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Section S1 contains the proof of eq. (3.1) and (3.2) of the main text, namely it focuses on the

main result of the paper for the case when 0 ≤ α < 1. Section S2 reports the full set of results

of the simulation studies described in the main text. In addition to the four models described

in the main text (beta model, curved exponential family, truncated regression and logistic

regression) two further models are considered, given by a gamma model and a Behrens-Fisher

model, respectively. Finally, Section S3 reports the tail probabilities estimated by simulation

for the statistics in Table 1 of the main text, for all models and all simulation settings.

S1 Proof of (3.1) and (3.2)

In the same setting as in Section 3 of the main text, we consider q = O(mα),

0 ≤ α < 1. The case α = 0 corresponds to the standard asymptotic setting,
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where n = O(m).

The core results we prove here are

prθ

(
Fθ̂ψ(S(ψ)) ≤ u

)
= u+O(m(α−3)/2) . (S1.1)

and

prθ (Fθ̂(S(ψ)) ≤ u) = u+O(m−1) . (S1.2)

Hence, as with α = 0 (Lee and Young, 2005), the order of error is

different with constrained and unconstrained bootstrap.

In order to prove (S1.1) and (S1.2) we need some preliminary results

about the distribution function Fθ(x) of S(ψ). From Sartori (2003, formula

(6)), Up = Up(ψ) can be expanded as

Up = Uψ|λ +B +Re , (S1.3)

where the terms on the right-hand side are of order Op(m
(α+1)/2), Op(m

α)

and Op(m
α−1), respectively. Indeed, using (A1) in the main text, we have

Uψ|λ =
∑q

i=1 Uψ|λi = Op(m
(α+1)/2), with Uψ|λi = U i

ψ − iψλii
−1
λiλi

Uλi be-

ing Eθ(Uψ|λi) = 0 and Varθ(Uψ|λi) = iψψ|λi = O(m). Note that iψψ|λ =

Varθ(Uψ|λ) =
∑q

i=1iψψ|λi . Similarly, we have B =
∑q

i=1B
i(ψ, λi) = Op(m

α),

where Bi(ψ, λi) is the term of order Op(1) of the expansion of the pro-

file score in the ith stratum, having both mean and variance of order

O(1). The same additivity property holds for b(θ) = Eθ(B), so that
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b(θ) =
∑q

i=1b
i(ψ, λi) = O(mα). Finally, the remainder term is Re =∑q

i=1Re
i(ψ, λi), with Rei(ψ, λi) having mean and variance of order O(m−1),

so that Re = Op(m
max{α−1,(α−1)/2}) = Op(m

(α−1)/2) when 0 ≤ α < 1. There-

fore, the terms in (S1.3) are in descending order as opposed to what happens

when α ≥ 1.

Let M(θ) = Eθ(S(ψ)) and Varθ(S(ψ)) be the expectation and variance

of S(ψ). We first show that

M(θ) =
b(θ)

iψψ|λ(θ)1/2
+M1(θ) +O(m−(α+3)/2) , (S1.4)

with b(θ)iψψ|λ(θ)
−1/2 = O(m(α−1)/2) and

M1(θ) = Eθ

(
Re

i
1/2
ψψ|λ

)
= O(m(α−3)/2) . (S1.5)

Moreover,

Varθ(S(ψ)) = 1 + v(θ) +O(m−2) , (S1.6)

where v(θ) = (Varθ(B) + 2 Eθ(Uψ|λB))/iψψ|λ = O(m−1).

In order to show (S1.4), as a first step, consider the expansion

iψψ|λ(θ̂ψ) = iψψ|λ + C +Op(m
α) , (S1.7)

with

C =

q∑
i=1

d

dλi
iψψ|λi(λ̂iψ − λi) = Op(m

(α+1)/2) ,
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where the order is again determined using (A1) in the main text. Hence,

{iψψ|λ(θ̂ψ)}−1/2 = i
−1/2
ψψ|λ

{
1− 1

2

C

iψψ|λ
+Op(m

−1)

}
, (S1.8)

with C/iψψ|λ = Op(m
−(α+1)/2).

Using (S1.3) and (S1.8),

S(ψ) = i
−1/2
ψψ|λ

{
Uψ|λ +B +Re

}{
1− 1

2

C

iψψ|λ
+Op(m

−1)

}
=

Uψ|λ

i
1/2
ψψ|λ

+
B

i
1/2
ψψ|λ

+
Re

i
1/2
ψψ|λ

− 1

2

Uψ|λC

i
3/2
ψψ|λ

− 1

2

B C

i
3/2
ψψ|λ

− 1

2

ReC

i
3/2
ψψ|λ

+Op(m
−1) +Op(m

(α−3)/2) , (S1.9)

where Op(m
−1) + Op(m

(α−3)/2) + Op(m
(α−5)/2) = Op(m

−1). The term of

order Op(m
(α−3)/2) is given by i

−1/2
ψψ|λB times the term of order Op(m

−1) in

(S1.8). Its expectation is of order O(m(α−3)/2). The orders of terms in

(S1.9) are as follows:

Uψ|λ

i
1/2
ψψ|λ

= Op(1) ,
B

i
1/2
ψψ|λ

= Op(m
(α−1)/2) ,

Re

i
1/2
ψψ|λ

= Op(m
−1) ,

1

2

Uψ|λC

i
3/2
ψψ|λ

= Op(m
−(α+1)/2) = op(1) ,

1

2

B C

i
3/2
ψψ|λ

= Op(m
−1) ,

−1

2

ReC

i
3/2
ψψ|λ

= Op(m
−(α+3)/2) .

Expansion (S1.4) for Eθ(S(ψ)) is obtained using (S1.9) and recalling
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that b(θ) = O(mα). We have

Eθ

(
Uψ|λ

i
1/2
ψψ|λ

)
= 0 , Eθ

(
B

i
1/2
ψψ|λ

)
=

b(θ)

i
1/2
ψψ|λ

= O(m(α−1)/2) ,

Eθ

(
Re

i
1/2
ψψ|λ

)
= O(m(α−3)/2) , Eθ

(
1

2

Uψ|λC

i
3/2
ψψ|λ

)
= O(m−(α+3)/2) = o(1) ,

Eθ

(
1

2

B C

i
3/2
ψψ|λ

)
= Op(m

−(α+3)/2) , Eθ

(
−1

2

ReC

i
3/2
ψψ|λ

)
= O(m−(α+3)/2) ,

giving (S1.4).

Expansion (S1.6) for Varθ(S(ψ)) is also obtained using (S1.9). In par-

ticular, the leading term has variance equal to 1, and, using a standard

expansion for the stratum profile score U i
ψ(ψ, λ̂iψ) (see e.g Pace and Salvan,

1997, formula (8.88)), Covθ(Uψ|λ, B) and Varθ(B) are easily seen to be of

order O(mα). Further terms of (S1.9) give contributions to the variance of

order O(m−2).

