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Abstract: Directed acyclic graph (DAG) models are widely used to represent casual

relations among collected nodes. This paper proposes an efficient and consistent

method to learn DAG with a general causal dependence structure, which is in

sharp contrast to most existing methods assuming linear dependence of causal

relations. To facilitate DAG learning, the proposed method leverages the concept

of topological layer, and connects nonparametric DAG learning with kernel ridge

regression in a smooth reproducing kernel Hilbert space (RKHS) and learning

gradients by showing that the topological layers of a nonparametric DAG can be

exactly reconstructed via kernel-based estimation, and the parent-child relations can

be obtained directly by computing the estimated gradient function. The developed

algorithm is computationally efficient in the sense that it attempts to solve a convex

optimization problem with an analytic solution, and the gradient functions can

be directly computed by using the derivative reproducing property in the smooth

RKHS. The asymptotic properties of the proposed method are established in terms

of exact DAG recovery without requiring any explicit model specification. Its

superior performance is also supported by a variety of simulated and a real-life

example.

Key words and phrases: Causality, exact DAG recovery, learning gradients, non-

parametric DAG, RKHS.

1. Introduction

Directed acyclic graph (DAG) models are widely used to represent directional

or parent-child relations among interacting units, which have a wide range of

applications in many disciplines (Spirtes, Glymour and Scheines, 2000; Peters,

Janzing and Schölkopf, 2017). Thus, learning DAG from the observed data has

attracted tremendous attention in the past decades (Shimizu et al., 2011; Peters

and Bühlmann, 2014; Yuan et al., 2019; Zhao, He and Wang, 2022) and is still

challenging especially when the casual relations display a general dependence

structure beyond linearity (Bühlmann, Peters and Ernest, 2013; Peters et al.,

2014; Park, 2020; Gao, Ding and Aragam, 2020).
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In literature, most existing DAG learning methods assume that the parent-

child relations have a linear dependence structure and thus assume the linear

structural equation models (SEMs). These methods can be roughly categorized

into three classes. The first class attempts to learn linear Gaussian DAG by

assuming that all the noise terms are Gaussian distributed. Specifically, Peters

and Bühlmann (2014) shows that a linear Gaussian DAG is identifiable if all

the noise terms have equal variances, and then motivates a variety of learning

methods (Yuan et al., 2019; Chen, Drton and Wang, 2019; Li, Shen and Pan,

2020). The second class focuses on learning linear non-Gaussian DAG. One of

the most important works is that Shimizu, Hyvärinen and Kerminen (2006)

proves that a linear non-Gaussian DAG is identifiable if all the noise terms

follow continuous non-Gaussian distribution, and an iterative search algorithm is

developed. This fundamental work also motivates a variety of follow-up studies

(Shimizu et al., 2011; Hyvärinen and Smith, 2013; Wang and Drton, 2020; Zhao,

He and Wang, 2022). Recently, Park and Raskutti (2018) and Zhou et al.

(2022) focus on a general class of non-Gaussian DAG models that the conditional

variance of each node given its parents is a quadratic function of its conditional

mean, which admits many non-Gaussian distributions including some discrete

ones. The other class of methods further relaxes the distribution assumption by

requiring some explicit order among noise variances (Ghoshal and Honorio, 2018;

Park, 2020). Note that almost all the methods in these categories are designed to

recover causal relations with linear dependence structure. Yet, as pointed out by

Yuan et al. (2019), many causal relations in real-life analysis may have nonlinear

behavior that cannot be captured by any linear model.

Nonparametric DAG relaxes the linear dependence assumption by allowing

more general causal relations, and thus has attracted tremendous interest in

recent years (Bühlmann, Peters and Ernest, 2013; Peters et al., 2014; Mooij et al.,

2016; Rothenhäusler, Ernest and Bühlmann, 2018; Park, 2020; Zhang et al., 2020;

Gao, Ding and Aragam, 2020; Li, Shen and Pan, 2023). A majority class of

learning nonparametric DAG methods replace the linear SEMs with the additive

noise models (ANMs), where each node is generated by a nonparametric function

of its parents adding an independent noise term. Moreover, additive modelling

(Stone, 1985) is often imposed to model the nonparametric function. Specifically,

Bühlmann, Peters and Ernest (2013) proposes a casual additive model and aims

to learn the DAG via maximum likelihood estimation and variable selection

technique for additive modelling. Peters et al. (2014) proposes the RESIT

algorithm to learn a potential causal ordering via sequential nonparametric fitting

and independence testing. Rothenhäusler, Ernest and Bühlmann (2018) further

considers the case that the nonparametric function is a partially linear model

under the additive modelling assumption. Some other classes of methods focus

on the bivariate models or the post-nonlinear models (Zhang and Hyvärinen,

2009; Zhang et al., 2016) and the score-based search procedures within a more
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general function space of the nonparametric function (Zhang et al., 2020). It

should be pointed out that all the aforementioned methods attempt to recover

an indeterministic causal ordering, and many of them lack theoretical guarantee

in terms of exact DAG recovery or suffer computational burden even when dealing

with a medium-sized DAG.

Most recently, Gao, Ding and Aragam (2020) introduces the concept of layers

into nonparametric DAG learning to eliminate the unnecessary inefficiency caused

by casual ordering. Specifically, it estimates the nonparametric function with

some standard nonparametric estimators, including the kernel smoother, nearest

neighbors, and additive modeling with splines, to recover the layer structure,

and then adopts the variable selection technique for additive modeling to recover

the parent-child relations after all the layers being estimated. Note that the

recovery procedure may suffer computational burden when the number of nodes

is relatively large, even using the additive modeling with splines, not to mention

the kernel smoother or nearest neighbor estimator. Moreover, their proposed

method is mainly designed for the special case with equal variances, and their

theoretical analysis only focuses on establishing the layer recovery consistency

by assuming that the employed nonparametric estimator is consistent. Yet, the

statistical guarantee in terms of exact DAG recovery remains largely unknown

especially when the employed additive modeling assumption is violated.

In this paper, we propose an efficient method to learn nonparametric DAG

with theoretical guarantee. A useful concept of topological layer is adopted to

facilitate DAG learning, which assures that any DAG can be converted into a

unique topological structure, where the parents of a node must belong to its

upper layers, and thus acyclicity is naturally guaranteed. The proposed method

is motivated by the key fact that topological layers of a nonparametric DAG

with heterogeneous noise variances are identifiable, and the general parent-child

relation can be fully detected by gradient functions. The proposed method adopts

kernel-based estimation in the RKHS for reconstructing layers and the parent-

child relations can be simultaneously recovered as a by-product via learning

gradients. The proposed method is computationally efficient and its asymptotic

properties are provided in terms of exact DAG recovery, which are established

without requiring any specific model assumption. Its superior performance is also

supported by a variety of simulated and real-life examples.

The main contribution of this paper is the development of an efficient learning

method to learn nonparametric DAG from observed data, and the investigation

of its statistical guarantees in terms of exact DAG recovery. Specifically, we

show that the topological layers of a nonparametric DAG can be sequentially

reconstructed under the conditional noise variance assumption in a top-down

fashion, and the gradient function can be employed as a useful tool to recover

the general parent-child relations. More importantly, we connect nonparametric

DAG learning with kernel ridge regression and learning gradients by showing
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that the layers can be exactly reconstructed via kernel-based estimation, and the

parent-child relations can be simultaneously obtained by computing the estimated

gradient function without any extra estimation. Computationally, an efficient

learning algorithm is developed, where the corresponding convex optimization

task has an analytic solution, and the derivative reproducing property in RKHS

ensures that the gradient function can be directly computed. Theoretically, with

the help of functional operators in learning theory, the statistical guarantees of

the proposed method are established ensuring the underlying DAG with general

parent-child relations can be exactly recovered, which is particularly attractive

in line of research in nonparametric DAG learning.

The rest of this paper is organized as follows. Section 2 introduces some

background of nonparametric DAG, the concept of topological layers, and the

motivations of the proposed method. Section 3 develops an efficient algorithm

for learning nonparametric DAG, and Section 4 establishes the theoretical results

of the proposed method in terms of exact DAG recovery under mild conditions.

Numerical experiments on several simulated examples and a real-life analysis are

provided in Section 5. Section 6 contains a brief discussion, and all the technical

proofs are provided in an online supplementary file.

