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S1 Proof of Proposition 1

For given Ay > A3 > 0, we have that \y < L — Ay — A\3. Hence,

1 1
90A<d):1 1 L = 1 1 -
TRt e Tt

Holding A3 fixed, this bound is maximal if Ay = L — Ay — A3, i.e. if Ay =
(L — A3)/2. This implies that

1
@A(d) < — 2 1
L—X3 + L=X3 + A3

This bound, however, gets maximal if A3 gets as near to (L — A3)/2 as

possible, which means that A3 = ¢. This gives
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If A3 =0 we get pa(d) = 0, which completes the proof.

S2 Proof of Proposition 2

In our notation, the equation at the bottom of page 75 of Pukelsheim (1993)

becomes
Cai Caz I, Cu2Cly| [Ca O I, 0
I,
Multiplying this by {12 _XT} from the left and by from the right,
—-X
we get

Ca1 — Ca1oX — XT'Ch, + XTC e X

C, 0

|::[2 Cd12C:1i_22 - XT:| lIQ 03220512 -X

0 Capo
= cd + (Cd12C2l_22 - XT) Cazz (C;lrzzcgu - X) :

This is almost the same as (5.2) in Kushner (1997), except that X is not

square. Since (Cg12C,, — XT) Cazo (C,,CL, — X) > 0, it follows that
Ca11 — Ca12X — X'CJ, + XTCyX > Cy,

with equality for X = C1,,C% ,.



S3. PROOF OF PROPOSITION 3

S3 Proof of Proposition 3

Define Q(I) = kTCde — 2kTCd12b2I + bngggngQ.
Case 1: kTCyi3bsy # 0.

Consider the matrix

X =C7 e R¥*4,

dl2 ch§12b2
Then k™ X"b, = z.

It follows from Proposition 2 that
k"Cik < kK'Cypik — k' CyoXk — k" XTCT k + k" XTC 490 Xk.

Since Cyyo has row-sums 0, we have Cg1obobl = Cgya. Since Cypo has both

row- and column-sums 0, we even have bybl Cgoobybl = Cypo. Hence

k'Cik < k'Cyik — k7Cyibobl Xk
KX bybTCLk + KTX bybl Cupsby bl Xk
= kTCyik — kT Cypbox — 2bL CT Lk 4 bl Cyorbyz
= Q(z).
Because of Proposition 2, we get equality for X = X,; = C/,,CI,, i.e., for

_ W'+ T —

Case 2: kT'C2bs = 0.
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Then Q(.ﬁlﬁ) = kTCdllk + bngQngxz 2 kTCdllk with equality for x = 0.
On the other hand, it follows from k™ Cy15by = 0 that k7 Cg2bsbl = 0,
and, therefore, that k7 Cy1» = 0. Hence, kT Cyi1k = kT Czk. Furthermore,

Tqg = kTCdijmbg = kTCdanbngmbg = 0. This completes the proof.

S4 Proof of Proposition 4

It follows from Proposition 3 and Equation (3.6) that

1 ~
ﬁkTCdk S Z Wd(Z){kTCH(Z)k — 2kTC12(2)b2$ + bgCQQ(2>b2$2}
2€Zyp
< ngx{chn(z)k — 2k C15(2)byx + bl Cyy(2)boz?}.

From the Courant-Fischer Theorem it follows that

~ ) | R
NG = e O

and since

A3(Ca) < A3(Ca),

the desired inequality follows.
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S5 Proof of Proposition 5

Since tr(Cy) > tr(Cy), it follows directly from Proposition 2 and Equation

(3.6) that
tr(Cq)/n
< tr| Y m(2)(Cu(z) — Cia(2)X = X"Cly(2) + X" Cn(2)X)
< mx <tT(C11(z)) — 2tr(Cia(2)X) + tr(XTng(z)X)>.

This completes the proof.

S6 Proof of Proposition 6

Choosing X = Xy, it follows from (3.7) for any design d € A,,, that
tr(Cq) < max.ez, L.(Xy). The conditions of Proposition 6 imply that

max.cz, L.(Xy) < tr(Cy) and, hence, that tr(Cy) < tr(Cy).

