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S1 Proof of Proposition 1

For given λ2 ≥ λ3 > 0, we have that λ1 ≤ L− λ2 − λ3. Hence,

ϕA(d) =
1

1
λ1

+ 1
λ2

+ 1
λ3

≤ 1
1

L−λ2−λ3 + 1
λ2

+ 1
λ3

.

Holding λ3 fixed, this bound is maximal if λ2 = L − λ2 − λ3, i.e. if λ2 =

(L− λ3)/2. This implies that

ϕA(d) ≤ 1
2

L−λ3 + 2
L−λ3 + 1

λ3

.

This bound, however, gets maximal if λ3 gets as near to (L − λ3)/2 as

possible, which means that λ3 = q. This gives

ϕA(d) ≤ 1
2

L−q + 2
L−q + 1

q

.
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If λ3 = 0 we get ϕA(d) = 0, which completes the proof.

S2 Proof of Proposition 2

In our notation, the equation at the bottom of page 75 of Pukelsheim (1993)

becomesCd11 Cd12

CT
d12 Cd22

 =

I2 Cd12C
+
d22

0 I4


C̃d 0

0 Cd22


 I2 0

C+
d22C

T
d12 I4

 .

Multiplying this by

[
I2 −XT

]
from the left and by

 I2

−X

 from the right,

we get

Cd11 −Cd12X−XTCT
d12 + XTCd22X

=

[
I2 Cd12C

+
d22 −XT

]C̃d 0

0 Cd22

[I2 C+
d22C

T
d12 −X

]

= C̃d +
(
Cd12C

+
d22 −XT

)
Cd22

(
C+
d22C

T
d12 −X

)
.

This is almost the same as (5.2) in Kushner (1997), except that X is not

square. Since
(
Cd12C

+
d22 −XT

)
Cd22

(
C+
d22C

T
d12 −X

)
≥ 0, it follows that

Cd11 −Cd12X−XTCT
d12 + XTCd22X ≥ C̃d,

with equality for X = C+
d22C

T
d12.
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S3 Proof of Proposition 3

Define Q(x) = kTCd11k− 2kTCd12b2x+ bT2 Cd22b2x
2.

Case 1: kTCd12b2 6= 0.

Consider the matrix

X = CT
d12

x

kTCT
d12b2

∈ R2×4.

Then kTXTb2 = x.

It follows from Proposition 2 that

kT C̃dk ≤ kTCd11k− kTCd12Xk− kTXTCT
d12k + kTXTCd22Xk.

Since Cd12 has row-sums 0, we have Cd12b2b
T
2 = Cd12. Since Cd22 has both

row- and column-sums 0, we even have b2b
T
2 Cd22b2b

T
2 = Cd22. Hence

kT C̃dk ≤ kTCd11k− kTCd12b2b
T
2 Xk

−kTXTb2b
T
2 C

T
d12k + kTXTb2b

T
2 Cd22b2b

T
2 Xk

= kTCd11k− kTCd12b2x− xbT2 CT
d12k + xbT2 Cd22b2x

= Q(x).

Because of Proposition 2, we get equality for X = Xd = C+
d22C

T
d12, i.e., for

x = bT2 C
+
d22C

T
d12k = xd.

Case 2: kTCd12b2 = 0.



JOACHIM KUNERT AND JOHANNA MIELKE

Then Q(x) = kTCd11k + bT2 Cd22b2x
2 ≥ kTCd11k with equality for x = 0.

On the other hand, it follows from kTCd12b2 = 0 that kTCd12b2b
T
2 = 0,

and, therefore, that kTCd12 = 0. Hence, kTCd11k = kT C̃dk. Furthermore,

xd = kTCd12C
+
d22b2 = kTCd12b2b

T
2 C

+
d22b2 = 0. This completes the proof.

S4 Proof of Proposition 4

It follows from Proposition 3 and Equation (3.6) that

1

n
kT C̃dk ≤

∑
z∈Zp

πd(z){kTC11(z)k− 2kTC12(z)b2x+ bT2 C22(z)b2x
2}

≤ max
z∈Zp

{kTC11(z)k− 2kTC12(z)b2x+ bT2 C22(z)b2x
2}.