2. Learning Nonparametric Directed Acyclic Graph

We consider a directed acyclic graph (DAG) model G = (V, E) encoding the

joint distribution P (x) of variables x = (x1, . . . , xp)
T ∈ X ⊂ Rp. Precisely,

V = {1, . . . , p} represents a set of nodes associated with x, and E ⊂ V × V
denotes a set of directed edges without directed cycles representing the parent-

child relations. For notation ease, we denote node k’s parents as pak ⊂ {1, . . . , p}
and its non-descendants (exclude itself) by ndk. For any j ∈ pak, an arrow from

xj towards xk in G is indicated; if xk has no parents in G, such as xk is a root or

isolated node, we have pak = ∅. Moreover, we denote the set of all the directed

edges pointing to node k as Ek = {j → k, for any j ∈ pak}. We also assume that

the Markov property (Spirtes, Glymour and Scheines, 2000; Yuan et al., 2019)

and causal minimality (Bühlmann, Peters and Ernest, 2013) hold. To be more

precise, the Markov property requires that P (x) can be factorized based on G into

the product of the conditional distributions of each variable given their parents

that P (x) =
∏p

k=1 P (xk|xpak
), where xpak

denotes all the variables xj, j ∈ pak.

To represent the causal structure, we apply the continuous additive noise

model (ANM) which is also known as the functional model (Peters et al., 2014).

Note that ANMs are a special case of DAG models where the joint distribution

is defined by the following structural equations with additive noise. Precisely,

each xj is centered with mean zero, the graph structure can be represented by
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the following ANM that

xj = f∗
j (xpaj

) + nj, for any j ∈ V, (2.1)

where f∗
j (xpaj

) = E(xj|xpaj
), j ∈ V are allowed to have any form of Borel

measurable functions and are assumed to be differentiable, and the noise terms

{nj}j∈V have strictly positive densities and are independent but may allow

following different distributions with mean zero and heterogeneous variances that

E(nj) = 0 and Var(nj) = σ2
j . This is much more general than most existing works

which either assume f∗
j following linear (Ghoshal and Honorio, 2018; Yuan et al.,

2019) or additive model assumption (Bühlmann, Peters and Ernest, 2013; Gao,

Ding and Aragam, 2020). It is worthy pointing out that the requirement that

each xj is centered with mean zero and E(nj) = 0 imply that the true target

function f∗
j in (2.1) also has zero mean.

We now introduce the RKHS HK associated with a specified kernel K taking

values on a subset of Rp and endowed with the norm ∥ · ∥K . It is well-known

that RKHS induced by some universal kernel, such as the Gaussian kernel, is

differentiable and fairly large in the sense that any continuous function can be

well approximated by some intermediate function in the induced RKHS under

the infinity norm (Steinwart and Christmann, 2008). To be more precise, we have

Kx := K(x, ·) ∈ HK for any x ∈ X , and ⟨f,Kx⟩K = f(x) for any f ∈ HK . By

the Mercer’s theorem (Steinwart and Christmann, 2008), under some regularity

conditions, the eigen-expansion of the kernel function is

K(x,x′) =
∞∑
k=1

µkϕk(x)ϕk(x
′), ∀ x,x′ ∈ X ,

where µ1 ≥ µ2 ≥ · · · ≥ 0 are non-negative eigenvalues, and {ϕk}∞k=1 are

the associated eigenfunctions, taken to be orthonormal in L2(X , ρx) = {f :∫
X f(x)2dρx < ∞} with ρx denoting the marginal distribution of x. Moreover,

the RKHS-norm of any f ∈ HK then can be written as ∥f∥2K =
∑

k≥1 a
2
k/µk where

ak = ⟨f, ϕk⟩2L2(X ,ρx)
=

∫
Xf(x)ϕk(x)dρx denote Fourier coefficients, and thus for

any f ∈ HK , we have f(x) =
∑∞

k=1 akϕk(x). Note that these results require that

HK ⊂ L2(X , ρx), which is automatically satisfied if supx∈X K(x,x) is bounded.

Then, the RKHS induced by the kernel K can be written as

HK,p :=

{
f =

∞∑
k=1

akϕk

∣∣∣∣ ∑
k≥1

a2
k

µk

≤ ∞
}
.

It is important to notice that in the rest of this paper, we need to search functions

sequentially over different RKHS induced by the kernel function with different

inputs’ dimensions. With a slight abuse of notation, we write all the RKHSs as

HK when the inputs’ dimension of the corresponding kernel function is clear for
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Figure 1. An illustration of a DAG with 3 layers.

notation simplicity. Moreover, we assume that Ef(x) =
∫
X f(x)dρx = 0 for all

f ∈ HK to facilitate DAG learning. It is worthy pointing out that this zero mean

assumption is also required in many kernel-based learning problems and can be

verified if the kernel function is centralized (He et al., 2022). In literature, various

centralized kernels have been proposed, including the centralized Gaussian kernel

and interested readers are referred to Lindsay et al. (2008), Durrande et al. (2013)

and He et al. (2022) for detailed discussions.

2.1. Learning with topological layers

Without loss of generality, we assume that a DAG G has T layers, for some

positive constant T , and each node only belongs to one layer, due to its longest

path to roots (nodes with no parents). Note that the concept of a topological

layer is explicitly defined in Zhao, He and Wang (2022) and Zhou et al. (2022) for

learning linear DAGs, which is general and which is general and reconstructs any

DAG in such a way that causal ordering among each layer is uniquely determined,

and a similar idea is also adopted to learn nonparametric DAG in Gao, Ding and

Aragam (2020) and Li, Shen and Pan (2023). Note that the idea of topological

layers significantly differs from the commonly used causal ordering in literature

(Yuan et al., 2019). More importantly, we show that the procedure of learning

nonparametric DAG can be much more stable and computationally efficient, and

can establish theoretical guarantees in terms of exact DAG recovery.

Specifically, let At denote all the nodes in the t-th layer and St = ∪t−1
d=0Ad

denote the nodes in all the upper layers. Clearly, we have S0 = ∅ and ST = V.
Figure 1 illustrates a toy DAG with its unique topological layer structure.

From Figure 1, we see that nodes 1 and 4 are regarded as root and

isolated node, respectively, and thus belong to the first layer A0; although

node 1 is one of its parents, node 3 still belongs to the last layer A2 due to

its longest path to root (1 → 2 → 3). It is worth noting that node 4 is

named as an isolated node due to the fact that it does not direct to any other

nodes. In fact, node 4 can also be regarded as a root which has no children.

In sharp contrast, the toy example has multiple potential causal orderings

as illustrated in the left panel of Figure 1, which may lead to unnecessary

estimation instability and computational inefficiency in recovering the DAG
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structures. Clearly, any nonparametric DAG can be uniquely converted to the

corresponding topological structure, thus the original task of DAG learning can

be decomposed into reconstructing the layers and recovering the parent-child

relations among layers.

2.2. Reconstruction via topological layer

In this section, we show that the topological layer of a nonparametric DAG

can be reconstructed under mild conditions, and the causal minimality condition

connects the recovery of parent-child relations with learning gradients. Let dej
denote all the descendant nodes of node j, and then the topological layers of

a nonparametric DAG model can be identified under the following technical

condition.

Assumption 1. For any j, j′ ∈ At, t = 0, . . . , T−1 and k ∈ dej, there exists some

positive quantity Mmax such that minj,k σ
2
k+E[Var{E(xk|xpak

)|xSt
}]−σ2

j > Mmax

and σ2
j = σ2

j′.

Assumption 1 is a general condition and is widely used in literature of learning

ANMs (Park, 2020). Particularly, the first part of Assumption 1 allows that

nodes belonging to different layers have heterogeneous variance, which relaxes the

commonly used equal variance assumption (Gao, Ding and Aragam, 2020), and

is analogous to the conditions required in Theorem 2 of Park (2020) in terms of

causal ordering. The second part of Assumption 1 requires that nodes belonging

to the same layer have equal variance, which is natural in the sense that they

may come from a similar domain, and thus share a similar characteristic. Note

that the equal variance condition can be further relaxed by allowing nodes in

the same layer to have heterogeneous variances, but their differences are upper

bounded by some constant less than Mmax.

Theorem 1. Consider an ANM (2.1) associated with DAG G. Suppose that

A0, . . . ,At−1 have been identified and St = ∪t−1
d=0Ad. Then, for any t = 0, . . . , T −

1, there holds

E
{
Var(xj|xSt

)
}
=

{
σ2
j , for any j ∈ At;

σ2
j + E

[
Var

{
E(xj|xpaj

)|xSt

}]
, for any j ∈ V\{St ∪ At}.

