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Abstract: Community detection refers to the problem of clustering the nodes of

a network (either a graph or a hypergrah) into groups. Various algorithms are

available for community detection, all of which apply to uncensored networks. In

practice, a network may have censored (or missing) values, which have been shown

to have a non-negligible effect on the structural properties of a network. In this

study, we examine community detection in a censored m-uniform hypergraph from

an information-theoretic point of view. As such, we derive the information-theoretic

threshold for the exact recovery of the community structure. Furthermore, we

propose a polynomial-time algorithm to exactly recover the community structure

up to the threshold. The proposed algorithm consists of a spectral algorithm plus

a refinement step. It is also interesting to determine whether a single spectral

algorithm without refinement achieves the threshold. To this end, we explore the

semi-definite relaxation algorithm and analyze its performance.

Key words and phrases: Censored hypergraph, community detection, exact recovery,

information-theoretic threshold.

1. Introduction

Many complex data sets can be modeled as a network of items (nodes). One

of the most popular topics in network data mining is to understand which items

are similar to each other. Community detection refers to the problem of clustering

the nodes of a network into groups based on similarity. Community detection is

widely used in analyses of, for example, social networks (Goldenberg et al. (2010);

Zhao, Levina and Zhu (2011)), protein-to-protein interaction networks (Chen

and Yuan (2006)), and image segmentation (Shi and Malik (1997)). Existing

studies on community detection can be classified into two categories: (1) those

that derive an information-theoretic threshold used to recover the community

structure (Abbe, Bandeira and Hall (2016); Mossel, Neeman and Sly (2015,

2017); Chien, Lin and Wang (2018); Dhara et al. (2021); Hajek, Wu and Xu

(2018); Yuan and Shang (2021a)); and (2) those that devise efficient algorithms

to recover the community structure (Ghoshdastidar and Dukkipati (2014, 2017);

Luo and Zhang (2020); Liu, Jan and Yan (2015); Ke, Shi and Xia (2020);
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Yuan and Qu (2021); Ahn, Lee and Suh (2018, 2019); Hajek, Wu and Xu (2016);

Gao et al. (2018); Weng and Feng (2021); Zhen and Wang (2021); Lei and Rinaldo

(2015); Jin (2015)); see Abbe (2018); Bi et al. (2021) for additional references.

The aforementioned methods all apply to uncensored networks.

In practice, network data may have censored or missing values. For example,

in a social network, the non-response of actors can cause missingness of ties

(Huisman (2009); Gile and Handcock (2016)); and in an MRI network, miss-

ingness may be due to the high cost of PET scanning (Liu et al. (2018)).

Missing values have non-negligible effects on the structural properties of a network

(Huisman (2009); Smith, Moody and Morgan (2018)). Most existing algorithms

for community detection apply to uncensored networks. Thus, a natural question

is how to recover communities in a censored network. To the best of our

knowledge, Abbe et al. (2014) was the first to examine community detection

in a censored graph, obtaining an information-theoretic threshold for the exact

recovery of communities. Recently, Dhara et al. (2021) showed that a spectral

algorithm without a refinement step can exactly recover the community structure

in censored graph, up to the information-theoretic threshold.

Many complex networks in the real world can be formulated as a hypergraph,

where hyperedges are used to model higher-order interactions between individuals

(Estrada and Rodriguez-velasquez (2005); Ouvrard, Goff and Marchand-Maillet.

(2017); Ramasco, Dorogovtsev and Pastor-Satorras (2004); Newman (2001);

Ghoshal et al. (2009); Ghoshdastidar and Dukkipati (2014)). For example,

in a folksonomy network, a hyperedge may represent a triple (user, resource,

annotation) structure (Ghoshal et al. (2009)), and in coauthorship networks, the

coauthors of a paper form a hyperedge (Estrada and Rodriguez-velasquez (2005);

Ouvrard, Goff and Marchand-Maillet. (2017); Ramasco, Dorogovtsev and Pastor-

Satorras (2004); Newman (2001)). Hypergraph learning with missing values has

recently attracted much attention (Hu and Shi (2015); Liu et al. (2017, 2018)). In

this study, we are interested in detecting communities in censored hypergraphs. It

is not immediately clear how the sharp threshold obtained by (Dhara et al. (2021))

changes in the case of a censored hypergraph, which motivated this research.

Our contributions to the literature are summarized as follows. We derive an

information-theoretic threshold for the exact recovery of a community structure in

a censored hypergraph. Interestingly, the threshold is larger, in general, than that

in the graph case. In this sense, community detection in a censored hypergraph

is more difficult than it is in the case of a censored graph. In addition, we

propose a polynomial-time algorithm that can exactly recover the community

structure up to the information-theoretic threshold. The proposed algorithm

consists of a spectral algorithm plus a refinement step. It is also interesting to

study whether a single spectral algorithm without refinement can achieve the

threshold as the censored graph case Dhara et al. (2021). To this end, we study

the semi-definite relaxation algorithm, and provide a sufficient condition for the



DETECTION IN CENSORED HYPERGRAPH 483

algorithm to achieve exact recovery.