Higher order cumulants of S(ψ), r = 3, 4, . . ., have the form

κr(S(ψ)) =
O(mα+1)

O(mr(α+1)/2)
= O(m(α+1)(1−r/2)) = O(n1−r/2)

as in standard asymptotics.

As in Section 3 of the main text, the developments here rely on the

assumption that the distribution function of S(ψ) admits a valid Edgeworth

expansion. In particular, in the continuous case,

Fθ(x) = prθ (S(ψ) ≤ x) = Φ

(
x−M(θ)√
Varθ(S(ψ))

)
+O(m−(α+1)/2) , (S1.10)
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where the order of the remainder term is that of the third cumulant of S(ψ).

Using (S1.4) and (S1.6) we have

Fθ(x) = Φ(x)− φ(x)M(θ) +O(m−(α+1)/2) . (S1.11)

We first focus on constrained bootstrap. From (S1.11),

Fθ̂ψ(x) = Φ(x)− φ(x)M(θ̂ψ) +Op

(
m−(α+1)/2)

)
. (S1.12)

We, then, show the analogous of expression (3.18) of the main text in

the case 0 ≤ α < 1, i.e.

M(θ̂ψ) = M(θ) + ∆ +Op

(
m(α−3)/2}) , (S1.13)

with

∆ =
b1(θ)

i
1/2
ψψ|λ

− C b(θ)

2 i
3/2
ψψ|λ

(S1.14)

that is of order Op(m
−1) and where b1(θ) is given in (S1.17) below. In order

to show (S1.13) let Re = Eθ(Re). Then, from (S1.4) and (S1.5),

M(θ̂ψ) =
{
iψψ|λ(θ̂ψ)

}−1/2 {
b(θ̂ψ) +Re(θ̂ψ)

}
+Op(m

−(α+3)/2) , (S1.15)

where Re(θ̂ψ) is of order Op(m
α−1). Now,

b(θ̂ψ) = b(θ) + b1(θ) +Op(m
α−1) , (S1.16)

where

b1(θ) =

q∑
i=1

biλi(ψ, λi)(λ̂iψ − λi) , (S1.17)
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and biλi(ψ, λi) = ∂bi(ψ, λi)/∂λi, and so on. Using (A1) in the main text,

and being biλi(ψ, λi) of order O(1),

q∑
i=1

biλi(ψ, λi)(λ̂iψ − λi) = Op(m
(α−1)/2) +Op(m

α−1) . (S1.18)

The remainder in (S1.16) includes also the term

1

2

q∑
i=1

biλiλi(ψ, λi)(λ̂iψ − λi)
2

which is of order Op(m
α−1), being biλiλi(ψ, λi) of order O(1). Moreover,

Re(θ̂ψ) = Re+Op(m
(α−3)/2).

Using (S1.8), we get

M(θ̂ψ) = i
−1/2
ψψ|λb(θ) + M̃1 +Op

(
m(α−3)/2) , (S1.19)

with

M̃1 = i
−1/2
ψψ|λ

{
b1(θ)−

C b(θ)

2iψψ|λ

}
,

which is of order Op(m
−1) because both terms are of the same order and

linear in λ̂iψ − λi.

Therefore, (S1.19), (S1.4) and (S1.5) give (S1.13).

As a result, the following Taylor expansion of (S1.12) holds

Fθ̂ψ(x) = Fθ(x)− φ(x)∆ +Op(m
(α−3)/2) . (S1.20)

In order to prove (S1.1), note that Fθ̂ψ(S(ψ)) ≤ u is equivalent to

S(ψ) ≤ su, with su the u-quantile of Fθ̂ψ(·), such that Fθ̂ψ(su) = u. Let s0u
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be the u-quantile of Fθ(·). It is useful to express su in terms of s0u. Using

(S1.20), we get

u = Fθ(s
0
u) = Fθ̂ψ(su) = Fθ(su)− φ(su)∆ +Op(m

(α−3)/2) .

Hence, Fθ(su)−Fθ(s0u) = φ(su)∆+Op(m
(α−3)/2). On the other hand, letting

F ′θ(x) = dFθ(x)/dx, from

Fθ(s
0
u) = Fθ(su) + (s0u − su)F ′θ(su) +Op((s

0
u − su)2)

and

F ′θ(x) = φ(x)−M(θ)φ′(x) +O(mα−1) = φ(x) +M(θ)xφ(x) +O(mα−1)

we get

su = s0u + ∆ +Op(m
(α−3)/2) +Op(m

α−2)

= s0u + ∆ +Op(m
(α−3)/2) .

Hence, S(ψ) ≤ su is equivalent to S(ψ) ≤ s0u + ∆ +Op(m
(α−3)/2), and

prθ

(
Fθ̂ψ(S(ψ)) ≤ u

)
= prθ

(
S̄(ψ) ≤ F−1θ (u)

)
,

where S̄(ψ) = S(ψ)−∆ +Op(m
(α−3)/2), with ∆ given by (S1.14), and such
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that Eθ(∆) = O(m(α−3)/2) (see (S1.18)). Moreover, we have

Eθ(S̄(ψ)) = Eθ(S(ψ)) +O(m(α−3)/2) , (S1.21)

Varθ(S̄(ψ)) = Varθ(S(ψ)−∆) +O(m−2)

= Varθ(S(ψ)) + Varθ(∆)− 2Covθ(S(ψ),∆) +O(m−2)

= Varθ(S(ψ)) +O(m−2) , (S1.22)

since Varθ(∆) = O(m−2) and Covθ(S(ψ),∆) = O(m−2), where the order of

the latter is determined by the orthogonality between Uψ|λ and the leading

term of b1(θ). Finally, (S1.1) holds because

prθ
(
S̄(ψ) ≤ F−1θ (u)

)
= prθ

(
S(ψ) ≤ F−1θ (u)

)
+O(m(α−3)/2) +O(m−2)

= prθ
(
S(ψ) ≤ F−1θ (u)

)
+O(m(α−3)/2)

= u+O(m(α−3)/2) .

The proof of (S1.2) for unconstrained bootstrap is obtained along the

same steps as above. In particular, an expansion for Fθ̂(x) of the form

(S1.20) holds with a different ∆ term, which is still of order Op(m
−1).

However, while (S1.21) is still true, (S1.22) holds with an error of order

O(m−1), because there is no orthogonality between Uψ|λ and the leading

terms of b2(θ), given in (S1.23) below. Therefore, for unconstrained boot-
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strap we have

prθ
(
S̄(ψ) ≤ F−1θ (u)

)
= prθ

(
S(ψ) ≤ F−1θ (u)

)
+O(m(α−3)/2) +O(m−1)

= prθ
(
S(ψ) ≤ F−1θ (u)

)
+O(m−1)

= u+O(m−1) .

