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Abstract: Directed acyclic graph (DAG) models are widely used to represent casual
relations among collected nodes. This paper proposes an efficient and consistent
method to learn DAG with a general causal dependence structure, which is in
sharp contrast to most existing methods assuming linear dependence of causal
relations. To facilitate DAG learning, the proposed method leverages the concept
of topological layer, and connects nonparametric DAG learning with kernel ridge
regression in a smooth reproducing kernel Hilbert space (RKHS) and learning
gradients by showing that the topological layers of a nonparametric DAG can be
exactly reconstructed via kernel-based estimation, and the parent-child relations can
be obtained directly by computing the estimated gradient function. The developed
algorithm is computationally efficient in the sense that it attempts to solve a convex
optimization problem with an analytic solution, and the gradient functions can
be directly computed by using the derivative reproducing property in the smooth
RKHS. The asymptotic properties of the proposed method are established in terms
of exact DAG recovery without requiring any explicit model specification. Its
superior performance is also supported by a variety of simulated and a real-life
example.
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1. Introduction

Directed acyclic graph (DAG) models are widely used to represent directional
or parent-child relations among interacting units, which have a wide range of
applications in many disciplines (Spirtes, Glymour and Scheines, [2000; Peters,
Janzing and Scholkopf, 2017). Thus, learning DAG from the observed data has
attracted tremendous attention in the past decades (Shimizu et al., 2011} |Peters
and Bithlmann) [2014; [Yuan et al., 2019; Zhao, He and Wang, 2022) and is still
challenging especially when the casual relations display a general dependence
structure beyond linearity (Biithlmann, Peters and Ernest, [2013; |Peters et al.,
2014; [Park, |2020; |Gao, Ding and Aragam) 2020)).
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In literature, most existing DAG learning methods assume that the parent-
child relations have a linear dependence structure and thus assume the linear
structural equation models (SEMs). These methods can be roughly categorized
into three classes. The first class attempts to learn linear Gaussian DAG by
assuming that all the noise terms are Gaussian distributed. Specifically,
and Buhlmann| (2014) shows that a linear Gaussian DAG is identifiable if all
the noise terms have equal variances, and then motivates a variety of learning
methods (Yuan et al. [2019; Chen, Drton and Wang, 2019; |Li, Shen and Pan,
2020)). The second class focuses on learning linear non-Gaussian DAG. One of
the most important works is that Shimizu, Hyvéarinen and Kerminen (2006)
proves that a linear non-Gaussian DAG is identifiable if all the noise terms
follow continuous non-Gaussian distribution, and an iterative search algorithm is

developed. This fundamental work also motivates a variety of follow-up studies
(Shimizu et al., 2011; Hyvarinen and Smith) 2013; Wang and Drton|, [2020; Zhao,|
He and Wang, 2022). Recently, Park and Raskutti (2018) and
focus on a general class of non-Gaussian DAG models that the conditional
variance of each node given its parents is a quadratic function of its conditional

mean, which admits many non-Gaussian distributions including some discrete
ones. The other class of methods further relaxes the distribution assumption by

requiring some explicit order among noise variances (Ghoshal and Honorio|, [2018}
2020)). Note that almost all the methods in these categories are designed to
recover causal relations with linear dependence structure. Yet, as pointed out by

Yuan et al|(2019), many causal relations in real-life analysis may have nonlinear

behavior that cannot be captured by any linear model.

Nonparametric DAG relaxes the linear dependence assumption by allowing
more general causal relations, and thus has attracted tremendous interest in
recent years (Bithlmann, Peters and Ernest, [2013; Peters et al., [2014; Mooij et al.,
2016; Rothenhausler, Ernest and Bihlmannl, [2018; [Parkl, [2020; [Zhang et al., 2020;
\Gao, Ding and Aragam| 2020; [Li, Shen and Pan, 2023). A majority class of
learning nonparametric DAG methods replace the linear SEMs with the additive

noise models (ANMSs), where each node is generated by a nonparametric function
of its parents adding an independent noise term. Moreover, additive modelling
is often imposed to model the nonparametric function. Specifically,
Buhlmann, Peters and Ernest| (2013) proposes a casual additive model and aims
to learn the DAG via maximum likelihood estimation and variable selection
technique for additive modelling. |Peters et al. (2014) proposes the RESIT
algorithm to learn a potential causal ordering via sequential nonparametric fitting
and independence testing. Rothenhausler, Ernest and Buhlmann (2018) further
considers the case that the nonparametric function is a partially linear model

under the additive modelling assumption. Some other classes of methods focus

on the bivariate models or the post-nonlinear models (Zhang and Hyvérinen,

2009; Zhang et all [2016]) and the score-based search procedures within a more
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general function space of the nonparametric function (Zhang et al.. 2020). It
should be pointed out that all the aforementioned methods attempt to recover
an indeterministic causal ordering, and many of them lack theoretical guarantee
in terms of exact DAG recovery or suffer computational burden even when dealing
with a medium-sized DAG.

Most recently, |Gao, Ding and Aragam|(2020) introduces the concept of layers
into nonparametric DAG learning to eliminate the unnecessary inefficiency caused
by casual ordering. Specifically, it estimates the nonparametric function with
some standard nonparametric estimators, including the kernel smoother, nearest
neighbors, and additive modeling with splines, to recover the layer structure,
and then adopts the variable selection technique for additive modeling to recover
the parent-child relations after all the layers being estimated. Note that the
recovery procedure may suffer computational burden when the number of nodes
is relatively large, even using the additive modeling with splines, not to mention
the kernel smoother or nearest neighbor estimator. Moreover, their proposed
method is mainly designed for the special case with equal variances, and their
theoretical analysis only focuses on establishing the layer recovery consistency
by assuming that the employed nonparametric estimator is consistent. Yet, the
statistical guarantee in terms of exact DAG recovery remains largely unknown
especially when the employed additive modeling assumption is violated.

In this paper, we propose an efficient method to learn nonparametric DAG
with theoretical guarantee. A useful concept of topological layer is adopted to
facilitate DAG learning, which assures that any DAG can be converted into a
unique topological structure, where the parents of a node must belong to its
upper layers, and thus acyclicity is naturally guaranteed. The proposed method
is motivated by the key fact that topological layers of a nonparametric DAG
with heterogeneous noise variances are identifiable, and the general parent-child
relation can be fully detected by gradient functions. The proposed method adopts
kernel-based estimation in the RKHS for reconstructing layers and the parent-
child relations can be simultaneously recovered as a by-product via learning
gradients. The proposed method is computationally efficient and its asymptotic
properties are provided in terms of exact DAG recovery, which are established
without requiring any specific model assumption. Its superior performance is also
supported by a variety of simulated and real-life examples.

The main contribution of this paper is the development of an efficient learning
method to learn nonparametric DAG from observed data, and the investigation
of its statistical guarantees in terms of exact DAG recovery. Specifically, we
show that the topological layers of a nonparametric DAG can be sequentially
reconstructed under the conditional noise variance assumption in a top-down
fashion, and the gradient function can be employed as a useful tool to recover
the general parent-child relations. More importantly, we connect nonparametric
DAG learning with kernel ridge regression and learning gradients by showing



482 DENG, HE AND LV

that the layers can be exactly reconstructed via kernel-based estimation, and the
parent-child relations can be simultaneously obtained by computing the estimated
gradient function without any extra estimation. Computationally, an efficient
learning algorithm is developed, where the corresponding convex optimization
task has an analytic solution, and the derivative reproducing property in RKHS
ensures that the gradient function can be directly computed. Theoretically, with
the help of functional operators in learning theory, the statistical guarantees of
the proposed method are established ensuring the underlying DAG with general
parent-child relations can be exactly recovered, which is particularly attractive
in line of research in nonparametric DAG learning.