1.1. The censored hypergraph block model

For a positive integer n, let V = {1, 2, . . . , n} denote a set of nodes and E be

a set of subsets of V. The pair Hm = (V, E) is called an undirected m-uniform

hypergraph if |e| = m, for every e ∈ E . That is, each element e ∈ E (called

a hyperedge) contains exactly m distinct nodes. The hypergraph Hm can be

represented as an m-dimensional symmetric array A = (Ai1,...,im) ∈ {0, 1}⊗nm ,

where Ai1i2...im = 1 if {i1, i2, . . . , im} is a hyperedge, and Ai1i2...im = 0 otherwise.

In addition, Ai1i2...im = Aj1j2...jm if {i1, i2, . . . , im} = {j1, j2, . . . , jm}. In this

study, a self-loop is not allowed, that is, Ai1i2...im = 0 if |{i1, i2, . . . , im}| < m.

When m = 2, H2 is the usual graph that has been widely used in community

detection problems (Abbe (2018)). A hypergraph is said to be random if elements

of the adjacency tensor are random. Throughout this paper, we focus on the

hypergraph generated from the censored m-uniform hypergraph stochastic block

model (CHSBM) Hm(n, p, q, α), defined below.

Definition 1 (Censored m-uniform Hypergraph Stochastic Block Model

(CHSBM)). Each node i ∈ V is randomly and independently assigned a label

σi, with

P(σi = +1) = P(σi = −1) =
1

2
.

Let σ = (σ1, . . . , σn)T be a column vector of labels, I+(σ) = {i|σi = +1},
and I−(σ) = {i|σi = −1}. The nodes in I+(σ) and I−(σ) constitute two

communities. The distinct nodes i1, i2, . . . , im form a hyperedge with probability

p if {i1, i2, . . . , im} is a subset of I+(σ) or I−(σ), and q otherwise. The status of

each hyperedge is revealed independently with probability α. A hyperedge of the

resulting hypergraph takes a value in {1, 0, ∗}, where ∗ means the hyperedge is

censored or missing (the hyperedge status is not revealed). This model is denoted

as Hm(n, p, q, α).

The status of each hyperedge in Hm(n, p, q, α) with α < 1 can take one of

three values: 1 (present), 0 (absent), or ∗ (censored or missing). When α = 1, the

hypergraph is uncensored and Hm(n, p, q, 1) is the usual hypergraph stochastic

block model (Ghoshdastidar and Dukkipati (2014, 2017); Chien, Lin and Wang

(2018); Kim, Bandeira and Goemans (2018); Ke, Shi and Xia (2020); Yuan and

Shang (2021a)). The censored stochastic block model CSBM(p, q, α) studied

in (Dhara et al. (2021)) corresponds to H2(n, p, q, α). Throughout this paper,

we assume p, q ∈ (0, 1) are fixed constants, p > q, and α = t log n/nm−1, for

some constant t > 0. We consider the log n/nm−1 order of α because: this is the

smallest order for which exact recovery is possible; see Theorem 1 and Theorem

2.
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Table 1. Regions for exact recovery.

Region Exact Recovery

(a) t < Im(p, q) Exact recovery is impossible

(b) t > Im(p, q) Exact recovery is possible

1.2. Summary of our main result

Given a hypergraph A generated from Hm(n, p, q, α), community detection

refers to the problem of recovering the unknown true label vector σ, or

equivalently, identifying the sets I+(σ) and I−(σ). We say an estimator σ̂ is

an exact recovery of σ, σ̂ exactly recovers σ, or σ̂ achieves an exact recovery if

P(∃s ∈ {±1} : σ̂ = sσ) = 1− o(1).

That is, the estimator σ̂ is equal to σ or −σ with probability 1 − o(1). If there

exists an estimator σ̂ that exactly recovers σ, we say an exact recovery is possible.

Otherwise, we say that an exact recovery is not possible.

For m = 2, Dhara et al. (2021) establishes the sharp information-theoretic

threshold for exact recovery. The authors show that a spectral algorithm can

exactly recover the true label without requiring a refinement step. It is not

immediately clear how m ≥ 3 changes the threshold for an exact recovery. More

importantly, the spectral method in (Dhara et al. (2021)) cannot be extended

straightforwardly to m ≥ 3, because the spectral analysis of a tensor is still not

well developed.

Here, we focus on m ≥ 3 and derive the sharp information-theoretic threshold

for an exact recovery. Define Im(p, q) as

Im(p, q) =
2m−1(m− 1)!

(
√
p−√q)2 + (

√
1− p−

√
1− q)2

.

