8 98.8
Ru 0.8 1.9 4.1 94.0 97.0 98.7
Rc 1.0 2.3 4.8 95.0 97.4 99.1
Rcl 1.1 2.5 5.1 94.7 97.3 98.9
Rcls 0.9 2.3 4.8 95.1 97.5 99.0

Curved exponential family

R 100.0 100.0 100.0 100.0 100.0 100.0
R∗ 1.4 3.5 6.9 96.6 98.3 99.4
Ru 0.6 1.8 4.0 95.0 97.7 99.2
Rc 1.2 3.3 6.4 96.2 98.2 99.4
Rcl 1.5 3.6 7.1 95.8 98.0 99.2
Rcls 1.3 3.2 6.5 96.3 98.2 99.4

Truncated regression

R 0.2 0.5 1.1 84.2 90.4 95.1
R∗ 1.0 2.5 5.2 94.8 97.3 98.9
Ru 0.9 2.3 4.8 94.9 97.2 98.9
Rc 0.9 2.4 4.9 94.5 97.2 98.7
Rcl 1.0 2.4 5.0 94.4 97.0 98.8
Rcls 0.9 2.4 5.0 94.4 97.0 98.8

4.1. Beta model

As a first example, we suppose that Yij has a beta distribution, with density

function

g(yij ;µi, φ) =
1

B{µiφ, (1− µi)φ}
yµiφ−1ij (1− yij)(1−µi)φ−1 (0 < yij < 1) ,
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Figure 1. Beta model. Estimated null distribution of the statistics (left) and estimated
distribution of the p-values (right) for the statistics in Table 1 for various combinations
of q and m. The N(0, 1) and Uniform(0, 1) density functions are superimposed for the
statistics (left) and the p-values (right).

where B(·) is the beta function. The parameter of interest is ψ = log φ, and

the stratum-specific nuisance parameters are given by λi = log{µi/(1 − µi)}.
The simulation experiments are carried out for ψ0 = log(2), and the elements

of λ0 are generated from a standard normal distribution and held fixed over all

replications.

The left panel of Figure 1 shows the empirical densities for the statistics in

Table 1. The performance of the statistics is evaluated in terms of the closeness

of their empirical density to the standard normal density. This assessment is also

valid for the constrained and unconstrained bootstrap p-values, because they have

been mapped onto the standard normal scale using the Φ−1(·) transformation.

The large location bias of the distribution of R(ψ) is apparent for all shown

combinations of q and m, and becomes huge for q = 1000 and m ∈ {4, 8}.
All higher-order accurate statistics result in a marked finite-sample correction,

with R∗(ψ) and the unconstrained bootstrap illustrating some discrepancy from

the standard normal distribution for large q/m ratios, such as q = 1000 and

m ∈ {4, 8}. This is also apparent from the entries in Table 2.

The right panel of Figure 1 shows that the p-values based on Rc, the location-

adjusted version Rcl , and the location-and-scale-adjusted version Rcls are all close

to one another. Hence, the necessary adjustment for making the distribution of

R(ψ) close to the standard normal appears to be mainly a location adjustment.



1082 BELLIO ET AL.

q = 10

m = 4

q = 100

m = 4

q = 1000

m = 4

q = 1000

m = 8

q = 1000

m = 16

R
R

*
R

u
R

c
R

l c
R

ls c
−5.

0
−2.

5
0.

0
2.

5
5.

0
−5.

0
−2.

5
0.

0
2.

5
5.

0
−5.

0
−2.

5
0.

0
2.

5
5.

0
−5.

0
−2.

5
0.

0
2.

5
5.

0
−5.

0
−2.

5
0.

0
2.

5
5.

0

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

statistic

d
en

si
ty

q = 10

m = 4

q = 100

m = 4

q = 1000

m = 4

q = 1000

m = 8

q = 1000

m = 16

R
R

*
R

u
R

c
R

l c
R

ls c

0.
00

0.
25

0.
50

0.
75

1.
00
0.

00
0.

25
0.

50
0.

75
1.

00
0.

00
0.

25
0.

50
0.

75
1.

00
0.

00
0.

25
0.

50
0.

75
1.

00
0.

00
0.

25
0.

50
0.

75
1.