The rest of this paper is organized as follows. Section 2 introduces some
background of nonparametric DAG, the concept of topological layers, and the
motivations of the proposed method. Section 3 develops an efficient algorithm
for learning nonparametric DAG, and Section 4 establishes the theoretical results
of the proposed method in terms of exact DAG recovery under mild conditions.
Numerical experiments on several simulated examples and a real-life analysis are
provided in Section 5. Section 6 contains a brief discussion, and all the technical
proofs are provided in an online supplementary file.

2. Learning Nonparametric Directed Acyclic Graph

We consider a directed acyclic graph (DAG) model G = (V, ) encoding the
joint distribution P(x) of variables x = (xy,...,2,)7 € X C RP. Precisely,
V = {1,...,p} represents a set of nodes associated with x, and € C V x V
denotes a set of directed edges without directed cycles representing the parent-
child relations. For notation ease, we denote node k’s parents as pa, C {1,...,p}
and its non-descendants (exclude itself) by ndy. For any j € pa,, an arrow from
x; towards z;, in G is indicated; if x;, has no parents in G, such as x;, is a root or
isolated node, we have pa, = (). Moreover, we denote the set of all the directed
edges pointing to node k as &, = {j — k, for any j € pa,}. We also assume that
the Markov property (Spirtes, Glymour and Scheines|, 2000; Yuan et al., [2019)
and causal minimality (Buhlmann, Peters and Ernest|, [2013) hold. To be more
precise, the Markov property requires that P(x) can be factorized based on G into
the product of the conditional distributions of each variable given their parents
that P(x) = [[,_, P(2x|Xpa, ), Where x,,, denotes all the variables z;, j € pa,.

To represent the causal structure, we apply the continuous additive noise
model (ANM) which is also known as the functional model (Peters et al., [2014]).
Note that ANMs are a special case of DAG models where the joint distribution
is defined by the following structural equations with additive noise. Precisely,
each z; is centered with mean zero, the graph structure can be represented by
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the following ANM that

x; = f;‘(xpaj_) +n;, forany jeV, (2.1)

where f7(Xp.,) = E(j|Xpa,),j €V are allowed to have any form of Borel
measurable functions and are assumed to be differentiable, and the noise terms
{n;};ey have strictly positive densities and are independent but may allow
following different distributions with mean zero and heterogeneous variances that
E(n;) = 0 and Var(n;) = o7. This is much more general than most existing works
which either assume f; following linear (Ghoshal and Honorio, 2018; [Yuan et al.,
2019) or additive model assumption (Buhlmann, Peters and Ernest| 2013} |Gao,
Ding and Aragam), 2020). It is worthy pointing out that the requirement that
each z; is centered with mean zero and E(n;) = 0 imply that the true target
function f} in also has zero mean.

We now introduce the RKHS H  associated with a specified kernel K taking
values on a subset of R? and endowed with the norm || - ||x. It is well-known
that RKHS induced by some universal kernel, such as the Gaussian kernel, is
differentiable and fairly large in the sense that any continuous function can be
well approximated by some intermediate function in the induced RKHS under
the infinity norm (Steinwart and Christmann) 2008)). To be more precise, we have
Ky = K(x,) € Hg for any x € X, and (f, Kx)x = f(x) for any f € Hg. By
the Mercer’s theorem (Steinwart and Christmann, 2008)), under some regularity
conditions, the eigen-expansion of the kernel function is

X) = e (x)or(x), Vx,x €X,

where p; > pg > --- > 0 are non-negative eigenvalues, and {¢}72, are
the associated eigenfunctions, taken to be orthonormal in L£*(X,px) = {f :
[y f(x)%dpx < oo} with px denoting the marginal distribution of x. Moreover,
the RKHS norm of any f € ’HK then can be written as || f||% = 2,5, @i/ where
ar = (f, dr)2 L2(Xpe) = fX X)dpx denote Fourier coefficients, and thus for
any f € Hg, we have f(x) = Zk:l ar¢r(x). Note that these results require that
Hr C L2(X, px), which is automatically satisfied if sup,., K (%, %) is bounded.
Then, the RKHS induced by the kernel K can be written as

HK,p = {f Zak¢k ZE _OO}-

k>1
It is important to notice that in the rest of this paper, we need to search functions
sequentially over different RKHS induced by the kernel function with different
inputs’ dimensions. With a slight abuse of notation, we write all the RKHSs as

Hx when the inputs’ dimension of the corresponding kernel function is clear for
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Figure 1. An illustration of a DAG with 3 layers.

notation simplicity. Moreover, we assume that Ef(x) = [, f(x)dpx = 0 for all
f € Hy to facilitate DAG learning. It is worthy pointing out that this zero mean
assumption is also required in many kernel-based learning problems and can be
verified if the kernel function is centralized (He et al., 2022)). In literature, various
centralized kernels have been proposed, including the centralized Gaussian kernel
and interested readers are referred to Lindsay et al.| (2008), | Durrande et al.| (2013)
and |[He et al.| (2022) for detailed discussions.

2.1. Learning with topological layers

Without loss of generality, we assume that a DAG G has T layers, for some
positive constant T', and each node only belongs to one layer, due to its longest
path to roots (nodes with no parents). Note that the concept of a topological
layer is explicitly defined in|Zhao, He and Wang (2022 and |Zhou et al.| (2022)) for
learning linear DAGs, which is general and which is general and reconstructs any
DAG in such a way that causal ordering among each layer is uniquely determined,
and a similar idea is also adopted to learn nonparametric DAG in [Gao, Ding and
Aragam| (2020) and [Li, Shen and Pan| (2023). Note that the idea of topological
layers significantly differs from the commonly used causal ordering in literature
(Yuan et al., 2019). More importantly, we show that the procedure of learning
nonparametric DAG can be much more stable and computationally efficient, and
can establish theoretical guarantees in terms of exact DAG recovery.

Specifically, let A, denote all the nodes in the t-th layer and S, = U'_}. Ay
denote the nodes in all the upper layers. Clearly, we have Sy = () and Sy = V.
Figure 1 illustrates a toy DAG with its unique topological layer structure.

From Figure 1, we see that nodes 1 and 4 are regarded as root and
isolated node, respectively, and thus belong to the first layer Ay; although
node 1 is one of its parents, node 3 still belongs to the last layer A; due to
its longest path to root (1 — 2 — 3). It is worth noting that node 4 is
named as an isolated node due to the fact that it does not direct to any other
nodes. In fact, node 4 can also be regarded as a root which has no children.
In sharp contrast, the toy example has multiple potential causal orderings
as illustrated in the left panel of Figure 1, which may lead to unnecessary
estimation instability and computational inefficiency in recovering the DAG
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structures. Clearly, any nonparametric DAG can be uniquely converted to the
corresponding topological structure, thus the original task of DAG learning can
be decomposed into reconstructing the layers and recovering the parent-child
relations among layers.

2.2. Reconstruction via topological layer

In this section, we show that the topological layer of a nonparametric DAG
can be reconstructed under mild conditions, and the causal minimality condition
connects the recovery of parent-child relations with learning gradients. Let de;
denote all the descendant nodes of node j, and then the topological layers of
a nonparametric DAG model can be identified under the following technical
condition.

Assumption 1. Foranyj,j' € A;,t =0,...,T—1 and k € de;, there exists some
positive quantity My such that min;, o + E[Var{E(zy|Xa, )|Xs, }] — J? > Max
and 07 = o7,

Assumption 1 is a general condition and is widely used in literature of learning
ANMs (Park, 2020). Particularly, the first part of Assumption 1 allows that
nodes belonging to different layers have heterogeneous variance, which relaxes the
commonly used equal variance assumption (Gao, Ding and Aragam) 2020)), and
is analogous to the conditions required in Theorem 2 of [Park (2020) in terms of
causal ordering. The second part of Assumption 1 requires that nodes belonging
to the same layer have equal variance, which is natural in the sense that they
may come from a similar domain, and thus share a similar characteristic. Note
that the equal variance condition can be further relaxed by allowing nodes in
the same layer to have heterogeneous variances, but their differences are upper
bounded by some constant less than M, ..