Theorem 1 shows that the maximum likelihood estimator (MLE) does not

coincide with the true label with probability 1− o(1) if t < Im(p, q). Theorem 2

states that the MLE succeeds with probability 1 − o(1) if t > Im(p, q). We also

propose a spectral algorithm plus a refinement step that can achieve an exact

recovery up to the information-theoretic threshold; see Theorem 3. Finally, we

prove in Theorem 4 that the semi-definite relaxation algorithm can exactly recover

the true label under mild conditions. Table 1 summarizes our main results. For

m = 2, 3 and q = 0.2, Figure 1 displays the region in which an exact recovery is

impossible; and the region in which an exact recovery is possible. Interestingly,

with fixed q, the impossible region of m = 3 contains that of m = 2 as a proper

subset. In this sense, an exact recovery becomes more difficult as m increases.

For fixed q and m, Im(p, q) decreases as p goes to one; hence, an exact recovery

becomes easier.
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Throughout this paper, we adopt the Bachmann–Landau notation o(1) and

O(1). For two positive sequences an and bn, we write an ∼ bn if limn→∞ an/bn = 1.

Denote an � bn if 0 < c1 ≤ an/bn ≤ c2 < ∞, for constants c1 and c2. Denote

an � bn or bn � an if limn→∞ an/bn = ∞. For a square matrix M , ||M ||
denotes the operator norm of M , and M � 0 means M is symmetric and positive

semi-definite. Define 〈M,N〉 =
∑

i,jMijNij.

2. Main Results

In this section, we present an information-theoretic threshold for the exact

recovery of a CHSBM. First, we use the maximum likelihood method to show

that an exact recovery is impossible if t < Im(p, q). Then, we prove that the

MLE can exactly recover the true label if t > Im(p, q). Combining these two

results yields the sharp information-theoretic threshold for exact recovery. This

threshold provides a benchmark for developing practical recovery algorithms.

Because the time complexity of an MLE is not polynomial in n, we propose a

polynomial-time algorithm that achieves an exact recovery if t > Im(p, q).

2.1. Sharp threshold for exact recovery

In this subsection, we derive a sharp phase-transition threshold for exact

recovery. The first result specifies a sufficient condition for the impossibility of

exact recovery.

Theorem 1. For each fixed integer m ≥ 2, if t < Im(p, q), then P(σ̂ = σ) = o(1)

for any estimator σ̂. Here, Im(p, q) is defined as

Im(p, q) =
2m−1(m− 1)!

(
√
p−√q)2 + (

√
1− p−

√
1− q)2

. (2.1)

Theorem 1 states that no estimator can exactly recover the true label if

t < Im(p, q). For m = 2, I2(p, q) is just tc(p, q) in (Dhara et al. (2021)). Our

result can be considered as a nontrivial extension of Theorem 2.1 in (Dhara et al.

(2021)). Interestingly, with fixed p and q, the region t < I2(p, q) is smaller than

t < Im(p, q) for m ≥ 3. A similar phenomenon exists in the exact recovery of a

community in an uncensored hypergraph stochastc block model (Kim, Bandeira

and Goemans (2018)), although it differs significantly from that in hypothesis

testing for communities. For example, Yuan and Shang (2021b) derived the sharp

boundary for testing the presence of a dense subhypergraph. When the number

of nodes in the dense subhypergraph is not too small, the region in which any

test is asymptotically powerless for m = 2 is larger than m ≥ 3.

The next result shows that the threshold Im(p, q) is actually sharp for exact

recovery.
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Figure 1. Regions for exact recovery with m = 2, 3 and q = 0.2. Impossible region: exact
recovery is impossible. Possible region: exact recovery is possible.

Theorem 2. For each fixed integer m ≥ 2, if t > Im(p, q), with Im(p, q) defined

in (2.1), then the MLE exactly recovers the true label with probability 1− o(1).

By Theorem 2, if t > Im(p, q), the true label can be exactly recovered by

the MLE. Combining Theorem 1 and Theorem 2, we get the sharp boundary

t = Im(p, q) for exact recovery, which is a surface in R3. For illustration, we

visualize the regions t > Im(p, q) and t < Im(p, q) with q = 0.2 and m = 2, 3

in Figure 1. The red region represents t < Im(p, 0.2), where exact recovery is

impossible. The green region corresponds to t > Im(p, 0.2), where exact recovery

is possible. Clearly, the green region for m = 3 is smaller than that for m = 2.

In this sense, an exact recovery becomes more difficult as m increases.

2.2. Efficient algorithm for exact recovery

Because the time complexity of an MLE is not polynomial in n, we propose

an efficient algorithm for reconstructing two communities up to the information-

theoretic threshold. The algorithm starts with a random splitting of the

hypergraph A into two parts. Then, a spectral algorithm is applied to the

first part, followed by a refinement based on the second part. We describe the

algorithm in the following three steps.

In the first step, we randomly split the hypergraph A into two parts. Denote

Mm = {(i1, i2, . . . , im) | 1 ≤ i1 < · · · < im ≤ n}. Let S1 be a random subset of Mm

obtained by including each element of Mm in S1 with probability log log n/log n.