From the Courant-Fischer Theorem it follows that

λ3(C̃d) = min
h:hT 14=0

1

hTh
hT C̃dh

and since

λ3(Cd) ≤ λ3(C̃d),

the desired inequality follows.
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S5 Proof of Proposition 5

Since tr(C̃d) ≥ tr(Cd), it follows directly from Proposition 2 and Equation

(3.6) that

tr(Cd)/n

≤ tr

∑
z∈Zp

πd(z)
(
C11(z)−C12(z)X−XTCT

12(z) + XTC22(z)X
)

≤ max
z∈Zp

(
tr(C11(z))− 2tr(C12(z)X) + tr(XTC22(z)X)

)
.

This completes the proof.

S6 Proof of Proposition 6

Choosing X = Xf , it follows from (3.7) for any design d ∈ ∆2,n,p that

tr(Cd) ≤ maxz∈Zp Lz(Xf ). The conditions of Proposition 6 imply that

maxz∈Zp Lz(Xf ) ≤ tr(Cf ) and, hence, that tr(Cd) ≤ tr(Cf ).

S7 Proof of Proposition 7

The design d has weights πd(z), z ∈ Zp. Consider the dual design d̄ ∈ ∆2,n,p

with weights πd̄(z), z ∈ Zp, where for each z ∈ Zp the dual design d̄ allots

the weight that d has allotted to the dual sequence z̄, i.e. πd̄(z) = πd(z̄). If
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we define

H2 =

 0 1

1 0

 ,
then Sd̄ = SdH2, Md̄ = MdH2 and Td̄ = TdH2. Therefore,

Cd̄11 =

H2 0

0 H2

Cd11

H2 0

0 H2

 , Cd̄12 =

H2 0

0 H2

Cd12H2

and

Cd̄22 = H2Cd22H2.

This implies that

C̃d̄ =

H2 0

0 H2

Cd11

H2 0

0 H2



−

H2 0

0 H2

Cd12H2(H2C
+
d22H2)H2C

T
d12

H2 0

0 H2



=

H2 0

0 H2

 C̃d

H2 0

0 H2

 .
It follows that C̃d̄ has the same eigenvalues as C̃d and, consequently, that

ϕ̃A(d̄) = ϕ̃A(d).

Now consider the dual balanced design f which allots to each sequence

z the weight πf (z) = 1
2
πd(z) + 1

2
πd̄(z). It then follows from Proposition 1
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of Kunert and Martin (2000) that

C̃f ≥
1

2
C̃d +

1

2
C̃d̄,

which implies that

ϕ̃A(f) ≥ 1

2
ϕ̃A(d) +

1

2
ϕ̃A(d̄) = ϕ̃A(d),

since the A-criterion is concave and increasing.

S8 Proof of Proposition 8

The first row of both Sz and Mz is [0, 0]. The first row of Tz is either

[1, 0] or [0, 1], depending on whether the sequence z starts with R or T .

Therefore, the first element of Szb2 −Mzb2 −Tzb2 is eitherl 1 or −1.

Now consider the i-th element, for i ≥ 2.

Case 1: The preceding treatment was R, the current treatment is R. Then

the i-th row of Sz is [1, 0], the i-th row of Mz is [0, 0], and the i-th row of

Tz is [1, 0]. Hence, the i-th element of Szb2 −Mzb2 −Tzb2 equals 0.

Case 2: The preceding treatment was R, the current treatment is T . Then

the i-th row of Sz is [0, 0], the i-th row of Mz is [1, 0], and the i-th row of

Tz is [0, 1]. Hence, the i-th element of Szb2 −Mzb2 −Tzb2 equals 0.

Case 3: The preceding treatment was T , the current treatment is R. Then

the i-th row of Sz is [0, 0], the i-th row of Mz is [0, 1], and the i-th row of
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Tz is [0, 1]. Again, the i-th element of Szb2 −Mzb2 −Tzb2 equals 0.

Case 4: The preceding treatment was T , the current treatment is T . Then

the i-th row of Sz is [0, 1], the i-th row of Mz is [0, 0], and the i-th row of

Tz is [0, 1]. So also in this case, the i-th element of Szb2 −Mzb2 − Tzb2

equals 0.

This completes the proof.