In order to obtain an expansion for M(θ̂), with M(θ) given in (S1.4), we

follow the same steps as in (S1.15)–(S1.19), giving (S1.13). In particular,

we have

b(θ̂) = b(θ) + b2(θ) +Op(m
α−2) ,

where

b2(θ) = b2(ψ, λ) =

q∑
i=1

biψ (ψ̂ − ψ) +

q∑
i=1

biλi(λ̂i − λi) +
1

2

q∑
i=1

biλiλi(λ̂i − λi)
2

+
1

2

q∑
i=1

biψψ(ψ̂ − ψ)2 +

q∑
i=1

biψλi(λ̂i − λi)(ψ̂ − ψ) .(S1.23)

From Sartori (2003, below formula (9)), with α < 1, ψ̂−ψ = Op(m
−(α+1)/2),

so that leading terms of b2(θ) are the first two summands on the right-hand

side of (S1.23), which are of order Op(m
(α−1)/2). The other terms give a

contribution of order Op(m
α−1). This leads to

M(θ̂) = M(θ) + ∆1 +Op(m
(α−3)/2) , (S1.24)

where the term ∆1 has form similar to (S1.14) and is of order Op(m
−1),

with expectation of order O(m(α−3)/2), because the leading term in (S1.23)



S2. FULL SET OF SIMULATION RESULTS

are of the same order as b1(θ) in (S1.16).

The remaining steps are analogous to those from (S1.20) with ∆ re-

placed by ∆1.

S2 Full set of simulation results

We report the full set of results of the simulation studies described in the

main text. In addition to the models described there, which include also

the logistic regression model described in the final section, two further mod-

els are considered, given by a gamma model and a Behrens-Fisher model,

respectively. Some details about them are given as follows.

Gamma model

We take a stratified gamma model with common shape parameter, for which

Yij has density function

g(yij;α, βi) =
1

Γ(α) βαi
yα−1ij exp

{
−yij
βi

}
(yij > 0) ,

where Γ(·) is the gamma function. The parameter of interest is ψ = log(α)

and the stratum-specific nuisance parameters are given by λi = log(βi). The

simulation data sets where generated for ψ0 = log(2) and the elements of λ0

are fixed to the logarithm of random draws from an exponential distribution

with rate 1/2 and held fixed over all the replications.
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The results for this model, reported in the following, are similar to those

for the beta model.

Behrens-Fisher model

Suppose that Yij are normally distributed, with common mean ψ across all

strata, and stratum-specific variances exp(λi). This example was studied in

Young (2009), where it is illustrated that R∗(ψ) is performing worse than

constrained bootstrapping of R(ψ) in a simulation study with q = 20 strata

and the stratum sample size varying between 3 and 10. The simulation

experiments are carried out for ψ0 = 0 and λ0 generated from a uniform

distribution in (0, 1) and held fixed over all the replications.

The findings in Young (2009) are confirmed also in the more extensive

simulation studies here, whose results are reported in the following. For

the Behrens-Fisher model, the location-adjustment to R(ψ) does not have

much of an effect to the distribution of the statistic. On the other hand, the

location-and-scale adjusted statistic recovers inferential performance. So, it

seems that only a scale adjustment is sufficient to recover first-order infer-

ential performance. Indeed, for this model the profile score bias is exactly

equal to zero, so that the distribution of the first-order statistic R(ψ) is

essentially centred around zero. Also, both constrained and unconstrained



S2. FULL SET OF SIMULATION RESULTS

bootstrap perform extremely well across all the simulation scenarios, and,

along with Rc
ls, they outperform R∗(ψ) in the most extreme settings.

A remarkable observation in this model is the excellent accuracy of

the score statistic S(ψ) for all combination of q and m considered. This

can be explained by the fact that the leading term Uψ|λ of Up in (S1.3)

is exactly normally distributed. Moreover, M(θ) and v(θ), in (S1.4) and

(S1.6) respectively, are equal to zero.

Results

For each model, simulation results for the 23 statistics are visualized. For

plotting purposes, the statistics have been split in two groups. Table 1 lists

the first group, and Table 2 the second one.
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Table 1: Statistics computed in the simulation experiments (first group for plotting).

Statistic Plotting

Symbol

Description

R(ψ) R Signed likelihood root

S(ψ) S Score statistic

T (ψ) T Wald statistic

Φ−1{p̂T1 (ψ)} Tu Transformed p-value from unconstrained bootstrap of T (ψ)

Φ−1{p̂T2 (ψ)} T c Transformed p-value from constrained bootstrap of T (ψ)

Φ−1{p̂S1 (ψ)} Su Transformed p-value from unconstrained bootstrap of S(ψ)

Φ−1{p̂S2 (ψ)} Sc Transformed p-value from constrained bootstrap of S(ψ)

Φ−1{p̂R1 (ψ)} Ru Transformed p-value from unconstrained bootstrap of R(ψ)

Φ−1{p̂R2 (ψ)} Rc Transformed p-value from constrained bootstrap of R(ψ)

R∗(ψ) R∗ Modified signed likelihood root

Rm(ψ) Rm Signed likelihood root computed from the modified profile like-

lihood
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Table 2: Statistics computed in the simulation experiments (second group for plotting).

The mean µ̂R and the standard deviation σ̂R of R(ψ) are estimated through uncon-

strained bootstrap, by simulating from the model at θ = θ̂, and likewise for S(ψ) and

T (ψ). The mean µ̃R and the standard deviation σ̃R of R(ψ) are estimated through con-

strained bootstrap, by simulating from the model at θ = θ̂ψ, and likewise for S(ψ) and

T (ψ).