Let S2 be the complement of S1 in Mm, that is, S2 = Mm − S1. Define a

hypergraph Ã as

Ãi1i2...im =

{
1[Ai1i2...im = 1], {i1, i2, . . . , im} ∈ S1,

0, otherwise.
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Here, 1[E] is the indicator function of event E. Define hypergraph Ā as

Āi1i2...im =

{
Ai1i2...im , {i1, i2, . . . , im} ∈ S2,

∗, otherwise.

Then, hypergraph A is divided randomly into two independent hypergraphs, Ã

and Ā.

In the second step, we apply the weak recovery algorithm HSC in (Ahn,

Lee and Suh (2018)) to Ã. The HSC algorithm converts a hypergraph Ã to

an n × n similarity matrix B using Bij =
∑

1≤i3<i4<···<im≤n Ãiji3i4...im , and then

applies geometric two-clustering to the top two eigenvectors of B to output the

communities Ĩ+(σ) and Ĩ−(σ). The sampling probability log log n/log n in the first

step ensures that the hyperedge probability of Ã has order (log log n/log n)α =

t log log n/nm−1 (Here, the log log n factor can be replaced by any an with an →
∞). According to Theorem 1 of Ahn, Lee and Suh (2018), n− o(n) of the nodes

are correctly labeled by the HSC algorithm with probability 1− o(1).

The last step is to refine the communities Ĩ+(σ) and Ĩ−(σ) based on Ā. For

a set S ⊂ [n], define e(i, S) as

e(i, S) =
∑

i2,...,im∈S\{i}
i2<···<im

{
log

(
p

q

)
1[Āii2...im = 1] + log

(
1− p
1− q

)
1[Āi1i2...im = 0]

}
.

For each node i ∈ Ĩ+(σ), flip the label of i if

e{i, Ĩ+(σ)} < e{i, Ĩ−(σ)}.

For each node j ∈ Ĩ−(σ), flip the label of j if

e{j, Ĩ−(σ)} < e{j, Ĩ−(σ)}.

Let Î+(σ) and Î−(σ) be the resulting communities. If |Î+(σ)| 6= |Ĩ+(σ)|, output

Ĩ+(σ) and Ĩ−(σ); otherwise, output Î+(σ) and Î−(σ).

The above algorithm is summarized in Algorithm 1.

Theorem 3. For each fixed integer m ≥ 2, if t > Im(p, q), with Im(p, q) defined

in (2.1), then Algorithm 1 exactly recovers the true label with probability 1−o(1).

Note that the time complexity of Algorithm 1 is at most O(nm). Specifically,

the random splitting in Step 1 and the refinement in Step 3 have time complexity

of at most O(nm). In Step 2, the weak recovery algorithm HSC of Ahn, Lee

and Suh (2018) has time complexity O(nm) (see the comments below Remark 1

of Ahn, Lee and Suh (2018)). Hence, Theorem 3 states that the information-

theoretic threshold can be attained by an algorithm with polynomial time

complexity.
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Algorithm 1: Spectral algorithm plus refinement for exact recovery.

Input: A censored m-uniform hypergraph A generated from Hm(n, p, q, α).

Step 1: Random splitting
Randomly select elements in Mm = {(i1, i2, . . . , im) | 1 ≤ i1 < · · · < im ≤ n}
with probability log log n/log n to form a subset S1 ⊂Mm, and let S2 =
Mm − S1. Construct the hypergraph Ã as Ãi1i2...im = 1[Ai1i2...im = 1] if
i1, i2, . . . , im ∈ S1, and Ãi1i2...im = 0 otherwise. Construct the hypergraph
Ā as Āi1i2...im = Ai1i2...im if i1, i2, . . . , im ∈ S2, and Āi1i2...im = ∗ otherwise.

Step 2: Spectral algorithm
Apply the weak recovery algorithm HSC in Ahn, Lee and Suh (2018) to Ã,
and denote the community output as Ĩ+(σ) and Ĩ−(σ).

Step 3: Refinement
Flip the label of i ∈ Ĩ+(σ) if e{i, Ĩ+(σ)} < e{i, Ĩ−(σ)}.
Flip the label of j ∈ Ĩ−(σ) if e{j, Ĩ−(σ)} < e{j, Ĩ−(σ)}.
Let Î+(σ) and Î−(σ) be the resulting communities.

Output: If |Î+(σ)| 6= |Ĩ+(σ)|, output Ĩ+(σ) and Ĩ−(σ);
otherwise, output Î+(σ) and Î−(σ).