Theorem 1. Consider an ANM (2.1) associated with DAG G. Suppose that
Ao, ..., Ai_1 have been identified and S, = U'_{Aq. Then, for anyt =0,...,T —
1, there holds

; for any j € Ay

o7 + E[Var {E(z;|%pa,)|Xs, }|, for any j € V\{S, U A}
(2.2)

(2

E{ Var(z;[xs,)} = {

Additionally, suppose that Assumption 1 is satisfied, then the topological layers
can be exactly reconstructed.

Theorem 1 ensures that the topological layers can be reconstructed in a
hierarchical fashion by evaluating the conditional variance for each remaining
node. The first part of Theorem 1 states that if node j belongs to the current layer
A;, the expected conditional variance is exactly the same as the corresponding
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noise variance; otherwise, the expected conditional variance should be strictly
larger than the noise variance. Moreover, by assuming Assumption 1, the second
part of Theorem 1 ensures that the expected conditional variances of nodes
belonging to the current layer are exactly the same, and there exists some gap
between the expected conditional variances of nodes belonging to the current layer
and to all the lower layers. And thus, the topological layer can be reconstructed
correspondingly. Particularly, Theorem 1 shows that for any j € Ay with pa; = 0,
the layer Ay can be exactly reconstructed by the fact that Var(z;) = of ., for
any j € Ap and otherwise Var(z;) > of ., with of . = mingey Var(z;,). For the
general cases that t = 1,...,T — 1, Theorem 1 ensures that for any j € A;, there
holds E{Var(z;|xs,)} = 07, with of = minge s,y B{Var(zi/xs,)}, and
E{Var(z|xs,)} > 07 in + Mmax for any node belonging to lower layers. Notably,
Theorem 1 ensures that the layers can be reconstructed in a top-down fashion,
whereas Theorem 2 of |Park| (2020) shows that causal ordering can be forward
or backward recovered under different types of noise-variance assumptions. In
fact, Theorem 1 as well as our motivated method can be further extended to
reconstruct the topological layers in the bottom-up fashion and more discussions
on this possible extension are provided in Section 6.

More interestingly, among the above reconstruction procedures, suppose that
Ao, ..., A; have been identified. By the definition of A;, for any node j € A,
we have pa; C §; = U'ZtAg and de; NS, = (), and thus there holds I (Xpa,) =
E(xj|%xpa,) = E(xj]xs,) = f}s,(Xs,). Furthermore, we notice that as pointed out
in Section 3 of Peters et al. (2014), causal minimality reduces to the condition
that each function f} is not constant in any of its arguments under . This
requires that all the parents should make a contribution to their child, and implies
pa; is the set of nodes with non-zero gradients. Precisely, by assuming causal
minimality, for any j € A;, we have

* 2
gl :/{é)fﬂgt(x‘s‘)} dpus, >0, for any k € pa,, (2.3)
T

and for any k € S;\{pa,}, there holds ||g%,||3 = 0, due to the fact that f; (Xs,) =
E(zjlxs,) = E(z;|xp,,) since j € A; and in (2.3), each gradient function is
evaluated given all the other nodes belonging to pa,. Thus, for any node j € Ay,
pa; can be written as pa; = {k € S, [|g;, /I3 > 0}. It is also interesting to notice
that in Section 4, the minimal signal strength is required in Assumption 4 to
establish the asymptotic consistency under the finite sample setting.

Theorem 2. Suppose that all the assumptions in Theorem 1 are satisfied and
the causal minimality holds. Then, the DAG G is uniquely identifiable.

Theorem 2 provides the identifiability result of the nonparametric DAG under
the noise variance condition in Assumption 1. Its proof directly follows from
Theorem 1 that all the topological layers can be exactly recovered by evaluating
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the conditional variances, and from the required causal minimality assumption
that once the layers are exactly identified, the underlying parent-child relations
can be exactly recovered by checking the corresponding gradient functions.
Therefore, we omit its proof here. Note that the established identifiability
results differ from the classical identifiable results of nonparametric in literature
(Peters et al., 2014)) that they are motivated by different identifiable conditions.
Specifically, the results in Theorem 2 do not require the noise terms to be normally
distributed (Peters et al.l [2014; Li, Shen and Pan, 2023) but require the noise
terms have some ordered variances as stated in Assumption 1. Crucially, we
notice that by the derivative reproducing property (Zhoul, 2007), there holds
9f(x)

9ik(X) = Ers = ([3, O lx) k. < 10 Bx [ 5] i (2.4)

for any f; € Hx and 0y Kx = 0K (x,-)/Ox,. This implies that the gradient
function of any f; € Hx can be bounded by its K-norm up to some constant. In
other words, if we want to estimate g;(x) within the smooth RKHS, it suffices
to estimate f; itself without loss of information. Most importantly, the key factor
ensures us that the corresponding gradient function can be directly obtained
if the estimator of f; belonging to Hg is provided, and thus the parent-child
relations can be simultaneously obtained without any extra estimation. Due to
the nice properties of Hz, we consider the estimation procedures in the smooth
RKHS in the next section.

3. Nonparametric DAG Learning Algorithm

In this section, we develop an efficient learning algorithm, which connects
nonparametric DAG learning and learning gradients in the smooth RKHS.
Particularly, motivated by Theorem 1 and the key factor , the problem of
learning a nonparametric DAG can be decomposed into a hierarchical procedure,
where the topological layers can be reconstructed by computing the criteria of
Theorem 1 in a top-down fashion, and simultaneously the directed edges can be
directly recovered using the computed gradients in a parallel fashion.

3.1. Proposed algorithm

Given a random sample X = {x;}I, € R"™*?, where X; = (Tj1,...,Zip)"
is generated from Model and x;; denotes the i-th observation of z;,
we first attempt to reconstruct the first layer Ag from the observed data.
S/;Ezciﬁcally, for each jA €V, we compute tkle unconditional Variange that
Var(e;) = {n/(n — D}E(a?) — {B(z,)}?] with B(a?) = Y, 22 /n and E(x;) =
S xi;/n. Then, by Theorem 1, the first layer can be reconstructed as
Ay = {F, \Var(z,) — 6| < €0} with gl = min;ey \//aE(:Ej) for some small
€y > 0.
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Suppose that the layers .%To, . ,.%Tt_l have been reconstructed and denote
‘SA't = UZ;Bjd. Then, we turn to reconstruct the layer A; by calculating the
criteria in Theorem 1 based on the remaining nodes. Specifically, given 5}, for
any j € V\{S,}, we compute the estimated criteria as

E{Var(z;|xg )} = E(a?) — E{E(z;|x5,)*}, (3.1)

where E(xf) = Y., x;;/n and E{E(xj\xs )2} can be obtained by kernel ridge
estimation in the smooth RKHS. Put differently, for each j € V\{«SA}}, we regress
z; on Xg by fitting a kernel ridge regression that

-~

fi= argmm—z {2 — fi(x,8) ) + A fi | % (3.2)

fi€Htx i=1

It is clear that fj(xs ) can be treated as a valid estimation of E(z;|xg ), and thus
the second term in (3.1]) can be computed as E{E(ajj x5 )’} = ?:l{fj(xigt)}Q/n.
Note that the employed estimation procedure (3.2]) is computationally efficient
and by the representer theorem (Wahbay, [1998)), the minimizer of must have
the following form that

filxg) =Y aYK(x;5,.x5) = &) Ku(xg,),
=1

where &; = (af,...,a)" and K > = (K(x,g,%g) - K(x,5,.%5)) "
Therefore, the opt1m1zat10n problem (3.2) has an analytic solution that a; =
(thKst + n)\KS) Kg x; where Ks = {K(x,5,,%,5)}'j=1 € R™™" denote
the kernel matrix and x; = (xlj,.. an)T. Then, by Theorem 1, the layer
A, can be reconstructed as A, = {k, \EVar(sck|x ) — ) | < ¢ } with & CAUES
min; ., g, EVar(xj xg,) and for some small ¢ > 0.