Statistic Plotting

Symbol

Description

T (ψ)− µ̂T Tul Location adjusted T (ψ), unconstrained bootstrap

T (ψ)− µ̃T T cl Location adjusted T (ψ), constrained bootstrap

S(ψ)− µ̂S Sul Location adjusted S(ψ), unconstrained bootstrap

S(ψ)− µ̃S Scl Location adjusted S(ψ), constrained bootstrap

R(ψ)− µ̂R Rul Location adjusted R(ψ), unconstrained bootstrap

R(ψ)− µ̃R Rcl Location adjusted R(ψ), constrained bootstrap

(T (ψ)− µ̂T )/σ̂T Tuls Location-and-scale adjusted T (ψ), unconstrained bootstrap

(T (ψ)− µ̃T )/σ̃T T cls Location-and-scale adjusted T (ψ), constrained bootstrap

(S(ψ)− µ̂S)/σ̂S Suls Location-and-scale adjusted S(ψ), unconstrained bootstrap

(S(ψ)− µ̃S)/σ̃S Scls Location-and-scale adjusted S(ψ), constrained bootstrap

(R(ψ)− µ̂R)/σ̂R Ruls Location-and-scale adjusted R(ψ), unconstrained bootstrap

(R(ψ)− µ̃R)/σ̃R Rcls Location-and-scale adjusted R(ψ), constrained bootstrap
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Figure 1: Gamma model. Estimated null distribution of statistics for the statistics in

Table 1 for various combinations of q and m. The N(0,1) density function is superim-

posed.
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Figure 2: Gamma model. Estimated distribution of p-values for the statistics in Table 1

for various combinations of q and m. The Uniform(0,1) density function is superimposed.
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Figure 3: Gamma model. Estimated null distribution of statistics for the statistics in

Table 2 for various combinations of q and m. The N(0,1) density function is superim-

posed.
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Figure 4: Gamma model. Estimated null distribution of p-values for the statistics in

Table 2 for various combinations of q and m. The Uniform(0,1) density function is

superimposed.
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Figure 5: Beta model. Estimated null distribution of statistics for the statistics in Table 1

for various combinations of q and m. The N(0,1) density function is superimposed.
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Figure 6: Beta model. Estimated distribution of p-values for the statistics in Table 1 for

various combinations of q and m. The Uniform(0,1) density function is superimposed.
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Figure 7: Beta model. Estimated null distribution of statistics for the statistics in Table 2

for various combinations of q and m. The N(0,1) density function is superimposed.
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Figure 8: Beta model. Estimated null distribution of p-values for the statistics in Table 2

for various combinations of q and m. The Uniform(0,1) density function is superimposed.
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Figure 9: Curved exponential family. Estimated null distribution of statistics for the

statistics in Table 1 for various combinations of q and m. The N(0,1) density function

is superimposed.
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Figure 10: Curved exponential family. Estimated distribution of p-values for the statis-

tics in Table 1 for various combinations of q and m. The Uniform(0,1) density function

is superimposed.



RUGGERO BELLIO, IOANNIS KOSMIDIS, ALESSANDRA SALVAN AND NICOLA SARTORI

q = 10

m = 4

q = 10

m = 8

q = 10

m = 16

q = 100

m = 4

q = 100

m = 8

q = 100

m = 16

q = 1000

m = 4

q = 1000

m = 8

q = 1000

m = 16

T
l c

T
l u

T
ls c

T
ls u

S
l c

S
l u

S
ls c

S
ls u

R
l c

R
l u

R
ls c

R
ls u

−5
.0

−2
.5

0.
0

2.
5

5.
0
−5

.0
−2

.5
0.

0
2.

5
5.

0
−5

.0
−2

.5
0.

0
2.

5
5.

0
−5

.0
−2

.5
0.

0
2.

5
5.

0
−5

.0
−2

.5
0.

0
2.

5
5.

0
−5

.0
−2

.5
0.

0
2.

5
5.

0
−5

.0
−2

.5
0.

0
2.

5
5.

0
−5

.0
−2

.5
0.

0
2.

5
5.

0
−5

.0
−2

.5
0.

0
2.

5
5.

0

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

statistic

de
ns

ity

Figure 11: Curved exponential family. Estimated null distribution of statistics for the

statistics in Table 2 for various combinations of q and m. The N(0,1) density function

is superimposed.
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Figure 12: Curved exponential family. Estimated null distribution of p-values for the

statistics in Table 2 for various combinations of q and m. The Uniform(0,1) density

function is superimposed.
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Figure 13: Truncated linear regression model. Estimated null distribution of statistics

for the statistics in Table 1 for various combinations of q and m. The N(0,1) density

function is superimposed.
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Figure 14: Truncated linear regression model. Estimated distribution of p-values for the

statistics in Table 1 for various combinations of q and m. The Uniform(0,1) density

function is superimposed.
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Figure 15: Truncated linear regression model. Estimated null distribution of statistics

for the statistics in Table 2 for various combinations of q and m. The N(0,1) density

function is superimposed.
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Figure 16: Truncated linear regression model. Estimated null distribution of p-values for

the statistics in Table 2 for various combinations of q and m. The Uniform(0,1) density

function is superimposed.
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Figure 17: Behrens-Fisher model. Estimated null distribution of statistics for the statis-

tics in Table 1 for various combinations of q and m. The N(0,1) density function is

superimposed.
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Figure 18: Behrens-Fisher model. Estimated distribution of p-values for the statistics

in Table 1 for various combinations of q and m. The Uniform(0,1) density function is

superimposed.
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Figure 19: Behrens-Fisher model. Estimated null distribution of statistics for the statis-

tics in Table 2 for various combinations of q and m. The N(0,1) density function is

superimposed.
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Figure 20: Behrens-Fisher model. Estimated null distribution of p-values for the statis-

tics in Table 2 for various combinations of q and m. The Uniform(0,1) density function

is superimposed.
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Figure 21: Logistic regression model. Estimated null distribution of statistics for the

statistics in Table 1 for various combinations of q and m. The N(0,1) density function

is superimposed.
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Figure 22: Logistic regression model. Estimated distribution of p-values for the statistics

in Table 1 for various combinations of q and m. The Uniform(0,1) density function is

superimposed.



RUGGERO BELLIO, IOANNIS KOSMIDIS, ALESSANDRA SALVAN AND NICOLA SARTORI

q = 10

m = 4

q = 10

m = 8

q = 10

m = 16

q = 100

m = 4

q = 100

m = 8

q = 100

m = 16

q = 1000

m = 4

q = 1000

m = 8

q = 1000

m = 16

T
l c

T
l u

T
ls c

T
ls u

S
l c

S
l u

S
ls c

S
ls u

R
l c

R
l u

R
ls c

R
ls u

−5
.0

−2
.5

0.
0

2.
5

5.
0
−5

.0
−2

.5
0.

0
2.

5
5.

0
−5

.0
−2

.5
0.

0
2.

5
5.

0
−5

.0
−2

.5
0.

0
2.

5
5.

0
−5

.0
−2

.5
0.

0
2.

5
5.

0
−5

.0
−2

.5
0.

0
2.

5
5.

0
−5

.0
−2

.5
0.

0
2.

5
5.

0
−5

.0
−2

.5
0.

0
2.

5
5.

0
−5

.0
−2

.5
0.

0
2.

5
5.

0

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6

statistic

de
ns

ity

Figure 23: Logistic regression model. Estimated null distribution of statistics for the

statistics in Table 2 for various combinations of q and m. The N(0,1) density function

is superimposed.
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Figure 24: Logistic regression model. Estimated null distribution of p-values for the

statistics in Table 2 for various combinations of q and m. The Uniform(0,1) density

function is superimposed.
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S3 Empirical tail probabilities

Tables 3-11 report empirical tail probabilities for the statistics in Table 1

of the main text, for all models and all simulation settings. The rows of

each table are subdivided into 6 different blocks, each one corresponding to

a different model.