2.3. Semi-definite relaxation algorithm

In subsection 2.2, we show that a spectral algorithm with a refinement step

can achieve an exact recovery. It is also interesting to determine whether a single

spectral algorithm without a refinement step can achieve the threshold. In the

graph case (m = 2), the answer is yes and the semi-definite relaxation algorithm

and the spectral algorithm are shown to succeed without a refinement step (Hajek,

Wu and Xu (2016); Dhara et al. (2021)). In the hypergraph case (m ≥ 3), either

censored or uncensored, this remains an open problem. In this subsection, we

study the semi-definite relaxation algorithm and analyze its performance. To this

end, we define a new hypergraph based on the given hypergraph A, and transform

it to a weighted graph. Then, we show that applying the semi-definite relaxation

algorithm to the weighted graph can achieve an exact recovery.

Define the hypergraph Ã based on A as

Ãi1i2...im = 1[Ai1i2...im = 1],

and Ãi1i2...im = 0 if |{i1, i2, . . . , im}| ≤ m − 1. Each hyperedge Ãi1i2...im takes a

value in {1, 0}. The hypergraph Ã shares the same community structure as that

of A, because

E(Ãi1i2...im) =

{
pα, {i1, i2, . . . , im} ⊂ I+(σ) or I−(σ);

qα, otherwise.
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Next, we construct a weighted graph G = [Gij] based on Ã by using

Gij =
∑

1≤i3<···<im≤n

Ãiji3...im .

Define the semi-definite program problem (SDP) as

max
Y
〈G, Y 〉

s.t. Y � 0

〈Y, J〉 = 0 (2.2)

Yii = 1, i ∈ [n],

where J is an n × n all-one matrix. Suppose σ is the true label, and denote

Y = σσT . Let Ŷ be the solution to the SDP (2.2). The following result provides

a sufficient condition under which Ŷ is an exact recovery of Y .

Theorem 4. For each fixed integer m ≥ 2, let

Jm(p, q) =
2m+2(m− 2)!{mp− (m− 2m)q}

(p− q)2
.

If t > Jm(p, q), then P(Ŷ = Y ) = 1− o(1), where Y = σσT , with true label σ.

Note that Jm(p, q) > Im(p, q), for each m ≥ 2. When m = 2 and the graph is

uncensored, Ŷ can exactly recover the true label up to the information-theoretic

threshold (Hajek, Wu and Xu (2016)). However, for m ≥ 3, it is unclear whether

Ŷ succeeds in the range Im(p, q) < t < Jm(p, q). A similar gap exists in the

uncensored hypergraph case (Kim, Bandeira and Goemans (2018)). The proof of

Theorem 4 is provided in the Supplementary Material.

3. Proof of Theorem 1

In this section, we prove Theorem 1.

Let l(σ) be the log-likelihood function of a label σ. Note that by Definition

1.1, the true label vector σ is uniformly and independently selected from S =

{±1}n. By Proposition 4.1 in Dhara et al. (2021), if there are labels ηt (1 ≤
t ≤ kn) with kn → ∞ such that l(η1) = l(η2) = · · · = l(ηkn) = l(σ), then the

MLE fails to exactly recover the true label with probability 1− o(1). Our proof

proceeds by constructing labels ηt (1 ≤ t ≤ kn) with kn →∞ under the condition

t < Im(p, q).

First, we provide an explicit expression of the likelihood function. Note that

for distinct nodes i1, i2, . . . , im, we have



490 YUAN, ZHAO AND ZHAO

Ai1i2...im =


1 ,

0 ,

∗ .

For convenience, let 1[E] be the indicator function of event E and

1i1i2...im(σ) = 1[σi1 = σi2 = · · · = σim ].

Then, the likelihood function for σ given an observation of hypergraph A from

Hm(n, p, q, α) is

L =
∏

1≤i1<···<im≤n

(pα)1[Ai1i2...im=1]1i1i2...im (σ){α(1− p)}1[Ai1i2...im=0]1i1i2...im (σ)

×(qα)1{Ai1i2...im=1](1−1i1i2...im (σ)){α(1− q)}1[Ai1i2...im=0](1−1i1i2...im (σ))

×(1− α)1[Ai1i2...im=∗]

=
∏

1≤i1<···<im≤n

(1− α)1[Ai1i2...im=∗](qα)1[Ai1i2...im=1]

(
p

q

)1[Ai1i2...im=1]1i1i2...im (σ)

×[α(1− q)]1[Ai1i2...im=0]

(
1− p
1− q

)1[Ai1i2...im=0]1i1i2...im (σ)

=
∏

1≤i1<···<im≤n

(1− α)1[Ai1i2...im=∗](qα)1[Ai1i2...im=1][α(1− q)]1[Ai1i2...im=0]

×
∏

1≤i1<···<im≤n

(
p

q

)1[Ai1i2...im=1]1i1i2...im (σ) (1− p
1− q

)1[Ai1i2...im=0]1i1i2...im (σ)

.

The MLE is obtained by maximizing L with respect to σ. The first product factor

of L does not involve σ. Hence, we need only maximize the second product factor

of L to obtain the MLE. Denote

l(σ) =
∑

1≤i1<···<im≤n

{
log

(
p

q

)
1[Ai1i2...im = 1]1i1i2...im(σ)

+ log

(
1− p
1− q

)
1[Ai1i2...im = 0]1i1i2...im(σ)

}
.