Once A, is reconstructed, the parent-child relations among nodes in A, and
St can be simultaneously recovered by using the derivative reproducmg property
as a by-product. Specifically, for each j € .At and k € St, we compute the
correspondlng gradient function and evaluate the existence of a directed edge by
using the empirical norm that

Bkt = 3 es)) = 1 D& ee)). 63)

Note that a; is obtained in , and thus can be directly computed in
a parallel fashion since 0, Kn(X,g,) is known once K(-,-) is Speciﬁed Then, the
estimated directed edges can be denoted as £; = {k = 4. lg;xl|? > v, for any k €
St} for some pre-specified v



EFFICIENT LEARNING OF NONPARAMETRIC DAG 489

Algorithm 1 The proposed algorithm

1: Input: sample matrix X € R*P, S = 0, and t = 0;
2: Until S = V:

a. For any j € V\{8}, compute the conditional variance E\//zﬁ(xﬂx@;
b. Define A; = {k, |E\//'§(xk|x§) - 3$2n| < e}

¢. Define EJ ={k = j,1gxl12 > vﬁf),for any k € §} for any j € Ay;

d. Let S = SU A;;

e.t+—t+1;

3: Let j—\' = t-/\ Py ~
4: Return: {.At}tT:_Ol and {&;}jev.

We repeat the above reconstructing procedure until all the nodes have been
assigned and all the directed relations have been recovered.

It is thus clear that the proposed method is motivated by our identifia-
bility result in Theorem 1, which takes the advantage of topological layer to
assure acyclicity and facilitate DAG learning, and kernel ridge regressions are
used as efficient tools to reconstruct layers and recover parent-child relations.
This significantly differs from the learning sparse nonparametric DAG method
(NOTEARS, |Zhang et al., 2020)) from a methodological point of view. Specifically,
NOTEARS is a score-based method that it searches over the space consisting of
all the possible graphs, and a gradient-based criteria is developed to force the
graph to be acyclic. Then, some pre-specified modeling is used to evaluate the
score function, including linear model, additive model or neural network, and
finally, the graph minimizing the score is returned. Theoretically, the asymptotic
properties of the proposed method are established in terms of exact DAG recovery
under mild conditions in Section 4, yet the theoretical properties of NOTEARS
remain largely unknown.

3.2. Tuning

Note that the numerical performance of the proposed method depends on
the choice of tuning parameters ¢, and v("). For selecting the optimal values of
{v®}s, we follow the suggestion of He, Wang and Lv| (2021). For the parameters
€;, we employ the stability-based criterion (Sun, Wang and Fang), 2013)) to select
the optimal value, which is also used in [Zhao, He and Wang| (2022). The key
idea is to measure the stability of topological layer reconstruction by randomly
splitting the training sample into two parts and comparing the disagreement
between the two estimated active sets. Specifically, given a value €, we randomly
split the training sample Z™ into two parts ZM and ZM. Then the proposed
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method is applied to ZM and Z} and obtains two estimated active sets A, .
and A, «, respectively. The disagreement between A, < and A, . is measured by
Cohen’s kappa coefficient

Pr(a) — Pr(e)

H(A\l,evﬁls) == 1 - PT'(e) )

where Pr(a) = (n11 + n22)/p and Pr(e) = {(nu1 + niz) (nu —1—221)}/]92 +{(n12 +
Na2)(Na1 + na2)}/p? with nyy = [Are N Ag|,nie = [Are NAS [ nar = AT N
ﬁ2,5|,n22 = |.,4Tlc6 N .%Tgs| and | - | denotes the set cardinality. The procedure is
repeated for B times and the topological layer reconstruction stability is measured

B
§ :ﬁ 157

b=1

as

oy \

Finally, the selected parameter e is set as max {e : §(¥.)/max, §(¥.) > d}, where
d € (0,1) is some given percentage. Note that the adopted selection criteria (Sun,
Wang and Fang), 2013)) is originally designed for the purpose of variable selection
with theoretical guarantees, and the ratio is used to avoid missing some weak
signals. Moreover, the choice of maximum can be regarded as a pre-specified
parameter and in practice, one can also use minimum, mean or median.

4. Statistical Guarantees

In this section, we investigate the theoretical property of the proposed
method in terms of exact DAG recovery. The asymptotic theoretical results
are established by using the kernel ridge regression and learning gradients in the
smooth RKHS under some regularity assumptions. For theoretical analysis, we
define some intermediate target functions and introduce some functional opera-
tors. Specifically, for any t = 1,..., 7 — 1 and j € V\{S,}, we define f; s, (xs,) =
argmin; E{z; — f(Xs,)}* and it is clear that fg (Xs,) = E(2,]xs,). We further
assume that f7s (Xs,) € Hx and it is worth noting that E(z;[xs,) = E(z;|Xpa,) if
j € Ay and E(xj]xs,) # E(z;[Xp,,) if j € V\{S;UA;}. We denote the supports of
Xs, as Xy C X, which are assumed to be compact. Without loss of generality, we
also assume that the K-norms of all the target functions f; g, are upper bounded
by R/2 for mathematical simplicity throughout this paper, where R denotes some
positive quantity, and this technical requirement can be easily satisfied by taking
R relatively large. Note that the compactness condition is commonly assumed in
machine learning literature (Smale and Zhou, 2007; Rosasco et al.,|2013; |Lv et al.,
2018) to ensure universality and the Mercer’s theorem, which also implies that
all the noise terms {n;};cy have compact support and recently, many efforts have
been made to extend it to the non-compact setting (Steinwart and Scovel,

2011; Simon-Gabriel and Scholkopf, [2018). Moreover, we introduce the integral
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operators Ly : L2(Xs,, pxs,) — L*(Xs,, pxs,) that

Lica D)) = [ Kxsu) s s, (),

for any f € £2(X8t7PXSt) = {f : ff2(X5t)dlox.st < OO}
We first establish the layer recovery consistency based on kernel ridge regres-
sion. The following technical assumptions are required to establish consistency.

Assumption 2. For anyt=1,...,T —1 and j € V\{S,}, suppose that f/s, is
in the range of the r-th power of Ly ;, denoted as L ,, for some positive constant
re(1/2,1].

Assumption 3. There exist some constants kK, and ko such that for any S C V,
there hold sup || Kx, ||k < k1 and sup ||Op Kxs ||k < Ko

Note that the fractional operators L , in Assumption 2 make sense as
the operator Li; on L*(Xs,, pxs,) is self-adjoint and semi-positive definite. As
pointed out by [Smale and Zhou| (2007), the requirement that r > 1/2 is a
general assumption, which ensures that the range of Lj, is contained in Hg
(Smale and Zhou, [2007)), and thus we can deduce that there exists some function
hjw € L*(Xs,,pxs,) such that frg = Li,hj; € Hi. This ensures strong
estimation consistency under the RKHS-norm. Assumption 3 requires the kernel
function and its gradient function to be upper bounded, which is commonly
assumed in machine learning literature (Rosasco et al., 2013) and is satisfied by
many kernel functions, including the Gaussian kernel.

Theorem 3. Suppose that Assumptions 1 to 3 are satisfied. Then, for any ¢ > 0
and k €V, we have

P(]\//'z;"(mk) — Var(zy)| > g) < 2exp ( - ;é;)

where Cx denotes the diameter of the support X. Additionally, if we take e¢g =
Max /2, there holds

2
P(Ay=Ap) >1—2pexp < — T;fgg‘)

Theorem 3 establishes the estimation consistency of the variance estimator
and ensures that the first layer 4y can be exactly reconstructed with high
probability. It is worth pointing out that the consistency result still holds if
we take €y € (C14/10g(2p)/n, Myax/2] for some positive constant C;. Once Ay
has been reconstructed, the subsequent layers can also be reconstructed in a
sequence.
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To establish the asymptotic results for the lower layers, we define the event
that

= ma; Fille < R},
J O{jevw}é} 15l <

and use J° to denote its complementary. Without loss of generality, we assume
that the layers A, ..., A;_; have been exactly reconstructed and the following
theorem ensures that the layer A; can be recovered with high probability by using
kernel-based estimation under mild conditions.