S9 Proof of Proposition 9

Observing that

k =
1√
2

 b2

−b2


we get

Jz(
1√
2

) =
1

2

[
bT2 ,−bT2

]
C11(z)

 b2

−b2

− 1

2

[
bT2 ,−bT2

]
C12(z)b2

−1

2
bT2 C

T
12(z)

 b2

−b2

+ bT2 C22(z)b2

=
1

2

[
bT2 ,−bT2 ,−bT2

]  C11(z) C12(z)

CT
12(z) C22(z)




b2

−b2

−b2

 .
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Using (3.3)-(3.5) and the fact that

B4

 b2

−b2

 =

 b2

−b2

 ,
we get

Jz(
1√
2

) =
1

2

[
bT2 ,−bT2 ,−bT2

]


STz

MT
z

TT
z

Bp [Sz,Mz,Tz]


b2

−b2

−b2

 .

In Proposition 8 we have seen that

[Sz,Mz,Tz]


b2

−b2

−b2

 =



a

0

...

0


,

where a is either 1 or −1. It follows that

Jz(
1√
2

) = [1, 0, . . . , 0]Bp



1

0

...

0


=
p− 1

2p

which completes the proof.
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S10 Proof of Proposition 10

For X∗ = c [B2,−B2], as in the statement of Proposition 10, define

Gz = Lz(X
∗)/n = tr(C11(z))− 2tr(C12(z)X∗) + tr(X∗TC22(z)X∗).

We get from (3.3)-(3.5)

Gz = tr

B4

 STz

MT
z

Bp [Sz,Mz]B4



−2c tr

B4

 STz

MT
z

BpTz [B2,−B2]



+c2tr


 B2

−B2

TT
zBpTz [B2,−B2]



= tr
(
B4

 (Sz − cTzB2)T

(Mz + cTzB2)T

Bp

[
Sz − cTzB2,Mz + cTzB2

]
B4

)
,

where we have used that [B2,−B2]B4 = [B2,−B2] and, for any A1,A2,

that tr(A1A2) = tr(A2A1).

We split Gz up into several parts. Define

G(1)
z = tr


 (Sz − cTzB2)T

(Mz + cTzB2)T

[Sz − cTzB2,Mz + cTzB2

] ,
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G(2)
z = tr


 (Sz − cTzB2)T

(Mz + cTzB2)T

 1

p
1p1

T
p

[
Sz − cTzB2,Mz + cTzB2

] ,

and

G(3)
z =

1

4
1T4

 (Sz − cTzB2)T

(Mz + cTzB2)T

Bp

[
Sz − cTzB2,Mz + cTzB2

]
14.

Then Gz = G
(1)
z −G(2)

z −G(3)
z , because tr (B4AB4) = tr(A)− 1

4
1T4 A14.

If z starts with R, the first row of Sz − cTzB2 equals
[
− c/2, c/2

]
.

Otherwise it is
[
c/2,−c/2

]
.

For i ≥ 2, the i-th row of Sz − cTzB2 equals

[1− c/2, c/2] , if z(i− 1) = R, z(i) = R,

[c/2, −c/2] , if z(i− 1) = R, z(i) = T,

[−c/2, c/2] , if z(i− 1) = T, z(i) = R,

[c/2, 1− c/2] , if z(i− 1) = T, z(i) = T.

On the other hand, the first row of Mz + cTzB2 is
[
c/2,−c/2

]
if z starts

with R, and
[
− c/2, c/2

]
if it starts with T . For i ≥ 2, the i-th row of

Mz + cTzB2 equals

[c/2, −c/2] , if z(i− 1) = R, z(i) = R,

[1− c/2, c/2] , if z(i− 1) = R, z(i) = T,
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[c/2, 1− c/2] , if z(i− 1) = T, z(i) = R,

[−c/2, c/2] , if z(i− 1) = T, z(i) = T.