00

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

p−value 
d
en

si
ty

Figure 2. Curved exponential family model. Estimated null distribution of the statistics
(left) and estimated distribution of the p-values (right) for the statistics in Table 1 for
various combinations of q and m. The N(0, 1) and Uniform(0, 1) density functions are
superimposed for the statistics (left) and the p-values (right).

4.2. Curved exponential family

This example involves normally distributed random variables Yij , each with

mean exp(λi) and variance exp(ψ + λi/2). This model was studied in Sartori

et al. (1999), who point out that a marginal likelihood for ψ is not available.

The simulation experiments are carried out for ψ0 = log(1/2), and the elements

of λ0 are generated from a standard normal distribution and held fixed over all

replications.

The left panel in Figure 2 shows the empirical density functions of the statis-

tics in Table 1, and the right panel shows the corresponding p-value distributions.

As in the previous example, the empirical, finite-sample distributions of R(ψ) are

far from standard normal, whereas all the higher-order statistics perform consid-

erably better. The conclusions are similar to those from the simulation experi-

ments for the beta model, in that the required adjustment to R(ψ) seems to be

a location correction. The main difference is that no statistic appears to perform

well for (q,m) = (1000, 4); see also the empirical tail probabilities in Table 2.

4.3. Truncated linear regression model

The last example is taken from the econometric literature; see Greene (2004),

Bartolucci et al. (2016), and the references therein. We define the response vari-
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Figure 3. Truncated linear regression model. Estimated null distribution of the statistics
(left) and estimated distribution of the p-values (right) for the statistics in Table 1 for
various combinations of q and m. The N(0, 1) and Uniform(0, 1) density functions are
superimposed for the statistics (left) and the p-values (right).

able Yij to be distributed as Y ∗ij conditionally on Y ∗ij > 0, with

Y ∗ij = λi + xij ψ + εij , i = 1, . . . , q, j = 1, . . . ,m ,

where the error term εij follows a standard normal distribution. For the simula-

tion study, we use ψ = 1, and the elements of λ0 and xij are both independently

generated from a standard normal distribution and held fixed over all replications.

The left panel in Figure 3 shows the empirical density functions of the statis-

tics in Table 1, and the right panel shows the corresponding p-value distributions.

In contrast to the other examples, the distribution of the first-order statistics

requires only a moderate adjustment, even in the most extreme settings. Fur-

thermore, both bootstrap-based statistics and the R∗(ψ) statistic perform rather

well, providing results very close to the target distributions.

5. Conclusion

The main contribution of this study is to formally show that, in stratified

settings, inference based on either the unconstrained or the constrained paramet-

ric bootstrap of usual likelihood pivots is effective in recovering their inferential

performance, even in extreme settings, where the bias of the profile score renders

vanilla first-order inference invalid.
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Unconstrained and constrained bootstrap for the signed likelihood ratio root,

the score and the Wald statistics can both recover inferential performance in

stratified settings when q = O(mα), for 0 < α < 3. As in the case of α = 0

(Lee and Young (2005)), when 0 < α < 1, the constrained bootstrap has a higher

degree of asymptotic accuracy than that of the unconstrained bootstrap. On the

other hand, the two bootstraps are asymptotically equivalent when 1 ≤ α < 3.

The condition q = O(mα), for 0 < α < 3, is the same as that in Sartori (2003) for

the validity of inference based on R∗ and on the signed likelihood root computed

from the modified profile likelihood.

The results in Section 4 from the simulation studies for the finite-sample as-

sessment of the performance of the constrained bootstrap and the unconstrained

bootstrap are in line with those expected from the theory. In extreme settings,

such as the beta model with (q,m) = (1000, 4), the constrained bootstrap ap-

pears to perform slightly better than the unconstrained bootstrap. Furthermore,

in all simulation experiments, as q/m diverges, the inferential performance of the

constrained bootstrap and the unconstrained bootstrap of the first-order statis-

tics seems to deteriorate more slowly than that of R∗ and the signed likelihood

root computed from the modified profile likelihood (see also the Supplementary

Material). As a result, the evidence from the simulation studies indicates that

inference from the parametric bootstrap is more resilient to increasing q/m than

that of the analytically available higher-order statistics, with the constrained

bootstrap being the most accurate in extreme scenarios.