S3. EMPIRICAL TAIL PROBABILITIES

Table 3: Empirical tail probabilities ×100 for the statistics in Table 1 of the main text

and all models that have been considered in the simulation experiments. The figures

shown have been rounded to 1 decimal and are for q = 10 and m = 4.

Nominal

Model Statistic 1.0 2.5 5.0 95.0 97.5 99.0

Gamma

R 0.1 0.1 0.3 65.2 75.6 85.3

R∗ 0.8 2.2 4.3 94.5 97.1 98.8

Ru 1.0 2.5 4.7 95.6 97.7 99.2

Rc 1.0 2.5 4.8 95.3 97.7 99.0

Rcl 1.5 3.1 5.6 94.4 96.9 98.7

Rcls 1.0 2.5 4.8 95.3 97.5 99.0

Beta

R 0.0 0.0 0.1 58.5 69.3 80.1

R∗ 0.9 2.1 4.5 94.6 97.1 98.7

Ru 1.0 2.4 5.0 94.7 97.2 98.8

Rc 0.9 2.4 4.9 95.1 97.5 99.0

Rcl 1.2 2.8 5.8 94.2 96.8 98.5

Rcls 0.9 2.3 4.9 95.1 97.5 98.9

Curved exponential family

R 11.8 19.4 28.1 99.4 99.8 99.9

R∗ 1.4 3.2 6.1 95.6 97.6 99.0

Ru 0.8 2.1 4.4 95.8 98.0 99.2

Rc 1.4 3.0 5.9 95.3 97.6 99.0

Rcl 1.9 4.1 7.1 94.2 96.9 98.6

Rcls 1.4 3.1 6.0 95.4 97.6 99.0

Truncated regression

R 1.0 2.4 4.6 93.4 96.8 98.7

R∗ 1.2 2.6 5.1 95.1 97.5 99.1

Ru 1.0 2.4 4.6 95.3 97.7 99.1

Rc 1.1 2.6 5.2 95.0 97.5 99.0

Rcl 1.2 2.8 5.3 94.8 97.3 99.0

Rcls 1.2 2.8 5.1 94.9 97.4 99.0

Behrens-Fisher

R 4.9 8.0 12.1 88.0 91.8 95.1

R∗ 1.9 4.0 7.0 92.9 96.0 98.1

Ru 1.4 2.9 5.4 94.4 97.0 98.8

Rc 1.1 2.7 5.2 94.7 97.3 98.9

Rcl 4.9 7.9 12.1 87.9 91.8 95.1

Rcls 1.0 2.6 5.3 94.7 97.4 99.0

Logistic regression

R 3.8 7.1 12.5 94.4 97.0 98.4

R∗ 0.5 2.2 5.0 94.4 97.1 98.7

Ru 2.1 2.6 3.1 99.4 99.6 99.7

Rc 0.8 2.4 5.2 95.6 97.6 99.0

Rcl 2.9 5.5 9.1 91.7 94.5 97.2

Rcls 1.0 2.6 5.3 94.8 97.3 99.0



RUGGERO BELLIO, IOANNIS KOSMIDIS, ALESSANDRA SALVAN AND NICOLA SARTORI

Table 4: Empirical tail probabilities ×100 for the statistics in Table 1 of the main text

and all models that have been considered in the simulation experiments. The figures

shown have been rounded to 1 decimal and are for q = 10 and m = 8.

Nominal

Model Statistic 1.0 2.5 5.0 95.0 97.5 99.0

Gamma

R 0.1 0.3 0.9 78.6 86.5 92.8

R∗ 0.9 2.3 4.6 94.7 97.4 98.8

Ru 1.0 2.4 4.9 95.2 97.7 99.1

Rc 1.0 2.5 4.9 95.0 97.5 99.0

Rcl 1.2 2.8 5.4 94.4 97.2 98.7

Rcls 1.0 2.5 4.9 95.0 97.5 98.9

Beta

R 0.1 0.2 0.5 73.8 82.8 90.5

R∗ 0.9 2.3 4.9 94.7 97.1 98.9

Ru 0.9 2.4 4.9 94.5 97.1 98.8

Rc 0.9 2.4 4.8 94.8 97.4 99.0

Rcl 1.0 2.6 5.2 94.4 96.9 98.8

Rcls 0.9 2.3 4.9 94.8 97.2 98.9

Curved exponential family

R 5.8 10.5 17.4 98.8 99.5 99.8

R∗ 1.1 3.0 5.3 95.1 97.5 99.0

Ru 0.9 2.3 4.5 95.4 97.7 99.3

Rc 1.1 2.9 5.2 95.0 97.4 99.1

Rcl 1.3 3.3 5.8 94.5 97.1 98.8

Rcls 1.1 3.0 5.3 95.0 97.4 99.1

Truncated regression

R 0.8 1.9 4.1 94.4 97.2 98.8

R∗ 0.9 2.2 4.6 95.4 97.8 99.1

Ru 0.8 1.9 4.3 95.7 97.9 99.2

Rc 0.9 2.2 4.7 95.4 97.7 99.1

Rcl 0.9 2.3 4.7 95.3 97.6 99.0

Rcls 0.9 2.2 4.7 95.4 97.6 99.0

Behrens-Fisher

R 2.0 4.3 7.6 92.0 95.2 97.6

R∗ 1.0 2.5 5.0 94.3 97.0 99.0

Ru 1.0 2.3 4.8 94.5 97.3 99.1

Rc 1.0 2.3 4.8 94.5 97.3 99.2

Rcl 2.0 4.3 7.6 91.9 95.2 97.6

Rcls 0.9 2.4 4.9 94.5 97.2 99.0

Logistic regression

R 2.2 4.7 8.6 94.8 97.0 99.1

R∗ 0.9 2.7 5.3 94.8 97.0 99.1

Ru 0.1 0.7 2.4 97.2 98.9 99.6

Rc 0.9 2.6 5.2 94.5 97.9 99.1

Rcl 1.6 3.6 6.7 94.0 96.9 98.4

Rcls 0.9 2.6 5.2 94.8 97.4 99.0
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Table 5: Empirical tail probabilities ×100 for the statistics in Table 1 of the main text

and all models that have been considered in the simulation experiments. The figures

shown have been rounded to 1 decimal and are for q = 10 and m = 16.