(2.2)

Additionally, suppose that Assumption 1 is satisfied, then the topological layers

can be exactly reconstructed.

Theorem 1 ensures that the topological layers can be reconstructed in a

hierarchical fashion by evaluating the conditional variance for each remaining

node. The first part of Theorem 1 states that if node j belongs to the current layer

At, the expected conditional variance is exactly the same as the corresponding
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noise variance; otherwise, the expected conditional variance should be strictly

larger than the noise variance. Moreover, by assuming Assumption 1, the second

part of Theorem 1 ensures that the expected conditional variances of nodes

belonging to the current layer are exactly the same, and there exists some gap

between the expected conditional variances of nodes belonging to the current layer

and to all the lower layers. And thus, the topological layer can be reconstructed

correspondingly. Particularly, Theorem 1 shows that for any j ∈ A0 with paj = ∅,
the layer A0 can be exactly reconstructed by the fact that Var(xj) = σ2

0,min for

any j ∈ A0 and otherwise Var(xj) > σ2
0,min with σ2

0,min = mink∈V Var(xk). For the

general cases that t = 1, . . . , T −1, Theorem 1 ensures that for any j ∈ At, there

holds E{Var(xj|xSt
)} = σ2

t,min with σ2
t,min = mink∈V\{St} E{Var(xk|xSt

)}, and

E{Var(xℓ|xSt
)} > σ2

t,min +Mmax for any node belonging to lower layers. Notably,

Theorem 1 ensures that the layers can be reconstructed in a top-down fashion,

whereas Theorem 2 of Park (2020) shows that causal ordering can be forward

or backward recovered under different types of noise-variance assumptions. In

fact, Theorem 1 as well as our motivated method can be further extended to

reconstruct the topological layers in the bottom-up fashion and more discussions

on this possible extension are provided in Section 6.

More interestingly, among the above reconstruction procedures, suppose that

A0, . . . ,At have been identified. By the definition of At, for any node j ∈ At,

we have paj ⊂ St = ∪t−1
d=0Ad and dej ∩ St = ∅, and thus there holds f∗

j (xpaj
) =

E(xj|xpaj
) = E(xj|xSt

) = f∗
j,St

(xSt
). Furthermore, we notice that as pointed out

in Section 3 of Peters et al. (2014), causal minimality reduces to the condition

that each function f∗
j is not constant in any of its arguments under (2.1). This

requires that all the parents should make a contribution to their child, and implies

paj is the set of nodes with non-zero gradients. Precisely, by assuming causal

minimality, for any j ∈ At, we have

∥g∗jk∥22 =
∫ {

∂f∗
j,St

(xSt
)

∂xk

}2

dρxSt
> 0, for any k ∈ paj, (2.3)

and for any k ∈ St\{paj}, there holds ∥g∗jk∥22 = 0, due to the fact that f∗
j,St

(xSt
) =

E(xj|xSt
) = E(xj|xpaj

) since j ∈ At and in (2.3), each gradient function is

evaluated given all the other nodes belonging to paj. Thus, for any node j ∈ At,

paj can be written as paj = {k ∈ St, ∥g∗jk∥22 > 0}. It is also interesting to notice

that in Section 4, the minimal signal strength is required in Assumption 4 to

establish the asymptotic consistency under the finite sample setting.

Theorem 2. Suppose that all the assumptions in Theorem 1 are satisfied and

the causal minimality holds. Then, the DAG G is uniquely identifiable.

Theorem 2 provides the identifiability result of the nonparametric DAG under

the noise variance condition in Assumption 1. Its proof directly follows from

Theorem 1 that all the topological layers can be exactly recovered by evaluating
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the conditional variances, and from the required causal minimality assumption

that once the layers are exactly identified, the underlying parent-child relations

can be exactly recovered by checking the corresponding gradient functions.

Therefore, we omit its proof here. Note that the established identifiability

results differ from the classical identifiable results of nonparametric in literature

(Peters et al., 2014) that they are motivated by different identifiable conditions.

Specifically, the results in Theorem 2 do not require the noise terms to be normally

distributed (Peters et al., 2014; Li, Shen and Pan, 2023) but require the noise

terms have some ordered variances as stated in Assumption 1. Crucially, we

notice that by the derivative reproducing property (Zhou, 2007), there holds

gjk(x) =
∂fj(x)

∂xk

= ⟨fj, ∂kKx⟩K ≤ ∥∂kKx∥K∥fj∥K , (2.4)

for any fj ∈ HK and ∂kKx = ∂K(x, ·)/∂xk. This implies that the gradient

function of any fj ∈ HK can be bounded by its K-norm up to some constant. In

other words, if we want to estimate gjk(x) within the smooth RKHS, it suffices

to estimate fj itself without loss of information. Most importantly, the key factor

(2.4) ensures us that the corresponding gradient function can be directly obtained

if the estimator of fj belonging to HK is provided, and thus the parent-child

relations can be simultaneously obtained without any extra estimation. Due to

the nice properties of HK , we consider the estimation procedures in the smooth

RKHS in the next section.

3. Nonparametric DAG Learning Algorithm

In this section, we develop an efficient learning algorithm, which connects

nonparametric DAG learning and learning gradients in the smooth RKHS.

Particularly, motivated by Theorem 1 and the key factor (2.3), the problem of

learning a nonparametric DAG can be decomposed into a hierarchical procedure,

where the topological layers can be reconstructed by computing the criteria of

Theorem 1 in a top-down fashion, and simultaneously the directed edges can be

directly recovered using the computed gradients in a parallel fashion.

3.1. Proposed algorithm

Given a random sample X = {xi}ni=1 ∈ Rn×p, where xi = (xi1, . . . , xip)
T

is generated from Model (2.1) and xij denotes the i-th observation of xj,

we first attempt to reconstruct the first layer A0 from the observed data.

Specifically, for each j ∈ V, we compute the unconditional variance that

V̂ar(xj) = {n/(n− 1)}[Ê(x2
j)− {Ê(xj)}2] with Ê(x2

j) =
∑n

i=1 x
2
ij/n and Ê(xj) =∑n

i=1 xij/n. Then, by Theorem 1, the first layer can be reconstructed as

Â0 =
{
k, |V̂ar(xk) − σ̂

(0)
min| < ϵ0

}
with σ̂

(0)
min = minj∈V V̂ar(xj) for some small

ϵ0 > 0.
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Suppose that the layers Â0, . . . , Ât−1 have been reconstructed and denote

Ŝt = ∪t−1
d=0Âd. Then, we turn to reconstruct the layer At by calculating the

criteria in Theorem 1 based on the remaining nodes. Specifically, given Ŝt, for
any j ∈ V\{Ŝt}, we compute the estimated criteria as

Ê{V̂ar(xj|xŜt
)} = Ê(x2

j)− Ê
{
Ê(xj|xŜt

)2
}
, (3.1)

where Ê(x2
j) =

∑n
i=1 x

2
ij/n and Ê{Ê(xj|xŜt

)2} can be obtained by kernel ridge

estimation in the smooth RKHS. Put differently, for each j ∈ V\{Ŝt}, we regress

xj on xŜt
by fitting a kernel ridge regression that

f̂j = argmin
fj∈HK

1

n

n∑
i=1

{
xij − fj(xiŜt

)
}2

+ λ∥fj∥2K . (3.2)

It is clear that f̂j(xŜt
) can be treated as a valid estimation of E(xj|xŜt

), and thus

the second term in (3.1) can be computed as Ê{Ê(xj|xŜt
)2} =

∑n
i=1{f̂j(xiŜt

)}2/n.
Note that the employed estimation procedure (3.2) is computationally efficient

and by the representer theorem (Wahba, 1998), the minimizer of (3.2) must have

the following form that

f̂j(xŜt
) =

n∑
i=1

α̂
(j)
i K(xiŜt

,xŜt
) = α̂T

j Kn(xŜt
),

where α̂j = (α̂
(j)
1 , . . . , α̂(j)

n )T and Kn(xŜt
) =

(
K(x1Ŝt

,xŜt
), . . . ,K(xnŜt

,xŜt
)
)T

.