The theoretical developments in this study do not cover situations in which

the random variables have discrete support, because the Edgeworth expansion

in (3.8) is only valid for models with continuous support. The impact of discrete-

ness on the performance of the parametric bootstrap is examined in the Supple-

mentary Material using a binomial matched pairs model. In particular, the exper-

imental setup of Section 4 is used for a stratified logistic regression model, where

Yij has a Bernoulli distribution with probability exp(λi+ψxj)/{1+exp(λi+ψxj)},
with xj = 1 for j ∈ {1, . . . ,m/2}, and xj = 0 for j ∈ {m/2 + 1, . . . ,m}. The

results in Figures S21–S24 and Tables S3–S11 in the Supplementary Material

indicate that the equivalence between the unconstrained bootstrap and the con-

strained bootstrap of the first-order statistics in continuous models may not hold

for discrete settings. In those cases, despite the unconstrained bootstrap appear-

ing to deliver a marked inferential improvement to using first-order statistics, the

constrained bootstrap, similarly to R∗, is found to perform considerably better

for most combinations of q and m.

The simulation experiments reported here were carried out with 1,000 boot-
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strap replications. This value is smaller than the recommendations of millions

of replications in the literature for standard asymptotics settings (Young (2009);

DiCiccio, Kuffner and Young (2017)). For stratified settings with α > 1, the

bootstrap adjustments recover the asymptotic uniformity of the p-values, instead

of providing a small-sample refinement of p-values that are already asymptotically

uniform. As a result, using a huge number of bootstrap replications is less es-

sential. This is supported by the few experiments we carried out with more than

1,000 bootstrap replications. More comprehensive simulation studies to support

this statement are unfortunately not feasible with current computing capabilities.

Supplementary Material

The online Supplementary Material contains the outputs from the simula-

tion experiments described in Section 4 for all models and all combinations of the

statistics, q and m. Outputs are also provided for a gamma model, a Behrens–

Fisher model, and the logistic regression model described in Section 5. The out-

puts include null distributions of the various statistics and of the corresponding

p-values, using extended versions of Figures 1–3, and the empirical tail probabil-

ities, using extended versions of Table 2.
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Appendix

Asymptotic orders in (3.5)

The following representation from Sartori (2003, Appendix) will be used to

determine the order of quantities in a stratified setting. Let µi and σ2i denote

mean and variance of independent the random variables X1, . . . , Xq. Then

q∑
i=1

Xi = Op

(
q∑
i=1

µi

)
+Op

√√√√ q∑
i=1

σ2i

 . (A.1)
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We have Uψ =
∑q

i=1 U
i
ψ, where U iψ is the contribution to Uψ from the ith stratum,

and Uλ = (Uλ1
, . . . , Uλq)

>. Here and in the following, when the argument is

omitted, evaluation at θ is understood.

The terms on the right-hand side of (3.5) are seen to be of orderOp(m
(α+1)/2),

Op(m
α) and Op(m

α−1), respectively. Indeed, using (A.1), we have Uψ|λ =∑q
i=1 Uψ|λi = Op(m

(α+1)/2), with Uψ|λi = U iψ − iψλii
−1
λiλi

Uλi being Eθ(Uψ|λi) = 0

and Varθ(Uψ|λi) = iψψ|λi = O(m). Note that iψψ|λ = Varθ(Uψ|λ) =
∑q

i=1iψψ|λi .

Similarly, we have B =
∑q

i=1B
i(ψ, λi) = Op(m

α), where Bi(ψ, λi) is the term

of order Op(1) of the expansion of the profile score in the ith stratum, hav-

ing both mean and variance of order O(1). The same additivity property holds

for b(θ), so that b(θ) =
∑q

i=1b
i(ψ, λi) = O(mα). Finally, the remainder term

is Re =
∑q

i=1Re
i(ψ, λi), with Rei(ψ, λi) having mean and variance of order

O(m−1), so that Re = Op(m
max{α−1,(α−1)/2}) = Op(m

α−1) when α > 1.

Derivation of (3.6) and (3.7)

As a first step, consider the expansion

iψψ|λ(θ̂ψ) = iψψ|λ + C +Op(m
α−1) , (A.2)

with

C =

q∑
i=1

d

dλi
iψψ|λi(λ̂iψ − λi) +

1

2

q∑
i=1

d2

dλ2i
iψψ|λi(λ̂iψ − λi)

2 = Op(m
α) ,

where when α > 1 both terms in C are of the same order, which is again deter-

mined using (A.1). Hence,

{iψψ|λ(θ̂ψ)}−1/2 = i
−1/2
ψψ|λ

{
1− 1

2

C

iψψ|λ
+Op(m

−2)

}
, (A.3)

with C/iψψ|λ = Op(m
−1).