Theorem 4. Suppose that all the assumptions in Theorem 3 are satisfied. Given
the events {Ay = Ag,..., A1 = A1}, t > 1 and the event J, if we take
A =n"YCH) then for any ¢ > 0 and j € V\{S,}, there holds

P(|E{Var(z;|xs,)} = E{Var(z,|xs)}| > ¢ | Ao = Ao, ..., Ay = A1, T )

8n¢?
Ck

n(2r1)/{2(2r+1)}<>

<2 (—
= 2exXp 20,

) + 4 exp ( —
where Cj; = 6x2 Rmax{2k; max{Cx +2k1 R, \/2(263R% + 02)}, V2, |LK f1s, |2}
Additionally, if we take €, = M.y /2, there holds

P(A\t:At|A\O:A0a"-7vzl\t71:-/4tflaj)
2

nM
> 12— [sihesp (= 5 ) — 4~ IS e ( -
X

Mmaxn(27*—1)/{2(2r+1)}
e

The first part of Theorem 4 shows that the estimated criteria converges to
the truth with high probability, which plays a crucial role to establish the layer
recovery consistency. The second part of Theorem 4 ensures that the layer A,
can be exactly reconstructed under mild conditions with some proper choice of
€. In fact, the consistency result still holds if we take ¢; in an interval with
upper bound M, /2 following the similar choice for ¢y. The proof of Theorem
4 is completed by using Lemma S1 in the supplementary file. As a direct
consequence of Theorems 3 and 4, all the layers can be exactly reconstructed
with high probability.

We want to emphasize that once the layer A; has been constructed, the
parent-child relations between nodes in A, and S, = UZ_:BAd can be obtained
directly by computing the estimated gradient function using without any
extra estimation. More importantly, the selection consistency of the parent set
for nodes in A; can also be established under mild conditions. The following
technical assumption is needed to establish the recovery consistency of parent-
child relations.

Assumption 4. For any t = 1,..., 7 — 1 and j € A;, there exists some
positive constant Cp such that mingey,, [|g5ll3 > Con~Cr=1D/E2CGrD)
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{log(4|S;|max{n, |S;|})}” for some 8 > 1 and MaXkes,\ {pa, } 95113 = 0.

Note that by the definition of A;, there holds pa; C &, for any j € A;, and
Assumption 4 is a general condition that requires all the parents should make a
contribution to their child by assuming that given all the other nodes belonging
to pa;, the true gradient function contains sufficient information about parent
nodes. This is equivalent to assuming each true function in (2.1]) should not be
a constant in any of its arguments and is also known as the causal minimality
condition in DAG learning literature (Peters et al., 2014)).

Lemma 1. Suppose that all the assumptions in Theorem 4 as well as Assumption
4 are satisfied. Then, for any t > 1, given the events that {JZO = Ao,...,
A, = A} and the event J, and if we take v = (Cy/2)n-2r-1/{2Cr+1}
{log(4|S;|max{n,|S;|})}?, there holds

1

P({gj:gj:,]eAt}’AOZA07--'7~At:At7j)Zl_m'

Lemma 1 shows that the parent set for nodes in A; can be also consistently
recovered after the layer A; is correctly reconstructed. It is interesting to point
out that Lemma 1 is particularly attractive in that it is established without
any further estimation after reconstructing 4;, due to the fact that the gradient
functions can be directly computed as a by-product as illustrated by . Now,
we turn to establish the exact DAG recovery consistency of the proposed method.

Theorem 5. Suppose that all the assumptions of Lemma 1 are satisfied. Then,

we have
P(G=G)—1, asn — oo.

Theorem 5 ensures that the DAG G can be consistently recovered by the
proposed method with probability tending to 1. Note that the proof of Theorem
5 is conducted by using the fact that P(QA # G) < P(,C’j # G, J) + P(J°),
and directly by the results in Smale and Zhou| (2007), P(J¢) — 0 as n — oo
under some mild conditions. It is particularly attractive in the literature on
DAG learning in the sense that it allows for general parent-child relations and it
provides a solid theoretical guarantee for learning nonparametric DAG in terms
of exact DAG recovery.

5. Numerical Experiments

In this section, we compare the numerical performance of the proposed
method by using centralized Gaussian kernel (He et al., |2022), denoted as NL,
against some state-of-the-art methods, including the nonparametric variance-
based algorithm with additive modeling (NPVAR; (Gao, Ding and Aragam,
2020)), the nonparametric regression with independence test (RESIT; Peters et al.,
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2014)), the nonparametric additive method (CAM;|Buhlmann, Peters and Ernest,
2013)), the greedy equivalent search algorithm (GES;|Chickering, 2003)), the high-
dimensional constraint-based PC algorithm (PC; |[Kalisch and Buhlmann, 2007)
and NOTEARS (Zhang et al., [2020). We code NL in R and implement CAM
by using the R package CAM. Both methods PC and GES are implemented by
using the R package pcalg. The R codes of NPVAR and RESIT are available on-
line at http://people.tuebingen.mpg.de/jpeters/onlineCodeANM.zip and
https://github.com/MingGao97/NPVAR, respectively. The Python code of
NOTEARS is available at https://github.com/xunzheng/notears. Note that
NPVAR, RESIT and CAM fit the nonparametric functions under the additive
modeling, and thus their performance highly relies on the validity of the additive
model assumption.

To evaluate the performance of all the methods, we report the true positive
rate (TPR) and false discovery rate (FPR) to evaluate the accuracy of estimated
directed edges. We also employ the normalized structural Hamming distance
(HD; [Tsamardinos, Brown and Aliferis, 2006) to evaluate the closeness of the
true and estimated DAG, and use the Matthews correlation coefficient (MCC;
Yuan et al., 2019) to overall accuracy of the estimated DAG structure. Note that
the metric HD measures the smallest number of edge insertions, deletions, and
flips to convert the estimated DAG into the truth DAG. It is worth noting that
small values of HD, FDR and FPR, but large values of TPR and MCC indicate
a good reconstruction of a DAG.

5.1. Simulated examples

In this section, we examine the numerical performance of all the competitors
in three simulated examples, where Examples 1 and 2 consider a dense and sparse
hub graph, respectively, and Example 3 considers a random graph generated by
the Erdés Rényi (ER) model.

Example 1. we consider a DAG where the only directed structure is edged
directing from the first node, known as the hub node, to all the other nodes.
Clearly, we have T'= 2, 4, = {1} and A; = {2,...,p}. Example 1 is illustrated
in Figure 2(a). Specifically, we generate n; ~ U(—0.5,0.5) and z;,j € Aj,
from x; = f;(v1) + n;, where n; ~ U(-1,1) and f/(z) is randomly chosen
from f)(x) = 0.3sin(nz) + 0.3 cos(rz) + 0.4sin’(7z), f@(z) = 0.2cos®(rx) +
0.2sin’(7z), f®(x) = arctan(z), f@(z) = sin(rz)/{2 — sin(nz)} with equal
probability and is also centered.

Example 2. The generated DAG is the same as that in Example 1 except that
the first node is only directed to the next |p/3]| + 1 nodes and all the remaining
nodes are isolated. Clearly, we have T' = 2, 4, = {1,|p/3] + 2,...,p} and
Ay ={2,...,[p3] + 1}, and the structure of the underlying DAG is illustrated in
Figure 2(b).


http://people.tuebingen.mpg.de/jpeters/onlineCodeANM.zip
https://github.com/MingGao97/NPVAR
https://github.com/xunzheng/notears
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(¢) Random graph.