Therefore, the optimization problem (3.2) has an analytic solution that α̂j =(
KT

Ŝt
KŜt

+ nλKŜt

)+
KT

Ŝt
xj where KŜt

= {K(xiŜt
,xjŜt

)}ni,j=1 ∈ Rn×n denote

the kernel matrix and xj = (x1j, . . . , xnj)
T . Then, by Theorem 1, the layer

At can be reconstructed as Ât =
{
k, |ÊV̂ar(xk|xŜt

) − σ̂
(t)
min| < ϵt

}
with σ̂

(t)
min =

minj∈V\Ŝt
ÊV̂ar(xj|xŜt

) and for some small ϵt > 0.

Once Ât is reconstructed, the parent-child relations among nodes in Ât and

Ŝt can be simultaneously recovered by using the derivative reproducing property

(2.4) as a by-product. Specifically, for each j ∈ Ât and k ∈ Ŝt, we compute the

corresponding gradient function and evaluate the existence of a directed edge by

using the empirical norm that

∥ĝjk∥2n =
1

n

n∑
i=1

{
ĝjk(xiŜt

)
}2

=
1

n

n∑
i=1

{
α̂T

j ∂kKn(xiŜt
)
}2
. (3.3)

Note that α̂j is obtained in (3.2), and thus (3.3) can be directly computed in

a parallel fashion since ∂kKn(xiŜt
) is known once K(·, ·) is specified. Then, the

estimated directed edges can be denoted as Êj =
{
k → j, ∥ĝjk∥2n > v(t)n , for any k ∈

Ŝt
}
for some pre-specified v(t)n .
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Algorithm 1 The proposed algorithm

1: Input: sample matrix X ∈ Rn×p, Ŝ = ∅, and t = 0;
2: Until Ŝ = V:

a. For any j ∈ V\{Ŝ}, compute the conditional variance ÊV̂ar(xj |xŜ);

b. Define Ât =
{
k, |ÊV̂ar(xk|xŜ)− σ̂

(t)
min| < ϵt

}
;

c. Define Êj =
{
k → j, ∥ĝjk∥2n > v

(t)
n , for any k ∈ Ŝ

}
for any j ∈ Ât;

d. Let Ŝ = Ŝ ∪ Ât;

e. t← t+ 1;

3: Let T̂ = t.
4: Return: {Ât}T̂−1

t=0 and {Êj}j∈V .

We repeat the above reconstructing procedure until all the nodes have been

assigned and all the directed relations have been recovered.

It is thus clear that the proposed method is motivated by our identifia-

bility result in Theorem 1, which takes the advantage of topological layer to

assure acyclicity and facilitate DAG learning, and kernel ridge regressions are

used as efficient tools to reconstruct layers and recover parent-child relations.

This significantly differs from the learning sparse nonparametric DAG method

(NOTEARS, Zhang et al., 2020) from a methodological point of view. Specifically,

NOTEARS is a score-based method that it searches over the space consisting of

all the possible graphs, and a gradient-based criteria is developed to force the

graph to be acyclic. Then, some pre-specified modeling is used to evaluate the

score function, including linear model, additive model or neural network, and

finally, the graph minimizing the score is returned. Theoretically, the asymptotic

properties of the proposed method are established in terms of exact DAG recovery

under mild conditions in Section 4, yet the theoretical properties of NOTEARS

remain largely unknown.

3.2. Tuning

Note that the numerical performance of the proposed method depends on

the choice of tuning parameters ϵt and v(t)n . For selecting the optimal values of

{v(t)n }′s, we follow the suggestion of He, Wang and Lv (2021). For the parameters

ϵt, we employ the stability-based criterion (Sun, Wang and Fang, 2013) to select

the optimal value, which is also used in Zhao, He and Wang (2022). The key

idea is to measure the stability of topological layer reconstruction by randomly

splitting the training sample into two parts and comparing the disagreement

between the two estimated active sets. Specifically, given a value ϵ, we randomly

split the training sample ZM into two parts ZM
1 and ZM

2 . Then the proposed
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method is applied to ZM
1 and ZM

2 and obtains two estimated active sets Â1,ϵ

and Â2,ϵ, respectively. The disagreement between Â1,ϵ and Â2,ϵ is measured by

Cohen’s kappa coefficient

κ(Â1,ϵ, Â2,ϵ) =
Pr(a)− Pr(e)

1− Pr(e)
,

where Pr(a) = (n11 + n22)/p and Pr(e) = {(n11 + n12)(n11 + n21)}/p2 + {(n12 +

n22)(n21 + n22)}/p2 with n11 = |Â1,ϵ ∩ Â2,ϵ|, n12 = |Â1,ϵ ∩ ÂC
2,ϵ|, n21 = |ÂC

1,ϵ ∩
Â2,ϵ|, n22 = |ÂC

1,ϵ ∩ ÂC
2,ϵ| and | · | denotes the set cardinality. The procedure is

repeated for B times and the topological layer reconstruction stability is measured

as

ŝ(Ψϵ) =
1

B

B∑
b=1

κ(Âb
1,ϵ, Âb

2,ϵ).

Finally, the selected parameter ϵ is set as max
{
ϵ : ŝ(Ψϵ)/maxϵ ŝ(Ψϵ) ≥ d

}
, where

d ∈ (0, 1) is some given percentage. Note that the adopted selection criteria (Sun,

Wang and Fang, 2013) is originally designed for the purpose of variable selection

with theoretical guarantees, and the ratio is used to avoid missing some weak

signals. Moreover, the choice of maximum can be regarded as a pre-specified

parameter and in practice, one can also use minimum, mean or median.

4. Statistical Guarantees

In this section, we investigate the theoretical property of the proposed

method in terms of exact DAG recovery. The asymptotic theoretical results

are established by using the kernel ridge regression and learning gradients in the

smooth RKHS under some regularity assumptions. For theoretical analysis, we

define some intermediate target functions and introduce some functional opera-

tors. Specifically, for any t = 1, . . . , T − 1 and j ∈ V\{St}, we define f∗
j,St

(xSt
) =

argminf E{xj − f(xSt
)}2 and it is clear that f∗

j,St
(xSt

) = E(xj|xSt
). We further

assume that f∗
j,St

(xSt
) ∈ HK and it is worth noting that E(xj|xSt

) = E(xj|xpaj
) if

j ∈ At and E(xj|xSt
) ̸= E(xj|xpaj

) if j ∈ V\{St∪At}. We denote the supports of

xSt
as Xt ⊂ X , which are assumed to be compact. Without loss of generality, we

also assume that the K-norms of all the target functions f∗
j,St

are upper bounded

by R/2 for mathematical simplicity throughout this paper, where R denotes some

positive quantity, and this technical requirement can be easily satisfied by taking

R relatively large. Note that the compactness condition is commonly assumed in

machine learning literature (Smale and Zhou, 2007; Rosasco et al., 2013; Lv et al.,

2018) to ensure universality and the Mercer’s theorem, which also implies that

all the noise terms {nj}j∈V have compact support and recently, many efforts have

been made to extend it to the non-compact setting (Steinwart and Scovel,

2011; Simon-Gabriel and Schölkopf, 2018). Moreover, we introduce the integral
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operators LK,t : L2(XSt
, ρxSt

)→ L2(XSt
, ρxSt

) that

LK,t(f)(xSt
) =

∫
K(xSt

,uSt
)f(uSt

)dρxSt
(uSt

),

for any f ∈ L2(XSt
, ρxSt

) = {f :
∫
f2(xSt

)dρxSt
<∞}.

We first establish the layer recovery consistency based on kernel ridge regres-

sion. The following technical assumptions are required to establish consistency.

Assumption 2. For any t = 1, . . . , T − 1 and j ∈ V\{St}, suppose that f∗
j,St

is

in the range of the r-th power of LK,t, denoted as Lr
K,t, for some positive constant

r ∈ (1/2, 1].

Assumption 3. There exist some constants κ1 and κ2 such that for any S ⊂ V,
there hold sup ∥KxS∥K ≤ κ1 and sup ∥∂kKxS∥K ≤ κ2.

Note that the fractional operators Lr
K,t in Assumption 2 make sense as

the operator LK,t on L2(XSt
, ρxSt

) is self-adjoint and semi-positive definite. As

pointed out by Smale and Zhou (2007), the requirement that r ≥ 1/2 is a

general assumption, which ensures that the range of Lr
K,t is contained in HK

(Smale and Zhou, 2007), and thus we can deduce that there exists some function

hj,t ∈ L2(XSt
, ρxSt

) such that f∗
j,St

= Lr
K,thj,t ∈ HK . This ensures strong

estimation consistency under the RKHS-norm. Assumption 3 requires the kernel

function and its gradient function to be upper bounded, which is commonly

assumed in machine learning literature (Rosasco et al., 2013) and is satisfied by

many kernel functions, including the Gaussian kernel.