Using (3.5) and (A.3),

S(ψ) = i
−1/2
ψψ|λ

{
Uψ|λ +B +Re

}{
1− 1

2

C

iψψ|λ
+Op(m

−2)

}
=
Uψ|λ

i
1/2
ψψ|λ

+
B

i
1/2
ψψ|λ

+
Re

i
1/2
ψψ|λ

− 1

2

Uψ|λC

i
3/2
ψψ|λ

− 1

2

BC

i
3/2
ψψ|λ

− 1

2

ReC

i
3/2
ψψ|λ

+Op(m
−2) +Op(m

(α−5)/2) +Op(m
(α−7)/2) , (A.4)

where Op(m
−2) + Op(m

(α−5)/2) + Op(m
(α−7)/2) = Op(m

(α−5)/2) as long as α >
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1. The term of order Op(m
(α−5)/2) is given by i

−1/2
ψψ|λB times the term of order

Op(m
−2) in (A.3). Its expectation is of order O(m(α−5)/2). The orders of terms

in (A.4) are as follows:

Uψ|λ

i
1/2
ψψ|λ

= Op(1) ,
B

i
1/2
ψψ|λ

= Op(m
(α−1)/2) ,

Re

i
1/2
ψψ|λ

= Op(m
(α−3)/2) ,

1

2

Uψ|λC

i
3/2
ψψ|λ

= Op(m
−1) = op(1) ,

1

2

BC

i
3/2
ψψ|λ

= Op(m
(α−3)/2) ,

−1

2

ReC

i
3/2
ψψ|λ

= Op(m
(α−5)/2) .

Expansion (3.6) for Eθ(S(ψ)) is obtained using (A.4) and recalling that b(θ) =

O(mα). We have

Eθ

 Uψ|λ

i
1/2
ψψ|λ

 = 0 , Eθ

 B

i
1/2
ψψ|λ

 =
b(θ)

i
1/2
ψψ|λ

= O(m(α−1)/2) ,

Eθ

 Re

i
1/2
ψψ|λ

 = O(m(α−3)/2) , Eθ

1

2

Uψ|λC

i
3/2
ψψ|λ

 = O(m−(α+3)/2) = o(1) ,

Eθ

1

2

BC

i
3/2
ψψ|λ

 = Op(m
(α−3)/2) , Eθ

−1

2

ReC

i
3/2
ψψ|λ

 = O(m(α−5)/2) ,

giving (3.6) with

M1(θ) = Eθ

 Re

i
1/2
ψψ|λ

+ Eθ

1

2

BC

i
3/2
ψψ|λ

 = O(m(α−3)/2) . (A.5)

Expansion (3.7) for Varθ(S(ψ)) is also obtained using (A.4). In particular,

the leading term has variance equal to 1, and, using a standard expansion for

the stratum profile score U iψ(ψ, λ̂iψ) (see e.g., Pace and Salvan (1997), formula

(8.88)), Covθ(Uψ|λ, B) and Varθ(B) are easily seen to be of order O(mα). Further

terms of (A.4) give contributions to the variance of order O(m−2).

Higher order cumulants of S(ψ), r = 3, 4, . . ., have the form

κr(S(ψ)) =
O(mα+1)

O(mr(α+1)/2)
= O(m(α+1)(1−r/2)) = O(n1−r/2)

as in standard asymptotics.
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Derivation of (3.11)) and (3.12)

Let Re = Eθ(Re) and BC = Eθ(BC). Then, from (3.6) and (A.5),

M(θ̂ψ) =
{
iψψ|λ(θ̂ψ)

}−1/2{
b(θ̂ψ)+Re(θ̂ψ)+

1

2

1

iψψ|λ(θ̂ψ)
BC(θ̂ψ)

}
+Op(m

(α−5)/2) ,

where Re(θ̂ψ) and iψψ|λ(θ̂ψ)−1BC(θ̂ψ) are of order O(mα−1). Now,

b(θ̂ψ) = b(θ) + b1(θ) +Op(m
α−2) , (A.6)

where

b1(θ) =

q∑
i=1

biλi(ψ, λi)(λ̂iψ − λi) +
1

2

q∑
i=1

biλiλi(ψ, λi)(λ̂iψ − λi)
2 , (A.7)

and biλi(ψ, λi) = ∂bi(ψ, λi)/∂λi, and so on. Using (A.1), and being biλi(ψ, λi) and

biλiλi(ψ, λi) both of order O(1),

q∑
i=1

biλi(ψ, λi)(λ̂iψ − λi) = Op(m
α−1) +O(m(α−1)/2)

and
q∑
i=1

biλiλi(ψ, λi)(λ̂iψ − λi)
2 = Op(m

α−1) +Op(m
(α−2)/2) .