Figure 2. The topological layer of the DAG structures in Examples 1 to 3.

Example 3. We consider a random DAG generated by the ER graph and the
underlying structure is illustrated in Figure 2(c). The probability of connecting an
edge is set as Pr = 0.25 for p = 5 and 20, and Pr = 0.05 for p = 100. Specifically,
we generate n; ~ U(—0.5,0.5) for any j € Ay, n; ~ U(—1.5,1.5) for any j € A,
and Ay, and n; ~ U(—3,3) for any € As,..., Ar_1, and set T' = max{4, |log(p)]}.
For t > 1, z;,j € A, is generated by x; = > o ., ZkeAsmpaj O f ) (1) +
Zk,iepaj,kqéf{nlgsgt(l = 0)(1 = 050) g1 (k) g2 () + ny with 0, ~ Bern(1,0.75).
For the main function, we set f(©(z) = 0.2cos®(mx) + 0.2sin’(7x), fV(z) =
L5arctan(z), f@(z) = 3/]z], f®(z) = 0.3sin(7z) + 0.3 cos(rx) + 0.4 sin*(7z)
and f®(x) = sin(nz)/{2 — sin(nz)},t > 4, and consider g,(r) = 2|z|>* and
g2(x) = exp{sin(mx)} for the interaction term. Note that the parameters €
are used to ensure the parent nodes in the main function and interaction term
are distinct, for example, if 5 € Ay and pa; = {1,2,3,4} with {1,3} C Ay,
{2,4} C A,, then a possible generating scheme of x5 is x5 = (O (z,) + fV () +
91(x3)g2(xz4) + ns and the functions are also centered.

For each example, we repeat the data generating scheme 50 times and the
averaged performance of all the competitors under the cases by varying n and p
from {100, 200,500} and {5, 20,100}, respectively, are provided in Tables 1 to 3.
Note that #x is used to denote the fact that the corresponding methods take too
long to produce any results or is not applicable.

It is evident from Tables 1 to 3 that NL outperforms all the other competitors
in almost all the cases, except in Example 3 where NL is the second performer



496 DENG, HE AND LV

Table 1. The averaged performance metrics of different methods as well as their standard
errors in parentheses in Example 1. Here, ** denotes that the corresponding methods

took too long to produce any results or was not applicable.

p n  Methods HD FDR TPR MCC
NL 0.0520(0.0101)  0.0000(0.0000)  0.7400(0.0505)  0.8159(0.0358)
NPVAR  0.1380(0.0055) 0.1400(0.0496) 0.3100(0.0273)  0.4790(0.0321)
CAM 0.2110(0.0096)  0.5533(0.0509)  0.2500(0.0295)  0.2431(0.0381)
100 RESIT  0.2160(0.0123) 0.5353(0.0538) 0.2650(0.0298)  0.2573(0.0414)
GES 0.2790(0.0163)  0.7103(0.0463) 0.2550(0.0388)  0.1401(0.0492)
PC 0.1290(0.0111)  0.2800(0.0502) 0.4850(0.0394)  0.5363(0.0469)
. NOTEARS  0.1920(0.0056)  0.6544(0.0466) 0.2750(0.0399)  0.2502(0.0350)
NL 0.0370(0.0090)  0.0000(0.0000)  0.8150(0.0451)  0.8699(0.0318)
NPVAR  0.0850(0.0066) 0.0200(0.0200) 0.5750(0.0329)  0.7116(0.0267)
CAM  0.2380(0.0107) 0.6113(0.0338)  0.3050(0.0279)  0.2322(0.0336)
200  RESIT  0.1790(0.0113) 0.3727(0.0365) 0.4800(0.0235)  0.4583(0.0300)
GES 0.2910(0.0162)  0.7470(0.0428)  0.2450(0.0413)  0.1114(0.0494)
PC 0.0980(0.0105)  0.1900(0.0332)  0.6550(0.0342)  0.6816(0.0362)
NOTEARS  0.1800(0.0047)  0.5667(0.0540) 0.2750(0.0359)  0.2889(0.0350)
NL 0.0000(0.0000)  0.0000(0.0000)  0.9989(0.0011)  0.9994(0.0006)
NPVAR  0.0378(0.0005) 0.0147(0.0071)  0.2484(0.0095)  0.4809(0.0099)
CAM 0.0428(0.0010)  0.3911(0.0142) 0.3968(0.0141)  0.4701(0.0140)
200  RESIT  0.1109(0.0020) 0.9339(0.0064) 0.0884(0.0083)  0.0213(0.0077)
GES 0.0925(0.0010)  0.8715(0.0059) 0.1453(0.0065)  0.0903(0.0064)
PC 0.0483(0.0015)  0.4509(0.0316) 0.2495(0.0138)  0.3490(0.0212)
%0 NOTEARS 0.0656(0.0013)  0.6709(0.0134) 0.2874(0.0133)  0.2717(0.0110)
NL 0.0000(0.0000)  0.0000(0.0000)  1.0000(0.0000)  1.0000(0.0000)
NPVAR  0.0210(0.0008)  0.0040(0.0029) 0.5832(0.0158)  0.7507(0.0104)
CAM 0.0335(0.0011)  0.3165(0.0120) 0.6168(0.0127)  0.6320(0.0120)
500  RESIT  0.1483(0.0025) 0.9192(0.0031) 0.1853(0.0062)  0.0538(0.0047)
GES 0.0934(0.0008)  0.8793(0.0047) 0.1368(0.0050)  0.0818(0.0051)
PC 0.0480(0.0028)  0.4690(0.0398)  0.3740(0.0283)  0.4220(0.0346)
NOTEARS 0.0553(0.0010) 0.5568(0.0193) 0.2726(0.0121)  0.3142(0.0094)
NL 0.0000(0.0000)  0.0000(0.0000)  0.9990(0.0004)  0.9995(0.0002)
200  RESIT  0.0340(0.0006) 0.9956(0.0008) 0.0103(0.0019) -0.0088(0.0013)
GES 0.0334(0.0002)  0.9838(0.0007) 0.0388(0.0017)  0.0098(0.0011)

PC kk kk kk kk
100 NOTEARS  0.0153(0.0001)  0.9936(0.0036) 0.0036(0.0021)  -0.0024(0.0028)
NL 0.0000(0.0000)  0.0000(0.0000)  1.0000(0.0000)  1.0000(0.0000)
500  RESIT  0.0551(0.0008) 0.9917(0.0003) 0.0378(0.0015) -0.0036(0.0008)
GES 0.0297(0.0001)  0.9826(0.0008) 0.0354(0.0016)  0.0108(0.0012)

PC ok ok ok ok
NOTEARS 0.0118(0.0001)  0.9420(0.0152) 0.0162(0.0042)  0.0262(0.0080)
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Table 2. The averaged performance metrics of different methods as well as their standard
errors in parentheses in Example 2. Here, ** denotes that the corresponding methods
took too long to produce any results or was not applicable.