Nominal

Model Statistic 1.0 2.5 5.0 95.0 97.5 99.0

Gamma

R 0.2 0.6 1.5 85.7 91.6 96.0

R∗ 1.1 2.5 4.9 95.0 97.4 98.9

Ru 1.0 2.6 5.0 95.2 97.5 99.0

Rc 1.1 2.6 5.1 95.1 97.5 99.0

Rcl 1.2 2.8 5.3 94.9 97.3 98.9

Rcls 1.2 2.6 5.1 95.1 97.4 98.9

Beta

R 0.2 0.4 1.1 83.4 89.8 94.8

R∗ 1.0 2.4 5.0 94.9 97.5 99.1

Ru 1.1 2.6 5.1 94.8 97.4 99.0

Rc 1.0 2.4 5.0 95.0 97.5 99.1

Rcl 1.0 2.5 5.1 94.9 97.3 99.0

Rcls 1.0 2.4 5.0 95.0 97.5 99.1

Curved exponential family

R 3.7 7.7 13.1 98.4 99.2 99.8

R∗ 1.1 2.7 5.1 95.3 97.8 99.1

Ru 1.0 2.4 4.9 95.5 97.9 99.2

Rc 1.1 2.6 5.2 95.3 97.8 99.1

Rcl 1.3 3.3 5.8 94.5 97.1 98.8

Rcls 1.1 3.0 5.3 95.0 97.4 99.1

Truncated regression

R 0.9 1.9 4.3 94.5 97.3 99.0

R∗ 1.0 2.2 4.8 95.1 97.7 99.2

Ru 0.8 2.1 4.7 95.2 97.8 99.2

Rc 0.9 2.2 4.7 95.1 97.7 99.2

Rcl 1.0 2.2 4.9 95.0 97.7 99.1

Rcls 0.9 2.2 4.8 95.1 97.6 99.2

Behrens-Fisher

R 1.8 3.5 6.4 93.7 96.7 98.6

R∗ 1.2 2.9 5.3 94.8 97.4 99.0

Ru 1.2 2.8 5.2 94.9 97.5 99.1

Rc 1.2 2.8 5.1 94.9 97.5 99.1

Rcl 1.8 3.5 6.4 93.8 96.6 98.6

Rcls 1.2 2.9 5.1 94.9 97.4 99.1

Logistic regression

R 1.7 3.7 7.0 95.7 98.0 99.3

R∗ 1.0 2.7 5.2 95.4 97.7 99.3

Ru 0.6 1.8 3.8 96.3 98.4 99.5

Rc 1.0 2.6 5.1 94.9 97.5 99.0

Rcl 1.2 3.1 6.0 94.6 97.2 98.9

Rcls 1.0 2.7 5.2 95.1 97.6 99.1
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Table 6: Empirical tail probabilities ×100 for the statistics in Table 1 of the main text

and all models that have been considered in the simulation experiments. The figures

shown have been rounded to 1 decimal and are for q = 100 and m = 4.

Nominal

Model Statistic 1.0 2.5 5.0 95.0 97.5 99.0

Gamma

R 0.0 0.0 0.0 2.7 5.2 10.0

R∗ 0.6 1.6 3.5 92.8 96.2 98.4

Ru 1.0 2.8 5.4 95.9 98.0 99.3

Rc 0.9 2.6 5.2 95.2 97.6 99.1

Rcl 1.3 3.4 6.1 94.2 96.9 98.7

Rcls 1.0 2.6 5.2 95.2 97.5 99.1

Beta

R 0.0 0.0 0.0 0.7 1.4 3.4

R∗ 0.8 2.0 3.8 93.4 96.7 98.7

Ru 0.9 2.3 4.5 93.7 97.0 98.7

Rc 0.9 2.5 4.9 94.8 97.4 99.1

Rcl 1.3 2.9 5.7 93.8 96.9 98.7

Rcls 1.0 2.5 4.9 94.7 97.5 99.0

Curved exponential family

R 75.1 84.2 90.3 100.0 100.0 100.0

R∗ 1.6 3.7 7.1 96.0 97.9 99.2

Ru 0.7 1.7 3.7 95.0 97.5 99.0

Rc 1.3 3.2 6.2 95.7 97.8 99.1

Rcl 1.8 4.2 7.7 94.7 97.2 98.7

Rcls 1.5 3.3 6.3 95.7 97.7 99.1

Truncated regression

R 0.4 1.2 2.5 91.1 95.1 98.2

R∗ 0.9 2.2 4.8 95.0 97.9 99.3

Ru 0.8 2.0 4.4 95.1 97.8 99.3

Rc 0.9 2.2 4.6 94.8 97.6 99.2

Rcl 0.9 2.3 4.7 94.6 97.5 99.2

Rcls 0.9 2.2 4.6 94.8 97.6 99.2

Behrens-Fisher

R 5.2 8.8 12.8 88.5 92.2 95.2

R∗ 1.7 3.5 6.7 94.2 96.8 98.6

Ru 1.2 2.8 5.3 95.1 97.7 98.9

Rc 1.1 2.8 5.3 95.2 97.7 99.0

Rcl 5.3 8.9 12.8 88.4 92.2 95.3

Rcls 1.1 2.8 5.3 95.2 97.7 99.0

Logistic regression

R 8.1 14.0 20.5 98.0 99.0 99.5

R∗ 1.4 3.2 6.4 96.4 98.1 99.2

Ru 0.1 0.2 0.8 98.6 99.6 99.9

Rc 1.3 3.2 6.2 96.4 98.2 99.2

Rcl 2.8 5.7 9.5 94.2 96.8 98.3

Rcls 1.3 3.2 6.1 96.4 98.1 99.2



S3. EMPIRICAL TAIL PROBABILITIES

Table 7: Empirical tail probabilities ×100 for the statistics in Table 1 of the main text

and all models that have been considered in the simulation experiments. The figures

shown have been rounded to 1 decimal and are for q = 100 and m = 8.