The log-likelihood function is equal to

logL = Rn + l(σ), (3.1)

where Rn is independent of σ.

Below, we construct labels ηt (1 ≤ t ≤ kn) with kn →∞ under the condition

t < Im(p, q). Because Rn is independent of σ, we need only focus on l(σ).
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Note that

l(σ) ={
log

(
p

q

)
1[Ai1...im = 1] + log

(
1− p
1− q

)
1[Ai1...im = 0]

}
1[σi1 = · · · = σim = +1]

+

{
log

(
p

q

)
1[Ai1...im = 1] + log

(
1− p
1− q

)
1[Ai1...im = 0]

}
1[σi1 = · · · = σim = −1].

Suppose i0 ∈ I+(σ) has exactly m1 present hyperedges and m2 absent hyperedges

in I+(σ), and has exactly m1 present hyperedges and m2 absent hyperedges in

I−(σ). Furthermore, suppose j0 ∈ I−(σ) has exactly m1 present hyperedges and

m2 absent hyperedges in I+(σ), and has exactly m1 present hyperedges and m2

absent hyperedges in I−(σ). Then, l(σ) remains the same if we flip the labels

of i0 and j0. Let σ̃ be the labels obtained from σ by flipping the labels of i0
and j0. We verify that l(σ) = l(σ̃). To prove this, let T1 = log (p/q) and

T2 = log ((1− p)/(1− q)); then,

l(σ) =

(
T1

∑
i1i2...im

1[Ai1i2...im = 1] + T2

∑
i1i2...im

1[Ai1i2...im = 0]

)
1[σi1 = · · · = σim = +1]

+

(
T1

∑
i1i2...im

1[Ai1i2...im = 1] + T2

∑
i1i2...im

1[Ai1i2...im = 0]

)
1[σi1 = · · · = σim = −1].

Further, l(σ) can be written as

l(σ) = T1

∑
i1i2...im∈I+(σ)
i1i2...im 6=i0

1[Ai1i2...im = 1] + T1

∑
i2...im∈I+(σ)
i2...im 6=i0

1[Ai0i2...im = 1]

+T2

∑
i1i2...im∈I+(σ)
i1i2...im 6=i0

1[Ai1i2...im = 0] + T2

∑
i2...im∈I+(σ)
i2...im 6=i0

1[Ai0i2...im = 0]

+T1

∑
i1i2...im∈I−(σ)
i1i2...im 6=j0

1[Ai1i2...im = 1] + T1

∑
i2...im∈I−(σ)
i2...im 6=j0

1[Aj0i2...im = 1]

+T2

∑
i1i2...im∈I−(σ)
i1i2...im 6=j0

1[Ai1i2...im = 0] + T2

∑
i2...im∈I−(σ)
i2...im 6=j0

1[Aj0i2...im = 0],

and

l(σ̃) = T1

∑
i1i2...im∈I+(σ)
i1i2...im 6=j0

1[Ai1i2...im = 1] + T1

∑
i2...im∈I+(σ)
i2...im 6=j0

1[Aj0i2...im = 1]
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+ T2

∑
i1i2...im∈I+(σ)
i1i2...im 6=j0

1[Ai1i2...im = 0] + T2

∑
i2...im∈I+(σ)
i2...im 6=j0

1[Aj0i2...im = 0]

+ T1

∑
i1i2...im∈I−(σ)
i1i2...im 6=i0

1[Ai1i2...im = 1] + T1

∑
i2...im∈I−(σ)
i2...im 6=i0

1[Ai0i2...im = 1]

+ T2

∑
i1i2...im∈I−(σ)
i1i2...im 6=i0

1[Ai1i2...im = 0] + T2

∑
i2...im∈I−(σ)
i2...im 6=i0

1[Ai0i2...im = 0].

Then, l(σ) = l(σ̃) by the assumption of i0 and j0.

Next, we show there are kn (kn →∞) such pairs. More specifically, we show

that there exist i1, i2, . . . , ik ∈ I+(σ) and j1, j2, . . . , jk ∈ I−(σ) with k � 1 such

that the likelihood function remains unchanged if we flip the label of a pair (it, jt),

for t = 1, 2, . . . , k. Let ηt be the label obtained by flipping the label of it, jt in σ.

Then, l(ηt) = l(σ), for 1 ≤ t ≤ k →∞.

Let n1 = |I+(σ)| and n2 = |I−(σ)|. Then, n1, n2 = (n/2){1 +O(n−1/3)} with

probability 1− o(1). Hence, we take n1 = n2 = n/2 below. Let S+ ⊂ I+(σ) be a

random subset with |S+| = n/log2 n, and S− ⊂ I−(σ) be a random subset with

|S−| = n/log2 n. Denote S = S+ ∪ S−. Define

S0 =
{
i ∈ S|any i2, . . . , it ∈ S, it+1, . . . , im ∈ Sc, s.t. Aii2...itit+1...im = ∗, t ≥ 2

}
.