S7 Proof of Proposition 7

The design d has weights 74(2), 2z € Z,. Consider the dual design d € Ay, ,
with weights 74(2), 2 € Z,, where for each z € Z, the dual design d allots

the weight that d has allotted to the dual sequence z, i.e. w3(z) = mq(2). If
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we define

then S; = S;Hy, M ;= M, H, and T; = T ;H,. Therefore,

H, O H, 0 H, 0
Ccill = Cdll ) CJ12 = Cd12H2
0 H, 0 H, 0 H,

and

CJQQ = Hng22H2.

This implies that

. H, O H, O
C; = Can
0 H, 0 H,
H, O . H, O
- Cd12H2(HQC$22H2)H2Cd12
0 H2 0 H2
H, 0| _ [Hy O
— Cq
0 H, 0 H,

Now consider the dual balanced design f which allots to each sequence

z the weight 7;(2) = Ima(2) +

5 7z(z). It then follows from Proposition 1

1
2
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of Kunert and Martin (2000) that

_ 1 - _
Cy > §Cd+ (OF3

N | —

which implies that

1 -

Pall) 2 55D + 584(d) = Bald),

since the A-criterion is concave and increasing.

S8 Proof of Proposition 8

The first row of both S, and M, is [0,0]. The first row of T, is either
[1,0] or [0,1], depending on whether the sequence z starts with R or 7.
Therefore, the first element of S,by — M_,by — T,bs is eitherl 1 or —1.
Now consider the i-th element, for ¢ > 2.
Case 1: The preceding treatment was R, the current treatment is R. Then
the i-th row of S, is [1, 0], the i-th row of M, is [0, 0], and the i-th row of
T, is [1,0]. Hence, the i-th element of S,by — M_bs — T,by equals 0.
Case 2: The preceding treatment was R, the current treatment is 7. Then
the i-th row of S, is [0, 0], the i-th row of M, is [1,0], and the i-th row of
T, is [0,1]. Hence, the i-th element of S,by — M_,bs — T,by equals 0.
Case 3: The preceding treatment was T', the current treatment is R. Then

the i-th row of S, is [0, 0], the i-th row of M, is [0, 1], and the i-th row of
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T, is [0,1]. Again, the i-th element of S,by — M,by — T.b, equals 0.
Case 4: The preceding treatment was 7', the current treatment is 7. Then
the i-th row of S, is [0, 1], the i-th row of M, is [0, 0], and the i-th row of
T, is [0,1]. So also in this case, the i-th element of S,by — M_,by — T by
equals 0.

This completes the proof.

S9 Proof of Proposition 9

Observing that

1 | b2
k == ﬁ
—b,
we get
L = Lot | = L obT) Culob,
z 2 ) 2 Y
V2 b,
L 7 b, T
—§b2 C12(Z) -+ b2 CQQ(Z)bQ

CH(Z) 012(2)

Cly(z) Ca(2)




S9. PROOF OF PROPOSITION 9

Using (3.3)-(3.5) and the fact that

bg b2
B4 - )
—bg _b2
we get
ST b,
1 1 T T T
JZ(E) - 5 [an_b27_b2} MZ BP [SZ’MZ’Tz] _b2
T7 —b2

- q a
b,
0
S, M, T.] | —b, | = ,
—b,
B B 0
where a is either 1 or —1. It follows that
1
1 0 p—1
J.(—)=11,0,...,0|B = —
()= B, >
0

which completes the proof.
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S10 Proof of Proposition 10

For X* = ¢[By, —By], as in the statement of Proposition 10, define

G. = L.(X*)/n = tr(Cy1(2)) — 2tr(Ci2(2)X*) + tr(X*T Coy(2)X*).

We get from (3.3)-(3.5)

ST
G. = tr|By B, [S.,M.] B,
MT
ST
—2ctr | By | | B,T.[By,—By]
MT
B,
+cPtr TIB,T. [B,, — B,
-B,

(Sz — CTZBQ)T

— <B4 B,[S. — ¢T.By, M. + (T.B,] B4>,

(Mz + CTZB2>T

where we have used that [By, =By By = [By, —By] and, for any A, As,
that tT‘(AlAQ) = tT’(AgAl).