P n Methods HD FDR TPR MCC

NL 0.1150(0.0056)  0.4177(0.0149)  0.9600(0.0154)  0.7027(0.0140)
NPVAR 0.1090(0.0053)  0.3600(0.0686)  0.2733(0.0352)  0.3971(0.0448)
CAM 0.1700(0.0074)  0.6850(0.0509)  0.2133(0.0340)  0.1887(0.0411)
100 RESIT 0.1530(0.0091)  0.5133(0.0545)  0.3000(0.0319)  0.3166(0.0413)
GES 0.2120(0.0137)  0.7317(0.0494)  0.2600(0.0460)  0.1685(0.0527)
PC 0.1120(0.0117)  0.4230(0.0606)  0.4600(0.0529)  0.4680(0.0603)
5 NOTEARS 0.1390(0.0036) 0.7200(0.0508)  0.2333(0.0439)  0.2247(0.0394)
NL 0.0640(0.0061)  0.2590(0.0230)  0.9667(0.0143)  0.8163(0.0172)
NPVAR 0.0610(0.0050)  0.0400(0.0280)  0.5933(0.0334)  0.7269(0.0289)
CAM 0.1740(0.0086)  0.6033(0.0414)  0.3267(0.0323)  0.2802(0.0382)
200 RESIT 0.1200(0.0100)  0.3130(0.0414)  0.5400(0.0342)  0.5427(0.0356)
GES 0.2480(0.0138)  0.8300(0.0443)  0.1733(0.0449)  0.0593(0.0506)
PC 0.0770(0.0103)  0.2400(0.0460)  0.6600(0.0431)  0.6730(0.0473)
NOTEARS 0.1350(0.0050) 0.7257(0.0550)  0.2200(0.0472)  0.2184(0.0444)
NL 0.0086(0.0007)  0.1304(0.0127) 0.8923(0.01204) 0.8751(0.0100)
NPVAR 0.0249(0.0005)  0.0157(0.0091)  0.2785(0.0132)  0.5090(0.0132)
CAM 0.0303(0.0008)  0.4153(0.0179)  0.4092(0.0155)  0.4729(0.0158)
200 RESIT 0.0669(0.0014)  0.8893(0.0096)  0.1277(0.0105)  0.0856(0.0103)
GES 0.0633(0.0009) 0.8452(0.0074)  0.1877(0.0088)  0.1392(0.0082)
PC 0.0295(0.0012)  0.3775(0.0281)  0.3662(0.0181)  0.4626(0.0223)
20 NOTEARS 0.0389(0.0008) 0.5870(0.0177)  0.2892(0.0170)  0.3198(0.0137)
NL 0.0047(0.0005)  0.0000(0.0000)  0.8631(0.0138)  0.9255(0.0077)
NPVAR 0.0119(0.0005)  0.0150(0.0060)  0.6615(0.0144)  0.8001(0.0097)
CAM 0.0271(0.0009) 0.3878(0.0142)  0.5985(0.0132)  0.5907(0.0127)
500 RESIT 0.0878(0.0020)  0.8768(0.0061)  0.2446(0.0098)  0.1330(0.0080)
GES 0.0632(0.0007)  0.8464(0.0058)  0.1862(0.0073)  0.1380(0.0066)
PC 0.0275(0.0017)  0.3828(0.0292)  0.5323(0.0251)  0.5587(0.0273)
NOTEARS  0.0351(0.0007) 0.5016(0.0245)  0.2815(0.0143)  0.3496(0.0137)
NL 0.0020(0.0000)  0.0016(0.0008)  0.6963(0.0069)  0.8324(0.0041)

NPVAR o o o o

CAM o *x o *%
200  RESIT  0.0211(0.0003) 0.9928(0.0013)  0.0155(0.0028)  0.0008(0.0019)
GES 0.0266(0.0002)  0.9833(0.0007)  0.0515(0.0022)  0.0179(0.0013)

PC *x *x *x *%
100 NOTEARS  0.0103(0.0002) 0.9487(0.0101)  0.0294(0.0059)  0.0334(0.0075)
NL 0.0018(0.0000)  0.0000(0.0000)  0.7333(0.0075)  0.8550(0.0044)

NPVAR *x *x *x *%

CAM o o o o
500 RESIT 0.0329(0.0006)  0.9861(0.0007)  0.0548(0.0024)  0.0146(0.0014)
GES 0.0219(0.0001)  0.9791(0.0010)  0.0497(0.0022)  0.0223(0.0015)

PC o o o *k
NOTEARS 0.0077(0.0001) 0.7380(0.0169)  0.0803(0.0052)  0.1410(0.0090)
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Table 3. The averaged performance metrics of different methods as well as their standard
errors in parentheses in Example 3. Here, ** denotes that the corresponding methods

took too long to produce any results or was not applicable.

P n Methods HD FDR TPR MCC
NL 0.1530(0.0123)  0.4274(0.0331) 0.9753(0.0108) 0.6797(0.0255)
NPVAR 0.1260(0.0082)  0.2200(0.0592) 0.3168(0.0314) 0.4629(0.0387)
CAM 0.1670(0.0116)  0.4797(0.0619)  0.2456(0.0324) 0.3005(0.0427)
100 RESIT 0.1640(0.0132)  0.3343(0.0602) 0.2687(0.0267) 0.3637(0.0403)
GES 0.2220(0.0154)  0.6717(0.0484) 0.1822(0.0252) 0.1514(0.0360)
PC 0.2000(0.0141)  0.6300(0.0614) 0.1520(0.0257) 0.1680(0.0412)
5 NOTEARS 0.1430(0.0107) 0.3629(0.0570) 0.3591(0.0347) 0.4226(0.0402)
NL 0.1120(0.0108)  0.3520(0.0340)  0.9603(0.0134) 0.7341(0.0253)
NPVAR 0.1230(0.0075)  0.2600(0.0627)  0.3209(0.0339)  0.4541(0.0417)
CAM 0.1720(0.0106)  0.5433(0.0613)  0.2279(0.0308) 0.2631(0.0421)
200 RESIT 0.1530(0.0141)  0.3200(0.0579)  0.3532(0.0394) 0.4236(0.0452)
GES 0.2240(0.0150)  0.6637(0.0538)  0.1977(0.0325) 0.1608(0.0424)
PC 0.2060(0.0143)  0.6330(0.0591)  0.1690(0.0296)  0.1700(0.0420)
NOTEARS 0.1400(0.0081) 0.3300(0.0613) 0.2989(0.0313) 0.4030(0.0380)
NL 0.1159(0.0034)  0.5246(0.0117) 0.7376(0.0116) 0.5331(0.0100)
NPVAR 0.0715(0.0020)  0.0045(0.0027)  0.3236(0.0123)  0.5425(0.0104)
CAM 0.0800(0.0035)  0.2469(0.0245)  0.3713(0.0157) 0.4921(0.0192)
200 RESIT 0.1281(0.0045) 0.6861(0.0227) 0.1296(0.0074) 0.1408(0.0136)
GES 0.1507(0.0044) 0.8414(0.0115) 0.0981(0.0080) 0.0493(0.0105)
PC 0.1200(0.0038)  0.6970(0.0272)  0.0920(0.0084) 0.1170(0.0159)
2 NOTEARS 0.1227(0.0050) 0.5379(0.0147) 0.5141(0.0161) 0.4163(0.0102)
NL 0.0551(0.0019)  0.2241(0.0124) 0.6874(0.0109) 0.6993(0.0078)
NPVAR 0.0538(0.0016)  0.0093(0.0048)  0.4914(0.0144) 0.6746(0.0109)
CAM 0.0781(0.0037)  0.2853(0.0187)  0.4682(0.0138)  0.5384(0.0153)
500 RESIT 0.1381(0.0059) 0.6715(0.0194) 0.2228(0.0121) 0.1966(0.0156)
GES 0.1576(0.0045)  0.8294(0.0103)  0.1250(0.0079) 0.0648(0.0092)
PC 0.1250(0.0036)  0.7090(0.0169) 0.1250(0.0079)  0.1340(0.0121)
NOTEARS 0.0876(0.0036) 0.3227(0.0224) 0.4358(0.0147) 0.4905(0.0118)
NL 0.0600(0.0018)  0.8098(0.0062) 0.4856(0.0064) 0.2769(0.0051)
200 RESIT 0.0339(0.0006)  0.9058(0.0042)  0.0591(0.0025) 0.0577(0.0031)
GES 0.0430(0.0005)  0.9217(0.0024) 0.0865(0.0025)  0.0605(0.0025)
PC 0.0241(0.0003)  0.6247(0.0149) 0.1301(0.0057)  0.2110(0.0092)
100 NL 0.0295(0.0008)  0.6055(0.0142)  0.4839(0.0068) 0.4184(0.0084)
NPVAR *% *k *% *%
500 RESIT 0.0368(0.0009)  0.8752(0.0056) 0.0994(0.0031) 0.0920(0.0040)
GES 0.0394(0.0005)  0.8820(0.0035) 0.1190(0.0036) 0.0985(0.0036)
PC 0.0247(0.0003)  0.6181(0.0141) 0.1774(0.0067) 0.2492(0.0097)
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under the small n and p case in terms of HD and FDR. Notably, while the metric
TPR of NL decreases as n increases in some scenarios of Examples 2 and 3, the
other three metrics indicate that NL’s performance improves in that HD and
FDR decrease and MCC increases as n increases. This observation is largely
due to the fact that when n is relatively small, many false directed edges are
discovered resulting in a high value of FDR, and thus leads to a high value of
TPR. As n increases, the estimation procedure in NL becomes more accurate and
many false directed edges are eliminated leading to the decreasing of TPR. Note
that NPVAR’s performance o is less satisfactory, possible due to the fact that
it is designed for the equal variance case and the considered additive modeling
can not detect the interaction relations. It is also worth pointing out that NL’s
performance may be further improved with a finer tuning scheme at the cost of
increasing computational cost. Note that NPVAR, CAM and PC do not produce
any results for the cases with p = 100 in Examples 1 to 2 after more than 24
hours, which indicates that they may suffer serious computational burden even
when dealing with a medium-sized DAG.