For each node i ∈ S0, the hyperedge Aii2...im is possibly revealed if and only if

{i2, . . . , im} ⊂ I+(σ)− S or {i2, . . . , im} ⊂ I−(σ)− S.

We show that |S0| = 2n{1 + o(1)}/(log2 n) with probability 1− o(1). Let

T =
m∑
t=2

∑
i1,...,it∈S

it+1,...,im∈Sc

1[Ai1i2...itit+1...im 6= ∗].

The expectation of T is

ET =
m∑
t=2

(
2n

log2 n

t

)(
n− 2n

log2 n

m− t

)
α

=
m∑
t=2

(
2n

log2 n

t

)(
n− 2n

log2 n

m− t

)
t log n

nm−1

=
c · nm

log4 n

t log n

nm−1

� n

log3 n
.
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Hence, by the Markov inequality, we have

P
(
T ≥ n

log2 n
√

log n

)
≤ 1

n/(log2 n
√

log n)

c · n
log3 n

=

√
log n

log n
= o(1).

Then, T < n/(log2 n
√

log n) with probablity 1 − o(1). Hence, |S0| = (2n/log2 n)

(1 + o(1)) with probability 1− o(1).

Let m1 =
√
pqt log n/{2m−1(m− 1)!} and m2 =

√
(1− p)(1− q)t log n/

{2m−1(m− 1)!}. For some k � 1, we show that there exists it ∈ S0 ∩ S+, for

(1 ≤ t ≤ k), such that it has m1 present hyperedges and m2 absent hyperedges

in I+(σ) and I−(σ). Denote

ñ1 =

(
n1 − 2n

log2 n

m− 1

)
∼ nm−1

2m−1(m− 1)!
.

Let i0 ∈ S0 ∩ S+. The probability that i0 has m1 present hyperedges and m2

absent hyperedges in I+(σ) and I−(σ) is

p0 =
ñ1!

m1!m2!(ñ1 −m1 −m2)!
· (αp)m1{α(1− p)}m2(1− α)(ñ1−m1−m2)

× ñ1!

m1!m2!(ñ1 −m1 −m2)!
· (αq)m1{α(1− q)}m2(1− α)(ñ1−m1−m2)

∼ 1

m1!2m2!2

{
ñ
ñ1+1/2
1 e−ñ1

(ñ1 −m1 −m2)ñ1−m1−m2+1/2e−ñ1+m1+m2

}2

(α2pq)m1

×{α2(1− p)(1− q)}m2(1− α)2(ñ1−m1−m2)

=
1

m1!2m2!2

[
(ñ1 −m1 −m2)

m1+m2

em1+m2{1− (m1 +m2)/ñ1}ñ1+1/2

]2
(α2pq)m1

×{α2(1− p)(1− q)}m2(1− α)2(ñ1−m1−m2)

=
1

m1!2m2!2

{
ñm1+m2
1

em1+m2e−(m1+m2)

}2

(α2pq)m1

×
{
α2(1− p)(1− q)

}m2
e−t logn/{2

m−2(m−1)!}

=
ñ
2(m1+m2)
1

m1!2m2!2
e−t logn/{2

m−2(m−1)!}(α2pq)m1{α2(1− p)(1− q)}m2

=
n−t/{2

m−2(m−1)!}

m1!2m2!2
(α2ñ2

1pq)
m1{α2ñ2

1(1− p)(1− q)}m2

= n−t/{2
m−2(m−1)!} e

2(m1+m2)

4π2m1m2

(
α2ñ2

1pq

m2
1

)m1
{
α2ñ2

1(1− p)(1− q)
m2

2

}m2

=
1

4π2m1m2

n−t/{2
m−2(m−1)!}e[{

√
pq+
√

(1−p)(1−q)}/{2m−2(m−1)!}t logn

=
1

4π2m1m2

n−[t/{2
m−2(m−1)!}]{1−√pq−

√
(1−p)(1−q)}
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=
1

4π2m1m2

n−t·[{(
√
p−√q)2+(

√
1−p−

√
1−q)2}/{2m−1(m−1)!}].

If t < 2m−1(m− 1)!/{(√p−√q)2 + (
√

1− p−
√

1− q)2}, then p0 � n1−ε/n, for

some ε ∈ (0, 1). Similarly, the probability that j0 ∈ S0 ∩ S− has m1 present

hyperedges and m2 absent hyperedges in I+(σ) and I−(σ) is equal to p0.

For i ∈ S0, let 1i denote the event that i has m1 present hyperedges and m2

absent hyperedges in I+(σ) and I−(σ). Define two random variables,

X =
∑

i∈S0∩S+

1i and Y =
∑

i∈S0∩S−

1i.