Theorem 3. Suppose that Assumptions 1 to 3 are satisfied. Then, for any ζ > 0

and k ∈ V, we have

P
(
|V̂ar(xk)−Var(xk)| > ζ

)
≤ 2 exp

(
− nζ2

2C4
X

)
,

where CX denotes the diameter of the support X . Additionally, if we take ϵ0 =

Mmax/2, there holds

P
(
Â0 = A0

)
≥ 1− 2p exp

(
− nM2

max

32C4
X

)
.

Theorem 3 establishes the estimation consistency of the variance estimator

and ensures that the first layer A0 can be exactly reconstructed with high

probability. It is worth pointing out that the consistency result still holds if

we take ϵ0 ∈ (C1

√
log(2p)/n,Mmax/2] for some positive constant C1. Once A0

has been reconstructed, the subsequent layers can also be reconstructed in a

sequence.
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To establish the asymptotic results for the lower layers, we define the event

that

J =
⋂
t

{
max

j∈V\{St}
∥f̂j∥K ≤ R

}
,

and use J c to denote its complementary. Without loss of generality, we assume

that the layers A1, . . . ,At−1 have been exactly reconstructed and the following

theorem ensures that the layer At can be recovered with high probability by using

kernel-based estimation under mild conditions.

Theorem 4. Suppose that all the assumptions in Theorem 3 are satisfied. Given

the events {Â0 = A0, . . . , Ât−1 = At−1}, t ≥ 1 and the event J , if we take

λ = n−1/(2r+1), then for any ζ > 0 and j ∈ V\{St}, there holds

P
(∣∣Ê{V̂ar(xj|xSt

)} − E{Var(xj|xSt
)}
∣∣ > ζ | Â0 = A0, . . . , Ât−1 = At−1,J

)
≤ 2 exp

(
− 8nζ2

C4
X

)
+ 4 exp

(
− n(2r−1)/{2(2r+1)}ζ

2Cjt

)
,

where Cjt = 6κ2
1Rmax{2κ1 max{CX +2κ1R,

√
2(2κ2

1R
2 + σ2

j )},
√
2, ∥L−r

K,tf
∗
j,St
∥2}.

Additionally, if we take ϵt = Mmax/2, there holds

P (Ât = At | Â0 = A0, . . . , Ât−1 = At−1,J )

≥ 1− 2(p− |St|) exp
(
− nM2

max

2C4
X

)
− 4(p− |St|) exp

(
− Mmaxn

(2r−1)/{2(2r+1)}

8Cjt

)
.

The first part of Theorem 4 shows that the estimated criteria converges to

the truth with high probability, which plays a crucial role to establish the layer

recovery consistency. The second part of Theorem 4 ensures that the layer At

can be exactly reconstructed under mild conditions with some proper choice of

ϵt. In fact, the consistency result still holds if we take ϵt in an interval with

upper bound Mmax/2 following the similar choice for ϵ0. The proof of Theorem

4 is completed by using Lemma S1 in the supplementary file. As a direct

consequence of Theorems 3 and 4, all the layers can be exactly reconstructed

with high probability.

We want to emphasize that once the layer At has been constructed, the

parent-child relations between nodes in At and St = ∪t−1
d=0Ad can be obtained

directly by computing the estimated gradient function using (3.3) without any

extra estimation. More importantly, the selection consistency of the parent set

for nodes in At can also be established under mild conditions. The following

technical assumption is needed to establish the recovery consistency of parent-

child relations.

Assumption 4. For any t = 1, . . . , T − 1 and j ∈ At, there exists some

positive constant C2 such that mink∈paj
∥g∗jk∥22 > C2n

−(2r−1)/{2(2r+1)}
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{log(4|St|max{n, |St|})}β for some β > 1 and maxk∈St\{paj} ∥g∗jk∥22 = 0.

Note that by the definition of At, there holds paj ⊂ St for any j ∈ At, and

Assumption 4 is a general condition that requires all the parents should make a

contribution to their child by assuming that given all the other nodes belonging

to paj, the true gradient function contains sufficient information about parent

nodes. This is equivalent to assuming each true function in (2.1) should not be

a constant in any of its arguments and is also known as the causal minimality

condition in DAG learning literature (Peters et al., 2014).

Lemma 1. Suppose that all the assumptions in Theorem 4 as well as Assumption

4 are satisfied. Then, for any t ≥ 1, given the events that {Â0 = A0, . . . ,

Ât = At} and the event J , and if we take v(t)n = (C2/2)n
−2r−1/{2(2r+1)}

{log(4|St|max{n, |St|})}β, there holds

P
(
{Ej = Êj : j ∈ Ât}|Â0 = A0, . . . , Ât = At,J

)
≥ 1− 1

max{n, |St|}
.

Lemma 1 shows that the parent set for nodes in At can be also consistently

recovered after the layer At is correctly reconstructed. It is interesting to point

out that Lemma 1 is particularly attractive in that it is established without

any further estimation after reconstructing At, due to the fact that the gradient

functions can be directly computed as a by-product as illustrated by (3.3). Now,

we turn to establish the exact DAG recovery consistency of the proposed method.

Theorem 5. Suppose that all the assumptions of Lemma 1 are satisfied. Then,

we have

P (Ĝ = G)→ 1, as n→∞.

Theorem 5 ensures that the DAG G can be consistently recovered by the

proposed method with probability tending to 1. Note that the proof of Theorem

5 is conducted by using the fact that P (Ĝ ̸= G) ≤ P (Ĝ ̸= G,J ) + P (J c),

and directly by the results in Smale and Zhou (2007), P (J c) → 0 as n → ∞
under some mild conditions. It is particularly attractive in the literature on

DAG learning in the sense that it allows for general parent-child relations and it

provides a solid theoretical guarantee for learning nonparametric DAG in terms

of exact DAG recovery.

5. Numerical Experiments

In this section, we compare the numerical performance of the proposed

method by using centralized Gaussian kernel (He et al., 2022), denoted as NL,

against some state-of-the-art methods, including the nonparametric variance-

based algorithm with additive modeling (NPVAR; Gao, Ding and Aragam,

2020), the nonparametric regression with independence test (RESIT; Peters et al.,
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2014), the nonparametric additive method (CAM; Bühlmann, Peters and Ernest,

2013), the greedy equivalent search algorithm (GES; Chickering, 2003), the high-

dimensional constraint-based PC algorithm (PC; Kalisch and Bühlmann, 2007)

and NOTEARS (Zhang et al., 2020). We code NL in R and implement CAM

by using the R package CAM. Both methods PC and GES are implemented by

using the R package pcalg. The R codes of NPVAR and RESIT are available on-

line at http://people.tuebingen.mpg.de/jpeters/onlineCodeANM.zip and

https://github.com/MingGao97/NPVAR, respectively. The Python code of

NOTEARS is available at https://github.com/xunzheng/notears. Note that

NPVAR, RESIT and CAM fit the nonparametric functions under the additive

modeling, and thus their performance highly relies on the validity of the additive

model assumption.

To evaluate the performance of all the methods, we report the true positive

rate (TPR) and false discovery rate (FPR) to evaluate the accuracy of estimated

directed edges. We also employ the normalized structural Hamming distance

(HD; Tsamardinos, Brown and Aliferis, 2006) to evaluate the closeness of the

true and estimated DAG, and use the Matthews correlation coefficient (MCC;

Yuan et al., 2019) to overall accuracy of the estimated DAG structure. Note that

the metric HD measures the smallest number of edge insertions, deletions, and

flips to convert the estimated DAG into the truth DAG. It is worth noting that

small values of HD, FDR and FPR, but large values of TPR and MCC indicate

a good reconstruction of a DAG.

5.1. Simulated examples

In this section, we examine the numerical performance of all the competitors

in three simulated examples, where Examples 1 and 2 consider a dense and sparse

hub graph, respectively, and Example 3 considers a random graph generated by

the Erdös Rényi (ER) model.

Example 1. we consider a DAG where the only directed structure is edged

directing from the first node, known as the hub node, to all the other nodes.