Moreover, we report the averaged running times of all the competing methods
under various examples and scenarios in Table 4. Precisely, we consider the same
generating schemes in Examples 1 to 3 and vary (n,p) from (200, 50), (200, 100),
(500, 50) to (500,100). It is thus clear from Table 4 that, compared to all the
other competitors, NL is remarkably computational efficient, especially when
the number of nodes is relatively large. It is also interesting to notice that the
averaged running times of GES are less than those of NL at the cost of achieving
less satisfactory numerical results as illustrated in Tables 1 to 3.

5.2. Application to cell signalling data

In this section, we apply NL and all the other competitors to analyze the
multivariate flow cytometry data from [Sachs et al.| (2005)), which consists of
continuous measurement of multiply phosphorylated proteins and phospholipid
components following perturbation of thousands of individual human immune
system cells with molecular interventions. Precisely, the intracellular signaling
networks of human primary naive CD4+ T-cells are studied by recording cell
reactions terminated by 15 fixation minutes after a series of interventions, and
flow cytometry measurements are taken from 11 expression levels of proteins
and phospholipids under 9 experimental conditions. Note that this data can be
regarded as a common benchmark in causal inference, because it comes with a
known consensus network and is widely accepted by the biological community.

Following the same treatment as in |Yuan et al.| (2019), we also consider one
specific condition among the 9 experimental conditions, which uses anti-cluster
of differentiation 3 (CD3) /cluster of differentiation 28 (CD28) and intercellular
adhesion molecule-2 (ICAM-2) as general perturbations since they attempt to
activate cell signaling. Then, we use the consensus network in Sachs et al.| (2005)
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Table 4. The averaged running times (in minutes) of all the competitors under various
scenarios of Examples 1 to 3 together with their standard errors in parentheses. Here,
** denotes that the corresponding methods did not produce any results after running for

24 hours.

n P Methods Example 1 Example 2 Example 3
NL 4.30(0.13) 2.97(0.10) 3.92(0.48)
NPVAR *k Kok o
CAM 590.33(40.40) 590.19(47.06) 590.94(27.95)
50 RESIT 25.37(0.21) 26.62(0.56) 25.22(0.53)
GES 0.09(0.01) 0.07(0.01) 0.10(0.02)
PC 3.73(1.15) 2.32(1.25) 0.08(0.01)
900 NOTEARS 45.81(21.10)  21.95(8.37) 240.12(69.53)
NL 7. 70(0 21) 5.14(0.15) 7.76(0.71)
NPVAR ok ok
CAM *% *x *x
100 RESIT 117.90(0.34)  120.95(0.52) 120.62(0.87)
GES 0.61(0.13) 0.47(0.08) 0.98(0.14)
PC ok ok 0.38(0.07)
NOTEARS 393.86(120.93) 173.25(38.55) 2,441.87(641.96)
NL 29.32(0.37) 19.41(0.15) 27.45(2.47)
NPVAR 38.89(3.12) 37.27(2.74) 109.26(8.70)
CAM *% Kk K%
50 RESIT 186.52(1.96)  189.02(2.84) 181.36(4.61)
GES 0.09(0.01) 0.07(0.01) 0.12(0.01)
PC 1,225.07(576.60) 175.29(73.81) 0.09(0.01)
500 NOTEARS 39.28(13.71) 18.62(4.56) 353.39(44.41)
NL 55.45(0.16) 38.58(0.18) 56.08(6.28)
NPVAR *% *x *x
100 RESIT 799.70(28.69) 811.64(11.94) 802.94(10.19)
GES 0.73(0.21) 0.40(0.05) 0.81(0.13)
PC HE K 0.44(0.09)
NOTEARS 176.17(43.89) 132.30(67.72) 2,679.03(668.18)

as the true network as illustrated in Figure 3(a), and apply all the competitors to
analyze this data. The learned DAGs are illustrated in Figure 3 and the numerical
metrics of all the competitors are also reported in Table 5.

Figure 3 clearly shows that NL is the best performer in that 19 directed
edges are learned and among them, 12 agree with the true DAG and 7 are
falsely reconstructed. GES is the second-best performer that 8 directed edges
are correctly recovered and the next is PC with 7 edges correctly estimated.
NPVAR and CAM perform similarly, they both correctly identify 5 edges and
obtain similar skeleton structures, largely due to the fact that they both use
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(h) NOTEARS

Figure 3. The true DAG and DAG learned by the seven competitors. Correct discoveries
are represented by solid blue/dark lines, false discoveries are displayed as solid grey/light
lines.

additive modeling and thus may miss some directed relations with a more general
dependence structure. NOTEARS also correctly recover 5 directed edges at the
cost of returning a large number of false discovered edges. RESIT only correctly
identifies 4 edges. Notably, many true edges, such as PKC — PKA and PKA
— P38, are correctly recovered by NL, but are missed by all the other methods.
This indicates that NL can detect more general causal relations among collected
nodes. Its superior performance is also supported by the numerical metrics in
Table 5, where it excels under almost all the evaluation metrics.
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Table 5. The numerical performance of all the competitors in application to cell signalling
data.

Methods SHD FDR TPR MCC
NL 0.1364 0.3684 0.60  0.5418
NPVAR 0.2000 0.5833 0.25 0.2246
CAM 0.2091 0.6154 0.25 0.2049
RESIT 0.2182 0.6667 0.20  0.1501
GES 0.1455 0.3333 0.40  0.4479
PC 0.1455 0.3000 0.35 0.4321
NOTEARS 0.3909 0.8485 0.25 -0.0227

6. Discussion

This paper proposes an efficient method to learn nonparametric DAG from
observed data with sound statistical guarantees. It leverages the concept of
topological layers to facilitate nonparametric DAG learning , connecting it with
kernel ridge regression and learning gradients by showing that the introduced
layers can be exactly reconstructed via kernel ridge regression. More interestingly,
the parent-child relations can be simultaneously recovered without any extra
estimation by using the derivative reproducing property in the smooth RKHS.
An efficient learning algorithm is developed and the statistical guarantees of the
proposed method in terms of exact DAG recovery are established ensuring the
underlying DAG with general parent-child dependence can be exactly recovered.
Its superior performance is also supported by numerical experiments on various
simulated and real-life examples. It is worth noting that one of the possible future
work is to modify the proposed method to reconstruct the topological layers in
a bottom-up fashion if some decreasing noise-variance assumption is satisfied,
where the topological layers should be defined based on the longest distance to
one of the leaf nodes.

Supplementary Material

The supplementary material includes all the theoretical proofs.
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