Nominal

Model Statistic 1.0 2.5 5.0 95.0 97.5 99.0

Gamma

R 0.0 0.0 0.0 20.5 29.8 43.5

R∗ 0.8 2.0 4.4 93.8 97.1 98.9

Ru 0.9 2.4 5.0 95.2 97.8 99.1

Rc 1.1 2.4 5.0 94.9 97.5 99.1

Rcl 1.1 2.7 5.3 94.3 97.2 99.0

Rcls 1.0 2.5 5.0 94.9 97.5 99.1

Beta

R 0.0 0.0 0.0 10.7 17.5 28.6

R∗ 0.8 2.2 4.6 94.4 97.2 99.0

Ru 0.9 2.3 4.7 94.3 97.1 98.9

Rc 0.9 2.4 4.9 94.7 97.2 99.0

Rcl 1.1 2.6 5.2 94.4 97.1 98.9

Rcls 0.9 2.4 4.9 94.7 97.4 99.0

Curved exponential family

R 40.6 54.4 66.0 100.0 100.0 100.0

R∗ 1.1 2.8 5.3 95.3 97.7 99.1

Ru 0.8 2.1 4.1 95.2 97.6 99.0

Rc 1.1 2.7 5.1 95.4 97.6 99.0

Rcl 1.2 3.0 5.8 94.9 97.4 98.8

Rcls 1.1 2.7 5.2 95.3 97.6 99.0

Truncated regression

R 0.5 1.5 3.2 92.2 95.9 98.2

R∗ 1.0 2.5 5.0 95.1 97.4 99.0

Ru 0.9 2.4 4.7 95.1 97.5 99.0

Rc 0.9 2.5 5.1 95.0 97.4 98.9

Rcl 1.0 2.6 5.1 94.8 97.3 98.8

Rcls 1.0 2.5 5.1 95.0 97.3 98.9

Behrens-Fisher

R 2.1 4.6 8.0 92.9 96.0 97.8

R∗ 1.1 2.6 5.2 95.2 97.5 99.1

Ru 1.0 2.5 5.1 95.4 97.6 99.1

Rc 1.0 2.5 5.1 95.4 97.6 99.1

Rcl 2.1 4.5 8.0 92.8 95.9 97.9

Rcls 1.0 2.5 5.2 95.4 97.5 99.1

Logistic regression

R 4.0 7.7 12.9 97.2 98.7 99.4

R∗ 1.1 2.5 5.3 94.9 97.5 99.0

Ru 0.3 1.2 2.5 96.7 98.7 99.6

Rc 1.1 2.5 5.3 94.9 97.5 99.0

Rcl 1.6 3.5 6.4 93.8 96.6 98.5

Rcls 1.1 2.6 5.3 94.9 97.5 99.0
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Table 8: Empirical tail probabilities ×100 for the statistics in Table 1 of the main text

and all models that have been considered in the simulation experiments. The figures

shown have been rounded to 1 decimal and are for q = 100 and m = 16.

Nominal

Model Statistic 1.0 2.5 5.0 95.0 97.5 99.0

Gamma

R 0.0 0.0 0.1 48.7 61.2 73.7

R∗ 1.2 2.7 5.3 94.9 97.4 99.0

Ru 1.2 2.8 5.5 95.1 97.7 99.0

Rc 1.2 2.7 5.4 95.0 97.6 99.1

Rcl 1.3 2.9 5.7 94.8 97.5 99.0

Rcls 1.3 2.8 5.5 95.1 97.6 99.1

Beta

R 0.0 0.0 0.0 34.8 47.2 61.1

R∗ 0.9 2.3 4.7 94.7 97.4 98.9

Ru 1.0 2.3 4.6 94.7 97.3 98.9

Rc 0.9 2.2 4.7 94.8 97.4 98.9

Rcl 1.0 2.4 4.9 94.5 97.4 98.9

Rcls 1.0 2.4 4.8 94.8 97.4 98.9

Curved exponential family

R 19.0 30.3 42.2 99.9 100.0 100.0

R∗ 1.0 2.6 5.5 95.3 97.5 99.0

Ru 0.8 2.3 4.9 95.2 97.6 99.0

Rc 0.9 2.6 5.4 95.2 97.5 99.0

Rcl 1.1 2.8 5.6 95.0 97.4 98.9

Rcls 1.0 2.6 5.4 95.2 97.5 99.0

Truncated regression

R 0.7 1.5 3.5 93.0 96.2 98.3

R∗ 1.0 2.4 5.1 95.2 97.4 98.9

Ru 1.0 2.3 4.8 95.2 97.5 99.0

Rc 0.8 2.5 5.0 95.2 97.4 98.9

Rcl 1.0 2.5 5.1 95.0 97.3 98.9

Rcls 0.9 2.4 5.1 95.0 97.3 98.9

Behrens-Fisher

R 1.7 3.6 6.6 93.4 96.4 98.4

R∗ 1.2 2.8 5.4 94.6 97.4 98.9

Ru 1.1 2.8 5.3 94.6 97.4 98.9

Rc 1.1 2.7 5.3 94.6 97.4 98.9

Rcl 1.7 3.6 6.7 93.3 96.4 98.4

Rcls 1.1 2.9 5.4 94.5 97.4 98.9

Logistic regression

R 2.7 5.9 10.0 97.0 98.6 99.4

R∗ 1.1 2.8 5.5 95.0 97.6 99.1

Ru 0.7 1.9 4.2 96.0 98.2 99.3

Rc 1.1 2.8 5.6 95.1 97.6 99.0

Rcl 1.4 3.2 6.2 94.5 97.2 98.9

Rcls 1.1 2.8 5.5 95.0 97.6 99.1
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Table 9: Empirical tail probabilities ×100 for the statistics in Table 1 of the main text

and all models that have been considered in the simulation experiments. The figures

shown have been rounded to 1 decimal and are for q = 1000 and m = 4.

Nominal

Model Statistic 1.0 2.5 5.0 95.0 97.5 99.0

Gamma

R 0.0 0.0 0.0 0.0 0.0 0.0

R∗ 0.2 0.5 1.2 83.7 90.3 95.3

Ru 1.3 3.2 6.4 96.4 98.2 99.2

Rc 1.0 2.5 5.1 94.8 97.4 98.9

Rcl 1.4 3.1 6.2 93.9 96.7 98.5

Rcls 1.0 2.5 5.1 95.0 97.4 98.9

Beta

R 0.0 0.0 0.0 0.0 0.0 0.0

R∗ 0.3 0.8 1.8 88.6 93.5 96.7

Ru 0.5 1.3 2.8 91.4 94.9 97.6

Rc 0.7 1.9 3.8 93.7 96.4 98.6

Rcl 1.0 2.3 4.6 92.9 95.7 98.1

Rcls 0.8 1.8 3.9 93.7 96.5 98.5

Curved exponential family

R 100.0 100.0 100.0 100.0 100.0 100.0

R∗ 3.2 6.3 10.6 97.8 99.0 99.6

Ru 0.4 1.3 2.7 92.8 96.4 98.5

Rc 2.2 4.8 8.3 96.9 98.5 99.4

Rcl 3.1 6.0 9.8 96.2 98.0 99.2

Rcls 2.4 4.9 8.3 96.9 98.6 99.4

Truncated regression

R 0.1 0.4 0.8 80.5 87.9 93.6

R∗ 1.0 2.3 5.2 94.8 97.5 98.9

Ru 0.8 2.0 4.4 94.8 97.5 98.9

Rc 0.9 2.2 4.6 94.4 97.2 98.8

Rcl 0.9 2.1 4.7 94.2 97.1 98.7

Rcls 0.9 2.1 4.6 94.4 97.2 98.8

Behrens-Fisher

R 5.3 8.7 12.3 87.8 92.0 95.1

R∗ 1.5 3.3 6.3 94.1 96.8 98.6

Ru 1.0 2.6 5.2 95.1 97.5 99.0

Rc 1.0 2.7 5.1 95.1 97.5 99.1

Rcl 5.3 8.7 12.3 87.8 92.0 95.1

Rcls 1.1 2.7 5.1 95.1 97.4 99.0

Logistic regression

R 40.2 53.2 64.3 99.9 100.0 100.0

R∗ 2.0 4.5 8.3 97.1 98.5 99.5

Ru 0.0 0.1 0.5 97.2 98.9 99.8

Rc 1.8 4.2 8.1 97.0 98.5 99.4

Rcl 3.7 7.5 11.8 95.2 97.3 98.7

Rcls 1.8 4.2 8.2 97.0 98.5 99.5
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Table 10: Empirical tail probabilities ×100 for the statistics in Table 1 of the main text