Clearly, we have T = 2,A0 = {1} and A1 = {2, . . . , p}. Example 1 is illustrated

in Figure 2(a). Specifically, we generate n1 ∼ U(−0.5, 0.5) and xj, j ∈ A1,

from xj = f∗
j (x1) + nj, where nj ∼ U(−1, 1) and f∗

j (x) is randomly chosen

from f (1)(x) = 0.3 sin(πx) + 0.3 cos(πx) + 0.4 sin2(πx), f (2)(x) = 0.2 cos3(πx) +

0.2 sin3(πx), f (3)(x) = arctan(x), f (4)(x) = sin(πx)/{2 − sin(πx)} with equal

probability and is also centered.

Example 2. The generated DAG is the same as that in Example 1 except that

the first node is only directed to the next ⌊p/3⌋+ 1 nodes and all the remaining

nodes are isolated. Clearly, we have T = 2,A0 = {1, ⌊p/3⌋ + 2, . . . , p} and

A1 = {2, . . . , ⌊p3⌋+1}, and the structure of the underlying DAG is illustrated in

Figure 2(b).

http://people.tuebingen.mpg.de/jpeters/onlineCodeANM.zip
https://github.com/MingGao97/NPVAR
https://github.com/xunzheng/notears
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(a) Dense hub graph. (b) Sparse hub graph.

(c) Random graph.

Figure 2. The topological layer of the DAG structures in Examples 1 to 3.

Example 3. We consider a random DAG generated by the ER graph and the

underlying structure is illustrated in Figure 2(c). The probability of connecting an

edge is set as PE = 0.25 for p = 5 and 20, and PE = 0.05 for p = 100. Specifically,

we generate nj ∼ U(−0.5, 0.5) for any j ∈ A0, nj ∼ U(−1.5, 1.5) for any j ∈ A1

andA2, and nj ∼ U(−3, 3) for any ∈ A3, . . . ,AT−1, and set T = max{4, ⌊log(p)⌋}.
For t ≥ 1, xj, j ∈ At, is generated by xj =

∑
0≤s≤t−1

∑
k∈As∩paj

θskf
(s)(xk) +∑

k,ℓ∈paj ,k ̸=ℓ{
∏

1≤s≤t(1− θsk)(1− θsℓ)}g1(xk)g2(xℓ) + nj with θsk ∼ Bern(1, 0.75).

For the main function, we set f (0)(x) = 0.2 cos3(πx) + 0.2 sin3(πx), f (1)(x) =

1.5 arctan(x), f (2)(x) = 3
√
|x|, f (3)(x) = 0.3 sin(πx) + 0.3 cos(πx) + 0.4 sin2(πx)

and f (t)(x) = sin(πx)/{2 − sin(πx)}, t ≥ 4, and consider g1(x) = 2|x|0.4 and

g2(x) = exp{sin(πx)} for the interaction term. Note that the parameters θsk
are used to ensure the parent nodes in the main function and interaction term

are distinct, for example, if 5 ∈ A2 and pa5 = {1, 2, 3, 4} with {1, 3} ⊂ A0,

{2, 4} ⊂ A1, then a possible generating scheme of x5 is x5 = f (0)(x1)+ f (1)(x2)+

g1(x3)g2(x4) + n5 and the functions are also centered.

For each example, we repeat the data generating scheme 50 times and the

averaged performance of all the competitors under the cases by varying n and p

from {100, 200, 500} and {5, 20, 100}, respectively, are provided in Tables 1 to 3.

Note that ∗∗ is used to denote the fact that the corresponding methods take too

long to produce any results or is not applicable.

It is evident from Tables 1 to 3 that NL outperforms all the other competitors

in almost all the cases, except in Example 3 where NL is the second performer
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Table 1. The averaged performance metrics of different methods as well as their standard
errors in parentheses in Example 1. Here, ** denotes that the corresponding methods
took too long to produce any results or was not applicable.

p n Methods HD FDR TPR MCC

5

100

NL 0.0520(0.0101) 0.0000(0.0000) 0.7400(0.0505) 0.8159(0.0358)

NPVAR 0.1380(0.0055) 0.1400(0.0496) 0.3100(0.0273) 0.4790(0.0321)

CAM 0.2110(0.0096) 0.5533(0.0509) 0.2500(0.0295) 0.2431(0.0381)

RESIT 0.2160(0.0123) 0.5353(0.0538) 0.2650(0.0298) 0.2573(0.0414)

GES 0.2790(0.0163) 0.7103(0.0463) 0.2550(0.0388) 0.1401(0.0492)

PC 0.1290(0.0111) 0.2800(0.0502) 0.4850(0.0394) 0.5363(0.0469)

NOTEARS 0.1920(0.0056) 0.6544(0.0466) 0.2750(0.0399) 0.2502(0.0350)

200

NL 0.0370(0.0090) 0.0000(0.0000) 0.8150(0.0451) 0.8699(0.0318)

NPVAR 0.0850(0.0066) 0.0200(0.0200) 0.5750(0.0329) 0.7116(0.0267)

CAM 0.2380(0.0107) 0.6113(0.0338) 0.3050(0.0279) 0.2322(0.0336)

RESIT 0.1790(0.0113) 0.3727(0.0365) 0.4800(0.0235) 0.4583(0.0300)

GES 0.2910(0.0162) 0.7470(0.0428) 0.2450(0.0413) 0.1114(0.0494)

PC 0.0980(0.0105) 0.1900(0.0332) 0.6550(0.0342) 0.6816(0.0362)

NOTEARS 0.1800(0.0047) 0.5667(0.0540) 0.2750(0.0359) 0.2889(0.0350)

20

200

NL 0.0000(0.0000) 0.0000(0.0000) 0.9989(0.0011) 0.9994(0.0006)

NPVAR 0.0378(0.0005) 0.0147(0.0071) 0.2484(0.0095) 0.4809(0.0099)

CAM 0.0428(0.0010) 0.3911(0.0142) 0.3968(0.0141) 0.4701(0.0140)

RESIT 0.1109(0.0020) 0.9339(0.0064) 0.0884(0.0083) 0.0213(0.0077)

GES 0.0925(0.0010) 0.8715(0.0059) 0.1453(0.0065) 0.0903(0.0064)

PC 0.0483(0.0015) 0.4509(0.0316) 0.2495(0.0138) 0.3490(0.0212)

NOTEARS 0.0656(0.0013) 0.6709(0.0134) 0.2874(0.0133) 0.2717(0.0110)

500

NL 0.0000(0.0000) 0.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

NPVAR 0.0210(0.0008) 0.0040(0.0029) 0.5832(0.0158) 0.7507(0.0104)

CAM 0.0335(0.0011) 0.3165(0.0120) 0.6168(0.0127) 0.6320(0.0120)

RESIT 0.1483(0.0025) 0.9192(0.0031) 0.1853(0.0062) 0.0538(0.0047)

GES 0.0934(0.0008) 0.8793(0.0047) 0.1368(0.0050) 0.0818(0.0051)

PC 0.0480(0.0028) 0.4690(0.0398) 0.3740(0.0283) 0.4220(0.0346)

NOTEARS 0.0553(0.0010) 0.5568(0.0193) 0.2726(0.0121) 0.3142(0.0094)

100

200

NL 0.0000(0.0000) 0.0000(0.0000) 0.9990(0.0004) 0.9995(0.0002)

NPVAR ** ** ** **

CAM ** ** ** **

RESIT 0.0340(0.0006) 0.9956(0.0008) 0.0103(0.0019) -0.0088(0.0013)

GES 0.0334(0.0002) 0.9838(0.0007) 0.0388(0.0017) 0.0098(0.0011)

PC ** ** ** **

NOTEARS 0.0153(0.0001) 0.9936(0.0036) 0.0036(0.0021) -0.0024(0.0028)

500

NL 0.0000(0.0000) 0.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

NPVAR ** ** ** **

CAM ** ** ** **

RESIT 0.0551(0.0008) 0.9917(0.0003) 0.0378(0.0015) -0.0036(0.0008)

GES 0.0297(0.0001) 0.9826(0.0008) 0.0354(0.0016) 0.0108(0.0012)

PC ** ** ** **

NOTEARS 0.0118(0.0001) 0.9420(0.0152) 0.0162(0.0042) 0.0262(0.0080)
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Table 2. The averaged performance metrics of different methods as well as their standard
errors in parentheses in Example 2. Here, ** denotes that the corresponding methods
took too long to produce any results or was not applicable.

p n Methods HD FDR TPR MCC

5

100

NL 0.1150(0.0056) 0.4177(0.0149) 0.9600(0.0154) 0.7027(0.0140)