We therefore have that

(Sz − cTzB2)T (Sz − cTzB2) = c2

4
− c2

4

− c2

4
c2

4

+ sRR

(1− c
2
)2 c

2
(1− c

2
)

c
2
(1− c

2
) c2

4



+mRT

 c2

4
− c2

4

− c2

4
c2

4

+mTR

 c2

4
− c2

4

− c2

4
c2

4

+ sTT

 c2

4
c
2
(1− c

2
)

c
2
(1− c

2
) (1− c

2
)2


and

tr
(
(Sz − cTzB2)T (Sz − cTzB2)

)
=

(1 +mRT +mTR)
c2

2
+
(
sRR + sTT

)
(
c2

4
+ (1− c

2
)2).

Similarly,

tr
(
(Mz + cTzB2)T (Mz + cTzB2)

)
= (1 + sRR + sTT )

c2

2
+
(
mRT +mTR

)
(
c2

4
+ (1− c

2
)2).

Noting that sRR + sTT +mRT +mTR = p− 1, we get

G(1)
z = tr

(
(Sz − cTzB2)T (Sz − cTzB2)

)
+tr

(
(Mz + cTzB2)T (Mz + cTzB2)

)
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= (p+ 1)
c2

2
+ (p− 1)(

c2

4
+ (1− c

2
)2)

=
3p3 + 4p2 − 2p− 4

4(p+ 1)2
.

We also get from our analysis of the rows of Sz−cTzB2 and of Mz+cTzB2

that

1T4

 (Sz − cTzB2)T

(Mz + cTzB2)T

 =
[
0, 1, . . . , 1

]

for any sequence z. Therefore,

G(3)
z =

1

4

[
0, 1, . . . , 1

]
Bp

[
0, 1, . . . , 1

]T
=
p− 1

4p
.

To determine G
(2)
z , we calculate

 (Sz − cTzB2)T

(Mz + cTzB2)T

1p =



− c
2

c
2

c
2

− c
2


+ sRR



1− c
2

c
2

c
2

− c
2



+mRT



c
2

− c
2

1− c
2

c
2


+mTR



− c
2

c
2

c
2

1− c
2


+ sTT



c
2

1− c
2

− c
2

c
2


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=



sRR − c
2

(sRR − sTT − (mRT −mTR) + 1)

sTT + c
2

(sRR − sTT − (mRT −mTR) + 1)

mRT + c
2

(sRR − sTT − (mRT −mTR) + 1)

mTR − c
2

(sRR − sTT − (mRT −mTR) + 1)


,

if the sequence starts with R, and, similarly, (Sz − cTzB2)T

(Mz + cTzB2)T

1p

=



sRR − c
2

(sRR − sTT − (mRT −mTR)− 1)

sTT + c
2

(sRR − sTT − (mRT −mTR)− 1)

mRT + c
2

(sRR − sTT − (mRT −mTR)− 1)

mTR − c
2

(sRR − sTT − (mRT −mTR)− 1)


,

if the sequence starts with T .

Defining the parameters

s = sRR + sTT , ds = sRR − sTT

m = mRT +mTR, dm = mRT −mTR,

we then get

G(2)
z =

1

p
1Tp [Sz − cTzB2, Mz + cTzB2] [Sz − cTzB2, Mz + cTzB2]T 1p

=
1

p

(
(
s

2
+
ds
2
− c

2
(ds − dm + 1))2 + (

s

2
− ds

2
+
c

2
(ds − dm + 1))2
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+(
m

2
+
dm
2

+
c

2
(ds − dm + 1))2 + (

m

2
− dm

2
− c

2
(ds − dm + 1))2

)
=

1

2p

(
s2 +

(
ds − c(ds − dm + 1)

)2
+m2 +

(
dm + c(ds − dm + 1)

)2
)
,

if the sequence z starts with R. In the same way we get

G(2)
z =

1

2p

(
s2 +

(
ds − c(ds − dm − 1)

)2
+m2 +

(
dm + c(ds − dm − 1)

)2
)
,

if z starts with T .

To determine a minimum of G
(2)
z , we consider four cases.

Case 1: The sequence z starts with R and ends with R.

In this case mRT = mTR and, therefore, dm = 0. Hence,

G(2)
z =

1

2p

(
s2 +

(
ds − c(ds + 1)

)2
+m2 +

(
c(ds + 1)

)2
)
.

Observe that

(
ds − c(ds + 1)

)2
+
(
c(ds + 1)

)2
= d2

s(1− 2c+ 2c2)− ds(2c− 4c2) + 2c2.