We split GG, up into several parts. Define

(Sz — CTZBQ)T
G — ¢ S, —cT.By, M, + CTsz] )

(Mz + CTZBQ)T
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(Sz - CTzB2)T 1
G2 — 4 —1plg [SZ —cT.,By, M, + CTzBZ] )
(Mz + CTZBQ)T

and

(3) 1 T (Sz — CTZBQ)T
¢¥ = 11 B, [sz — ¢T.By, M. + cTZB2} 1,

(Mz + CTZBQ)T

Then G, = o _q® _ Gg?’), because tr (B4AB,) = tr(A) — ilZAh.
If z starts with R, the first row of S, — ¢T.B, equals [— 0/2,0/2].
Otherwise it is [¢/2, —c/2].

For ¢ > 2, the i-th row of S, — ¢T.B, equals

1—c¢/2,¢/2],if 2(1 — 1) = R, 2(i) = R,

[c/2, —c/2], if z(i—1) =R, 2(3)

T,

[—c/2,¢/2], iftz(i—1)=T, z(i)

R,

/2, 1—¢/2],ift2(1 — 1) =T, 2(i) =T.

On the other hand, the first row of M, + ¢T,B5 is [0/2, —0/2} if z starts
with R, and [ — 0/2,0/2} if it starts with T. For i > 2, the i-th row of

M, + ¢T.B, equals

[c/2, —c/2], ifz(i—1)=R, 2(i) = R,

1—¢/2,¢/2],if 2(i — 1) =R, 2(i) =T,
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/2,1 —¢/2],if z(i — 1) =T, z(i) = R,
[—c/2,¢/2], ifz(i—1)=T, z(1) =T.
We therefore have that
(S, — ¢T.By)" (S, — ¢T.By) =
C2 C2 C C C
T T (1-5)? 5(1—3)
+ SRR
C2 02 C C C2
-7 7 s1-%5) T
T T T 50—
+MmpT + mrR + ST
C2 C2 02 C2 C C
-7 7 -7 7 s1-35) (-
and
tr((S. — ¢T.By)"(S. — ¢T.B,)) =
c? c? C. g
(1 + MRt -+ mTR)§ + (SRR + STT)(Z + (1 — 5) )
Similarly,
tr((M, + ¢T.By)" (M, + ¢T.B,))
? c? €.y
= (]_ —+ SRR + STT)E + (mRT + mTR)(Z + (]_ — 5) )

Noting that sgg + srr + mrr + mrr = p — 1, we get

GO = #r((S. — ¢T.By)"(S. — ¢T.By))

+ir((M, + ¢T.By)" (M. + ¢T.B,))
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c? c? c
= 1)— — D=+ (1 —-2)?
DS+ -1 +1- D2
3P +Apr—2p—4
a Alp + 1)

We also get from our analysis of the rows of S, —c¢T,B, and of M, +¢T.B,

that

S, —cT,By)"
14T( 2 =[0,1,..., 1]

(M. + cT.B,)T

for any sequence z. Therefore,

1 T p—1
G® =210,1,...,1|B,[0,1,...,1] =,
z 4|: ) 4 9 } p[ y Ly ) ] 4p
To determine G,(ZQ), we calculate
- 1=
(S. — cT.By)T 5 5
1, = + Skr
(M, + cT.B,)? ¢ 5
; - ;
- : -
—i—mRT + mrr “+ STr
- ; -
2] [1—3] %]
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srr — 5 (Srr — S77 — (MRT — M1rR) + 1)
srr + 5 (Srr — S77 — (Mpr — mpR) + 1)

mgr + 5 (Skr — st — (MrT — M7R) + 1)

— _ _ _
| MTR ¢ (srr — s — (mprr — mrgr) + 1)

if the sequence starts with R, and, similarly,

(Sz — CTZB2>T

(M, + ¢T.By)"

Srr — 5 (Srr — ST7 — (MRT — M71R) — 1)
C
srr + 5 (Srr — S77 — (MRT — M7TR) — 1)

mgr + 5 (Srr — S77 — (MRT — M7TR) — 1)

mrg — 5 (Skr — S7r — (MR — M7rR) — 1)

if the sequence starts with 7.