NPVAR 0.1090(0.0053) 0.3600(0.0686) 0.2733(0.0352) 0.3971(0.0448)

CAM 0.1700(0.0074) 0.6850(0.0509) 0.2133(0.0340) 0.1887(0.0411)

RESIT 0.1530(0.0091) 0.5133(0.0545) 0.3000(0.0319) 0.3166(0.0413)

GES 0.2120(0.0137) 0.7317(0.0494) 0.2600(0.0460) 0.1685(0.0527)

PC 0.1120(0.0117) 0.4230(0.0606) 0.4600(0.0529) 0.4680(0.0603)

NOTEARS 0.1390(0.0036) 0.7200(0.0508) 0.2333(0.0439) 0.2247(0.0394)

200

NL 0.0640(0.0061) 0.2590(0.0230) 0.9667(0.0143) 0.8163(0.0172)

NPVAR 0.0610(0.0050) 0.0400(0.0280) 0.5933(0.0334) 0.7269(0.0289)

CAM 0.1740(0.0086) 0.6033(0.0414) 0.3267(0.0323) 0.2802(0.0382)

RESIT 0.1200(0.0100) 0.3130(0.0414) 0.5400(0.0342) 0.5427(0.0356)

GES 0.2480(0.0138) 0.8300(0.0443) 0.1733(0.0449) 0.0593(0.0506)

PC 0.0770(0.0103) 0.2400(0.0460) 0.6600(0.0431) 0.6730(0.0473)

NOTEARS 0.1350(0.0050) 0.7257(0.0550) 0.2200(0.0472) 0.2184(0.0444)

20

200

NL 0.0086(0.0007) 0.1304(0.0127) 0.8923(0.01204) 0.8751(0.0100)

NPVAR 0.0249(0.0005) 0.0157(0.0091) 0.2785(0.0132) 0.5090(0.0132)

CAM 0.0303(0.0008) 0.4153(0.0179) 0.4092(0.0155) 0.4729(0.0158)

RESIT 0.0669(0.0014) 0.8893(0.0096) 0.1277(0.0105) 0.0856(0.0103)

GES 0.0633(0.0009) 0.8452(0.0074) 0.1877(0.0088) 0.1392(0.0082)

PC 0.0295(0.0012) 0.3775(0.0281) 0.3662(0.0181) 0.4626(0.0223)

NOTEARS 0.0389(0.0008) 0.5870(0.0177) 0.2892(0.0170) 0.3198(0.0137)

500

NL 0.0047(0.0005) 0.0000(0.0000) 0.8631(0.0138) 0.9255(0.0077)

NPVAR 0.0119(0.0005) 0.0150(0.0060) 0.6615(0.0144) 0.8001(0.0097)

CAM 0.0271(0.0009) 0.3878(0.0142) 0.5985(0.0132) 0.5907(0.0127)

RESIT 0.0878(0.0020) 0.8768(0.0061) 0.2446(0.0098) 0.1330(0.0080)

GES 0.0632(0.0007) 0.8464(0.0058) 0.1862(0.0073) 0.1380(0.0066)

PC 0.0275(0.0017) 0.3828(0.0292) 0.5323(0.0251) 0.5587(0.0273)

NOTEARS 0.0351(0.0007) 0.5016(0.0245) 0.2815(0.0143) 0.3496(0.0137)

100

200

NL 0.0020(0.0000) 0.0016(0.0008) 0.6963(0.0069) 0.8324(0.0041)

NPVAR ** ** ** **

CAM ** ** ** **

RESIT 0.0211(0.0003) 0.9928(0.0013) 0.0155(0.0028) 0.0008(0.0019)

GES 0.0266(0.0002) 0.9833(0.0007) 0.0515(0.0022) 0.0179(0.0013)

PC ** ** ** **

NOTEARS 0.0103(0.0002) 0.9487(0.0101) 0.0294(0.0059) 0.0334(0.0075)

500

NL 0.0018(0.0000) 0.0000(0.0000) 0.7333(0.0075) 0.8550(0.0044)

NPVAR ** ** ** **

CAM ** ** ** **

RESIT 0.0329(0.0006) 0.9861(0.0007) 0.0548(0.0024) 0.0146(0.0014)

GES 0.0219(0.0001) 0.9791(0.0010) 0.0497(0.0022) 0.0223(0.0015)

PC ** ** ** **

NOTEARS 0.0077(0.0001) 0.7380(0.0169) 0.0803(0.0052) 0.1410(0.0090)
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Table 3. The averaged performance metrics of different methods as well as their standard
errors in parentheses in Example 3. Here, ** denotes that the corresponding methods
took too long to produce any results or was not applicable.

p n Methods HD FDR TPR MCC

5

100

NL 0.1530(0.0123) 0.4274(0.0331) 0.9753(0.0108) 0.6797(0.0255)

NPVAR 0.1260(0.0082) 0.2200(0.0592) 0.3168(0.0314) 0.4629(0.0387)

CAM 0.1670(0.0116) 0.4797(0.0619) 0.2456(0.0324) 0.3005(0.0427)

RESIT 0.1640(0.0132) 0.3343(0.0602) 0.2687(0.0267) 0.3637(0.0403)

GES 0.2220(0.0154) 0.6717(0.0484) 0.1822(0.0252) 0.1514(0.0360)

PC 0.2000(0.0141) 0.6300(0.0614) 0.1520(0.0257) 0.1680(0.0412)

NOTEARS 0.1430(0.0107) 0.3629(0.0570) 0.3591(0.0347) 0.4226(0.0402)

200

NL 0.1120(0.0108) 0.3520(0.0340) 0.9603(0.0134) 0.7341(0.0253)

NPVAR 0.1230(0.0075) 0.2600(0.0627) 0.3209(0.0339) 0.4541(0.0417)

CAM 0.1720(0.0106) 0.5433(0.0613) 0.2279(0.0308) 0.2631(0.0421)

RESIT 0.1530(0.0141) 0.3200(0.0579) 0.3532(0.0394) 0.4236(0.0452)

GES 0.2240(0.0150) 0.6637(0.0538) 0.1977(0.0325) 0.1608(0.0424)

PC 0.2060(0.0143) 0.6330(0.0591) 0.1690(0.0296) 0.1700(0.0420)

NOTEARS 0.1400(0.0081) 0.3300(0.0613) 0.2989(0.0313) 0.4030(0.0380)

20

200

NL 0.1159(0.0034) 0.5246(0.0117) 0.7376(0.0116) 0.5331(0.0100)

NPVAR 0.0715(0.0020) 0.0045(0.0027) 0.3236(0.0123) 0.5425(0.0104)

CAM 0.0800(0.0035) 0.2469(0.0245) 0.3713(0.0157) 0.4921(0.0192)

RESIT 0.1281(0.0045) 0.6861(0.0227) 0.1296(0.0074) 0.1408(0.0136)

GES 0.1507(0.0044) 0.8414(0.0115) 0.0981(0.0080) 0.0493(0.0105)

PC 0.1200(0.0038) 0.6970(0.0272) 0.0920(0.0084) 0.1170(0.0159)

NOTEARS 0.1227(0.0050) 0.5379(0.0147) 0.5141(0.0161) 0.4163(0.0102)

500

NL 0.0551(0.0019) 0.2241(0.0124) 0.6874(0.0109) 0.6993(0.0078)

NPVAR 0.0538(0.0016) 0.0093(0.0048) 0.4914(0.0144) 0.6746(0.0109)

CAM 0.0781(0.0037) 0.2853(0.0187) 0.4682(0.0138) 0.5384(0.0153)

RESIT 0.1381(0.0059) 0.6715(0.0194) 0.2228(0.0121) 0.1966(0.0156)

GES 0.1576(0.0045) 0.8294(0.0103) 0.1250(0.0079) 0.0648(0.0092)

PC 0.1250(0.0036) 0.7090(0.0169) 0.1250(0.0079) 0.1340(0.0121)

NOTEARS 0.0876(0.0036) 0.3227(0.0224) 0.4358(0.0147) 0.4905(0.0118)

100

200

NL 0.0600(0.0018) 0.8098(0.0062) 0.4856(0.0064) 0.2769(0.0051)

NPVAR ** ** ** **

CAM ** ** ** **

RESIT 0.0339(0.0006) 0.9058(0.0042) 0.0591(0.0025) 0.0577(0.0031)