and all models that have been considered in the simulation experiments. The figures

shown have been rounded to 1 decimal and are for q = 1000 and m = 8. The table

includes all the results of Table 2 of the main text.

Nominal

Model Statistic 1.0 2.5 5.0 95.0 97.5 99.0

Gamma

R 0.0 0.0 0.0 0.0 0.0 0.0

R∗ 0.7 1.5 3.3 92.1 95.5 98.2

Ru 1.1 2.7 5.3 95.1 97.7 99.2

Rc 1.0 2.5 5.0 94.6 97.2 99.0

Rcl 1.1 2.8 5.4 94.2 96.8 98.9

Rcls 1.1 2.5 4.9 94.5 97.2 99.1

Beta

R 0.0 0.0 0.0 0.0 0.0 0.0

R∗ 0.7 1.8 3.8 93.7 96.8 98.8

Ru 0.8 1.9 4.1 94.0 97.0 98.7

Rc 1.0 2.3 4.8 95.0 97.4 99.1

Rcl 1.1 2.5 5.1 94.7 97.3 98.9

Rcls 0.9 2.3 4.8 95.1 97.5 99.0

Curved exponential family

R 100.0 100.0 100.0 100.0 100.0 100.0

R∗ 1.4 3.5 6.9 96.6 98.3 99.4

Ru 0.6 1.8 4.0 95.0 97.7 99.2

Rc 1.2 3.3 6.4 96.2 98.2 99.4

Rcl 1.5 3.6 7.1 95.8 98.0 99.2

Rcls 1.3 3.2 6.5 96.3 98.2 99.4

Truncated regression

R 0.2 0.5 1.1 84.2 90.4 95.1

R∗ 1.0 2.5 5.1 94.8 97.3 98.9

Ru 0.9 2.3 4.8 94.9 97.2 98.9

Rc 0.9 2.4 4.9 94.5 97.2 98.7

Rcl 0.9 2.4 5.0 94.4 97.0 98.8

Rcls 0.9 2.4 5.0 94.4 97.0 98.8

Behrens-Fisher

R 2.4 4.6 7.6 92.1 95.6 98.0

R∗ 1.2 2.8 5.3 94.8 97.5 99.0

Ru 1.1 2.7 5.2 95.0 97.6 99.1

Rc 1.1 2.7 5.1 94.9 97.6 99.1

Rcl 2.4 4.7 7.6 92.1 95.5 98.0

Rcls 1.1 2.6 5.1 95.0 97.6 99.1

Logistic regression

R 18.1 28.4 39.3 99.7 99.9 100.0

R∗ 1.4 3.1 6.1 95.8 97.9 99.1

Ru 0.4 1.1 2.4 96.3 98.4 99.4

Rc 1.5 3.1 6.0 95.8 97.9 99.2

Rcl 1.9 4.1 7.5 94.7 97.1 98.8

Rcls 1.4 3.2 6.0 95.8 97.9 99.1
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Table 11: Empirical tail probabilities ×100 for the statistics in Table 1 of the main text

and all models that have been considered in the simulation experiments. The figures

shown have been rounded to 1 decimal and are for q = 1000 and m = 16.

Nominal

Model Statistic 1.0 2.5 5.0 95.0 97.5 99.0

Gamma

R 0.0 0.0 0.0 0.0 0.0 0.2

R∗ 0.9 2.1 4.3 94.3 96.9 98.5

Ru 1.1 2.5 5.0 95.2 97.6 98.9

Rc 1.0 2.5 4.9 95.0 97.5 98.9

Rcl 1.1 2.6 5.1 94.8 97.3 98.6

Rcls 1.1 2.5 5.0 95.0 97.5 98.8

Beta

R 0.0 0.0 0.0 0.0 0.0 0.0

R∗ 1.0 2.3 4.5 94.3 97.2 98.8

Ru 1.1 2.3 4.7 94.4 97.2 98.8

Rc 1.0 2.4 4.8 94.8 97.4 99.0

Rcl 1.2 2.5 5.0 94.7 97.3 98.9

Rcls 1.1 2.4 4.9 94.8 97.4 98.9

Curved exponential family

R 98.2 99.3 99.7 100.0 100.0 100.0

R∗ 1.0 2.8 5.5 95.9 98.1 99.3

Ru 0.7 2.1 4.5 95.3 97.9 99.3

Rc 1.1 2.6 5.4 95.7 98.1 99.3

Rcl 1.1 2.8 5.7 95.5 97.9 99.2

Rcls 1.0 2.6 5.4 95.7 98.0 99.3

Truncated regression

R 0.2 0.5 1.2 86.6 92.4 96.4

R∗ 0.8 2.2 4.8 95.0 97.7 98.9

Ru 0.8 2.0 4.5 94.8 97.7 99.0

Rc 0.8 2.1 4.6 94.9 97.6 99.0

Rcl 0.9 2.2 4.7 94.8 97.5 98.9

Rcls 0.8 2.1 4.6 94.9 97.5 98.9

Behrens-Fisher

R 1.5 3.4 6.1 93.9 96.6 98.5

R∗ 1.1 2.6 5.0 94.9 97.5 98.9

Ru 1.1 2.6 5.0 95.0 97.5 99.1

Rc 1.1 2.6 5.0 95.1 97.5 99.1

Rcl 1.5 3.4 6.2 93.8 96.7 98.5

Rcls 1.1 2.6 4.9 95.0 97.5 99.0

Logistic regression

R 8.5 15.2 23.7 99.3 99.7 100.0

R∗ 1.3 2.9 5.5 95.1 97.7 99.0

Ru 0.7 1.9 3.9 95.5 98.0 99.2

Rc 1.3 2.9 5.5 95.1 97.6 99.0

Rcl 1.6 3.4 6.0 94.7 97.2 98.9

Rcls 1.3 2.9 5.5 95.1 97.6 99.1
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