Defining the parameters

§=Srr+ Srr, ds= SRR — STT

m = Mmpr + MR, dy = Mgy — MR,

we then get
G =
21912 [S. — ¢T.By, M, + ¢T. By [S. — ¢T.By, M. + ¢T.By]" 1,
_ %<(§+%—§(ds—dm+l))2+(§—%+g(ds—dm+1))2
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1
2p

(52 + (dy — e(dy — d + 1))+ m2 4 (dy + c(dy — di + 1))2),
if the sequence z starts with R. In the same way we get

G2 —

z

1
2—p(52 + (ds = c(dy = dp — 1)) +m® + (dop + c(d — iy — 1))2),

if z starts with 7.
To determine a minimum of Gg), we consider four cases.
Case 1: The sequence z starts with R and ends with R.
In this case mrr = mrg and, therefore, d,,, = 0. Hence,
1
GO = > (52 + (dy — e(dy + 1))+ m® + (c(dy + 1))2>.
P
Observe that

(dy — e(ds + 1)) + (c(ds + 1)) = d2(1 = 2c+ 2¢%) — dy(2¢ — &%) + 262

Since d, is an integer, we have d, < d?. Making use of 0 < ¢ < 1/2, this

implies that —ds(2c — 4¢?) > —d?(2c — 4¢?) and, therefore,
(ds — c(ds + 1))2 + (c(ds + 1))2 > d?(1 — 4c + 6¢%) + 2¢°.
Observing that (1 — 4c + 6¢?) = (1 — 2¢)? + 2¢* > 0, we get that

(ds — e(dy + 1))* + (e(ds + 1)) > 262,
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Hence, we have shown that in Case 1

Case 2: The sequence z starts with R and ends with 7.

In this case mrr = mrgr + 1 and, therefore, d,,, = 1. Hence,

G — 2%(52 +(de = ed) +m? 4 (14 ed,)?).

Define g =d; + 1. Then ds = g — 1 and
(ds —ed,)® + (1 +edy)’ = (9 = 1)’ (1 = ¢)* + (1 = ¢ + cg)”
= 2(1 —¢)*+ ¢*(1 — 2¢ +2¢*) — g(2 — 6¢ + 4c?).

Because g is an integer and because 2 — 6¢ + 4¢? = 2(1 — ¢)(1 — 2¢) > 0 we

conclude that —g(2 — 6¢ + 4¢?) > —g*(2 — 6¢ + 4¢?) and therefore that
(dy — cdg)® 4 (1 — cdg)? > 2(1 — ¢)* + g*(4c — 1 — 2¢7).

Since ¢ = oD and p > 2, we have

p
p+1

2
-2
de — 1 — 2% = P

=——>0
2p? +4p + 2

and, therefore,

(ds — cdy)® 4+ (1 — edy)® > 2(1 — ¢)*.
Note that 0 < ¢ < 1/2. Therefore, 2(1 — ¢)? > 2¢* and we have shown that
in Case 2

1
G > 2—p(82 +m? + 2¢%)
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Case 3: The sequence starts with 7" and ends with R.
In this case mrr = mprr + 1 and therefore d,, = —1. This implies that

GR = 2lp<32+(ds—cds)2+m2+(—1+cds)2),

If we define d, = —d,, we see that

G — 2ip<82 + (dy — edy)? +m? + (14 cczs)2>.

Hence, we conclude in the same way as in Case 2, that in Case 3 we also
have

1
G% > 2—p(s2 +m? 4 2¢%).

Case 4: The sequence starts and ends with 7.

In this case mpr = mpr and therefore d,, = 0. This implies that

Gf) = 2%)(82 + (ds —c(ds — 1))2 +m? + (C(ds - 1))2>7

Defining d, = —d,, we see that

q@ _ 1

@ _ 2_p(s2 + (d = eldy + 1))+ m? + (eld, + 1)),

Hence, we conclude in the same way as in Case 1 that

(s> +m? +2¢%).

N
[\
3
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Since s+m = sgpr+Srr+mpr+mrr = p—1, we get s°+m? > 1(p—1)%

Inserting ¢ = m, we hence have that

G2 > 1 (( 1)2+ p2 )
=gt (p+1)2"

Combining the results for the three terms, we conclude for any z € Z,

that
oo sprdapt—2p—4 -1+ ghE poi
== 4(p+1)2 4p 4p
o3t P -2pP—dp pt—p*+1 (p—1)(p+1)?
a dp(p+1)2  dp(p+1)2  dp(p+1)?
(2p+3)(p—1)
4p+1)

This completes the proof of Proposition 10.