GES 0.0430(0.0005) 0.9217(0.0024) 0.0865(0.0025) 0.0605(0.0025)

PC 0.0241(0.0003) 0.6247(0.0149) 0.1301(0.0057) 0.2110(0.0092)

NOTEARS ** ** ** **

500

NL 0.0295(0.0008) 0.6055(0.0142) 0.4839(0.0068) 0.4184(0.0084)

NPVAR ** ** ** **

CAM ** ** ** **

RESIT 0.0368(0.0009) 0.8752(0.0056) 0.0994(0.0031) 0.0920(0.0040)

GES 0.0394(0.0005) 0.8820(0.0035) 0.1190(0.0036) 0.0985(0.0036)

PC 0.0247(0.0003) 0.6181(0.0141) 0.1774(0.0067) 0.2492(0.0097)

NOTEARS ** ** ** **
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under the small n and p case in terms of HD and FDR. Notably, while the metric

TPR of NL decreases as n increases in some scenarios of Examples 2 and 3, the

other three metrics indicate that NL’s performance improves in that HD and

FDR decrease and MCC increases as n increases. This observation is largely

due to the fact that when n is relatively small, many false directed edges are

discovered resulting in a high value of FDR, and thus leads to a high value of

TPR. As n increases, the estimation procedure in NL becomes more accurate and

many false directed edges are eliminated leading to the decreasing of TPR. Note

that NPVAR’s performance o is less satisfactory, possible due to the fact that

it is designed for the equal variance case and the considered additive modeling

can not detect the interaction relations. It is also worth pointing out that NL’s

performance may be further improved with a finer tuning scheme at the cost of

increasing computational cost. Note that NPVAR, CAM and PC do not produce

any results for the cases with p = 100 in Examples 1 to 2 after more than 24

hours, which indicates that they may suffer serious computational burden even

when dealing with a medium-sized DAG.

Moreover, we report the averaged running times of all the competing methods

under various examples and scenarios in Table 4. Precisely, we consider the same

generating schemes in Examples 1 to 3 and vary (n, p) from (200, 50), (200, 100),

(500, 50) to (500, 100). It is thus clear from Table 4 that, compared to all the

other competitors, NL is remarkably computational efficient, especially when

the number of nodes is relatively large. It is also interesting to notice that the

averaged running times of GES are less than those of NL at the cost of achieving

less satisfactory numerical results as illustrated in Tables 1 to 3.

5.2. Application to cell signalling data

In this section, we apply NL and all the other competitors to analyze the

multivariate flow cytometry data from Sachs et al. (2005), which consists of

continuous measurement of multiply phosphorylated proteins and phospholipid

components following perturbation of thousands of individual human immune

system cells with molecular interventions. Precisely, the intracellular signaling

networks of human primary naive CD4+ T-cells are studied by recording cell

reactions terminated by 15 fixation minutes after a series of interventions, and

flow cytometry measurements are taken from 11 expression levels of proteins

and phospholipids under 9 experimental conditions. Note that this data can be

regarded as a common benchmark in causal inference, because it comes with a

known consensus network and is widely accepted by the biological community.

Following the same treatment as in Yuan et al. (2019), we also consider one

specific condition among the 9 experimental conditions, which uses anti-cluster

of differentiation 3 (CD3) /cluster of differentiation 28 (CD28) and intercellular

adhesion molecule-2 (ICAM-2) as general perturbations since they attempt to

activate cell signaling. Then, we use the consensus network in Sachs et al. (2005)
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Table 4. The averaged running times (in minutes) of all the competitors under various
scenarios of Examples 1 to 3 together with their standard errors in parentheses. Here,
** denotes that the corresponding methods did not produce any results after running for
24 hours.

n p Methods Example 1 Example 2 Example 3

200

50

NL 4.30(0.13) 2.97(0.10) 3.92(0.48)

NPVAR ** ** **

CAM 590.33(40.40) 590.19(47.06) 590.94(27.95)

RESIT 25.37(0.21) 26.62(0.56) 25.22(0.53)

GES 0.09(0.01) 0.07(0.01) 0.10(0.02)

PC 3.73(1.15) 2.32(1.25) 0.08(0.01)

NOTEARS 45.81(21.10) 21.95(8.37) 240.12(69.53)

100

NL 7.70(0.21) 5.14(0.15) 7.76(0.71)

NPVAR ** ** **

CAM ** ** **

RESIT 117.90(0.34) 120.95(0.52) 120.62(0.87)

GES 0.61(0.13) 0.47(0.08) 0.98(0.14)

PC ** ** 0.38(0.07)

NOTEARS 393.86(120.93) 173.25(38.55) 2, 441.87(641.96)

500

50

NL 29.32(0.37) 19.41(0.15) 27.45(2.47)

NPVAR 38.89(3.12) 37.27(2.74) 109.26(8.70)

CAM ** ** **

RESIT 186.52(1.96) 189.02(2.84) 181.36(4.61)

GES 0.09(0.01) 0.07(0.01) 0.12(0.01)

PC 1, 225.07(576.60) 175.29(73.81) 0.09(0.01)

NOTEARS 39.28(13.71) 18.62(4.56) 353.39(44.41)

100

NL 55.45(0.16) 38.58(0.18) 56.08(6.28)

NPVAR ** ** **

CAM ** ** **

RESIT 799.70(28.69) 811.64(11.94) 802.94(10.19)

GES 0.73(0.21) 0.40(0.05) 0.81(0.13)

PC ** ** 0.44(0.09)

NOTEARS 176.17(43.89) 132.30(67.72) 2, 679.03(668.18)

as the true network as illustrated in Figure 3(a), and apply all the competitors to

analyze this data. The learned DAGs are illustrated in Figure 3 and the numerical

metrics of all the competitors are also reported in Table 5.

Figure 3 clearly shows that NL is the best performer in that 19 directed

edges are learned and among them, 12 agree with the true DAG and 7 are

falsely reconstructed. GES is the second-best performer that 8 directed edges

are correctly recovered and the next is PC with 7 edges correctly estimated.

NPVAR and CAM perform similarly, they both correctly identify 5 edges and

obtain similar skeleton structures, largely due to the fact that they both use
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(a) True Graph (b) NL (c) NPVAR

(d) CAM (e) RESIT (f) GES

(g) PC (h) NOTEARS

Figure 3. The true DAG and DAG learned by the seven competitors. Correct discoveries
are represented by solid blue/dark lines, false discoveries are displayed as solid grey/light
lines.

additive modeling and thus may miss some directed relations with a more general

dependence structure. NOTEARS also correctly recover 5 directed edges at the

cost of returning a large number of false discovered edges. RESIT only correctly

identifies 4 edges. Notably, many true edges, such as PKC → PKA and PKA

→ P38, are correctly recovered by NL, but are missed by all the other methods.

This indicates that NL can detect more general causal relations among collected

nodes. Its superior performance is also supported by the numerical metrics in

Table 5, where it excels under almost all the evaluation metrics.
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Table 5. The numerical performance of all the competitors in application to cell signalling
data.

Methods SHD FDR TPR MCC

NL 0.1364 0.3684 0.60 0.5418

NPVAR 0.2000 0.5833 0.25 0.2246

CAM 0.2091 0.6154 0.25 0.2049

RESIT 0.2182 0.6667 0.20 0.1501

GES 0.1455 0.3333 0.40 0.4479

PC 0.1455 0.3000 0.35 0.4321

NOTEARS 0.3909 0.8485 0.25 -0.0227

6. Discussion

This paper proposes an efficient method to learn nonparametric DAG from

observed data with sound statistical guarantees. It leverages the concept of

topological layers to facilitate nonparametric DAG learning , connecting it with

kernel ridge regression and learning gradients by showing that the introduced

layers can be exactly reconstructed via kernel ridge regression. More interestingly,

the parent-child relations can be simultaneously recovered without any extra

estimation by using the derivative reproducing property in the smooth RKHS.

An efficient learning algorithm is developed and the statistical guarantees of the

proposed method in terms of exact DAG recovery are established ensuring the

underlying DAG with general parent-child dependence can be exactly recovered.

Its superior performance is also supported by numerical experiments on various

simulated and real-life examples. It is worth noting that one of the possible future

work is to modify the proposed method to reconstruct the topological layers in

a bottom-up fashion if some decreasing noise-variance assumption is satisfied,

where the topological layers should be defined based on the longest distance to

one of the leaf nodes.

Supplementary Material

The supplementary material includes all the theoretical proofs.
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