Since ds is an integer, we have ds ≤ d2
s. Making use of 0 < c < 1/2, this

implies that −ds(2c− 4c2) ≥ −d2
s(2c− 4c2) and, therefore,

(
ds − c(ds + 1)

)2
+
(
c(ds + 1)

)2 ≥ d2
s(1− 4c+ 6c2) + 2c2.

Observing that (1− 4c+ 6c2) = (1− 2c)2 + 2c2 > 0, we get that

(
ds − c(ds + 1)

)2
+
(
c(ds + 1)

)2 ≥ 2c2.
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Hence, we have shown that in Case 1

G(2)
z ≥

1

2p
(s2 +m2 + 2c2).

Case 2: The sequence z starts with R and ends with T .

In this case mRT = mTR + 1 and, therefore, dm = 1. Hence,

G(2)
z =

1

2p

(
s2 +

(
ds − cds

)2
+m2 +

(
1 + cds

)2
)
.

Define g = ds + 1. Then ds = g − 1 and

(ds − cds)2 + (1 + cds)
2 = (g − 1)2(1− c)2 + (1− c+ cg)2

= 2(1− c)2 + g2(1− 2c+ 2c2)− g(2− 6c+ 4c2).

Because g is an integer and because 2− 6c+ 4c2 = 2(1− c)(1− 2c) ≥ 0 we

conclude that −g(2− 6c+ 4c2) ≥ −g2(2− 6c+ 4c2) and therefore that

(ds − cds)2 + (1− cds)2 ≥ 2(1− c)2 + g2(4c− 1− 2c2).

Since c = p
2(p+1)

and p ≥ 2, we have

4c− 1− 2c2 =
p2 − 2

2p2 + 4p+ 2
> 0

and, therefore,

(ds − cds)2 + (1− cds)2 ≥ 2(1− c)2.

Note that 0 < c < 1/2. Therefore, 2(1− c)2 > 2c2 and we have shown that

in Case 2

G(2)
z >

1

2p
(s2 +m2 + 2c2)
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Case 3: The sequence starts with T and ends with R.

In this case mTR = mRT + 1 and therefore dm = −1. This implies that

G(2)
z =

1

2p

(
s2 +

(
ds − cds

)2
+m2 +

(
− 1 + cds

)2
)
,

If we define d̄s = −ds, we see that

G(2)
z =

1

2p

(
s2 +

(
d̄s − cd̄s

)2
+m2 +

(
1 + cd̄s

)2
)
.

Hence, we conclude in the same way as in Case 2, that in Case 3 we also

have

G(2)
z >

1

2p
(s2 +m2 + 2c2).

Case 4: The sequence starts and ends with T .

In this case mTR = mRT and therefore dm = 0. This implies that

G(2)
z =

1

2p

(
s2 +

(
ds − c(ds − 1)

)2
+m2 +

(
c(ds − 1)

)2
)
,

Defining d̄s = −ds, we see that

G(2)
z =

1

2p

(
s2 +

(
d̄s − c(d̄s + 1)

)2
+m2 +

(
c(d̄s + 1)

)2
)
.

Hence, we conclude in the same way as in Case 1 that

G(2)
z ≥

1

2p
(s2 +m2 + 2c2).

Combining the four cases, we have shown for any sequence z that

G(2)
z ≥

1

2p
(s2 +m2 + 2c2).
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Since s+m = sRR+sTT+mRT+mTR = p−1, we get s2+m2 ≥ 1
2
(p−1)2.

Inserting c = p
2(p+1)

, we hence have that

G(2)
z ≥

1

4p

(
(p− 1)2 +

p2

(p+ 1)2

)
.

Combining the results for the three terms, we conclude for any z ∈ Zp

that

Gz ≤
3p3 + 4p2 − 2p− 4

4(p+ 1)2
−

(p− 1)2 + p2

(p+1)2

4p
− p− 1

4p

=
3p4 + 4p3 − 2p2 − 4p

4p(p+ 1)2
− p4 − p2 + 1

4p(p+ 1)2
− (p− 1)(p+ 1)2

4p(p+ 1)2

=
(2p+ 3)(p− 1)

4(p+ 1)
.

This completes the proof of Proposition 10.