The remainder in (A.6) is of order Op(m
α−2) +Op(m

(α−3)/2) = Op(m
α−2), when

α > 1. Moreover, Re(θ̂ψ) = Re+Op(m
α−2) and iψψ|λ(θ̂ψ)−1BC(θ̂ψ) = i−1ψψ|λBC+

Op(m
α−2).

Using (A.3), we get

M(θ̂ψ) = i
−1/2
ψψ|λb(θ) + M̃1 +Op

(
m−min{1,(5−α)/2}

)
, (A.8)

with

M̃1 = i
−1/2
ψψ|λ

{
b1(θ)−

C b(θ)

2iψψ|λ
+Re+

BC

2iψψ|λ

}
,

which is of order Op(m
(α−3)/2) because all terms are of the same order.

Therefore, (A.8), (3.6) and (A.5) give (3.11) with

∆ = M̃1 −M1(θ) =
b1(θ)

i
1/2
ψψ|λ

− C b(θ)

2 i
3/2
ψψ|λ

(A.9)
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that is of order Op(m
(α−3)/2).

To obtain expansion (3.12) recall that in (3.7)

v(θ) =
Varθ(B) + 2 Eθ(Uψ|λB)

iψψ|λ
.

The numerator of v(θ̂ψ) is equal to Varθ(B) + 2 Eθ(Uψ|λB) plus a term of order

Op(m
α−1). From (A.2),

1

iψψ|λ(θ̂ψ)
=

1

iψψ|λ

{
1 +Op(m

−1)
}
.

which gives (3.12).

Derivation of (3.4)

First, from (3.9), we have

Fθ̂(x) = Φ
(
x∗(θ̂)

)
+Op

(
m−min(2,(α+1)/2)

)
.

In order to obtain expansions of M(θ̂) and v(θ̂) around θ, we use the fact that,

when α > 1, ψ̂ − ψ = Op(m
−1) (Sartori (2003)). This implies that an expansion

for Fθ̂(x) of the form (3.13) holds with a different ∆ term, which is still of order

Op(m
(α−3)/2).

In order to obtain an expansion for M(θ̂) we follow the same steps as in

(A.6)–(A.9), giving (3.11). In particular, we have

b(θ̂) = b(θ) + b2(θ) +Op(m
α−2) ,

where

b2(θ) = b2(ψ, λ) =

q∑
i=1

biψ (ψ̂ − ψ) +

q∑
i=1

biλi(λ̂i − λi) +
1

2

q∑
i=1

biλiλi(λ̂i − λi)
2

+
1

2

q∑
i=1

biψψ(ψ̂ − ψ)2 +

q∑
i=1

biψλi(λ̂i − λi)(ψ̂ − ψ) . (A.10)

From Sartori (2003, below formula (9)), with α > 1, ψ̂ − ψ = Op(m
−1), so that

the first three summands on the right hand side of the last formula are of order

Op(m
α−1), while the remaining two are of order Op(m

α−2). This leads to

M(θ̂) = M(θ) + ∆1 +Op

(
m−min(1,(5−α)/2)

)
, (A.11)
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where the term ∆1 is of order Op(m
(α−3)/2), as its expected value, because the

leading terms in (A.10) are of the same order as b1(θ) in (A.6).

Using (A.11) and an expansion similar to (3.12) we obtain

x∗(θ̂) = x∗(θ) +Op(m
(α−3)/2) ,

so that the same error as in (3.13) holds also for unconstrained bootstrap, i.e.

Fθ̂(x) = Fθ(x)− φ(x∗(θ))∆1 +Op(m
−1) . (A.12)

The steps leading from (A.12) to (3.4) are the same as those from (3.13) to (3.3).
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