If 1i = 1j = 1, for i ∈ S0 ∩ S+ and j ∈ S0 ∩ S−, then the likelihood function

remains unchanged if we flip the labels of i and j. By Chebyshev’s inequality,

given |S0 ∩ S+|, we have

P
(
X ≤ (1− ε) 2n

log2 n
p0

)
= P

(
X ≤ (1− ε) 2n

log2 n
p0

∣∣∣∣|S0 ∩ S+| ≥
2n

log2 n
{1− o(1)}

)
· P
(
|S0 ∩ S+| ≥

2n

log2 n
{1− o(1)}

)
+ P

(
X ≤ (1− ε) 2n

log2 n
p0

∣∣∣∣|S0 ∩ S+| <
2n

log2 n
{1− o(1)}

)
· P
(
|S0 ∩ S+| <

2n

log2 n

)
≤ P

(
X ≤ (1− ε)|S0 ∩ S+|p0

∣∣∣∣|S0 ∩ S+| ≥
2n

log2 n
{1− o(1)}

)
+ o(1)

≤ 1

ε2|S0 ∩ S+|p0
+ o(1).

Note that p0 � n1−ε/n for some ε > 0 and |S0∩S+| ≥ (2n/log2 n){1−o(1)}. Then,

X ≥ |S0 ∩ S+|p0 → +∞ with probability 1− o(1). Similarly, Y ≥ |S0 ∩ S+|p0 →
+∞ with probability 1−o(1). As a result, we have pairs (it, jt) (1 ≤ t ≤ k →∞).

For each t, the likelihood remains constant after flipping the labels of it and jt.

The proof is complete by Proposition 4.1 in Dhara et al. (2021).

4. Proof of Theorem 2

Let σ be the MLE. Recall the log-likelihood function in (3.1). The MLE fails

to exactly recover the true label if there exists a label η such that l(η) ≥ l(σ)

with probability δ, for some constant δ > 0. Our proof proceeds by showing that

the probability that the MLE fails is o(1).
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The MLE is obtained by maximizing logL in (3.1) with respect to σ. The

first term of logL does not involve σ. Hence, we need only maximize the second

term of logL to obtain the MLE. Let σ be the MLE. Recall that the MLE fails if

there exists a label η such that l(η) ≥ l(σ) with probability δ, for some constant

δ > 0. Below, we show the probability that the MLE fails is o(1).

Let k be an even number and 1 ≤ k ≤ n/2. Define the Hamming distance

between two labels σ and η as

d(σ, η) = min

{
n∑
i=1

1[σi 6= ηi],
n∑
i=1

1[σi 6= −ηi]
}
.

Let η be a label such that d(σ, η) = k, and denote

Ci1i2...im(A) = log

(
p

q

)
1[Ai1i2...im = 1] + log

(
1− p
1− q

)
1[Ai1i2...im = 0].

Then, the log-likelihood difference at η and σ is

l(η)− l(σ) =
∑

1≤i1<···<im≤n

Ci1i2...im(A){1i1...im(η)− 1i1...im(σ)}.

We show that

P(∃k and d(σ, η) = k, s.t. l(η)− l(σ) ≥ 0) = o(1).

Recall I+(σ) and I−(σ). Denote 1i1...im(η) = I[ηi1 = ηi2 = · · · = ηim ]. Note

that

1i1...im(η)− 1i1...im(σ)

=


1, i1 . . . im ⊂ I+(η) or I−(η), i1 . . . im 6⊂ I+(σ) , I−(σ);

−1, i1 . . . im ⊂ I+(σ) or I−(σ), i1 . . . im 6⊂ I+(η), I−(η);

0, otherwise.

Hence, l(η)− l(σ) is written as

l(η)− l(σ) =
∑
i1...im

i1...im⊂I+(η) or I−(η)
i1...im 6⊂I+(σ),I−(σ)

Ci1...im(A)−
∑
i1...im

i1...im⊂I+(σ) or I−(σ)
i1...im 6⊂I+(η),I−(η)

Ci1...im(A).

It is easy to verify that there are nk = 2
{(

n/2
m

)
−
(
k/2
m

)
−
(
(n−k)/2

m

)}
hyperedges

{i1, . . . , im} such that {i1 . . . im} ⊂ 1+(η) or 1−(η) and {i1 . . . im} 6⊂ 1+(σ),1−(σ).

For convenience, define random variables X and Y as

P(X = 1) = αp, P(X = 0) = α(1− p), P(X = −1) = 1− α.
P(Y = 1) = αq, P(Y = 0) = α(1− q), P(Y = −1) = 1− α.
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Let Xi, Yi be independent and identically distributed (i.i.d.) copies of X,Y ,

respectively, and

Wi = log

(
p

q

)
1[Xi = 1] + log

(
1− p
1− q

)
1[Xi = 0]

Vi = log

(
p

q

)
1[Yi = 1] + log

(
1− p
1− q

)
1[Yi = 0].

For any r > 0, by the Markov inequality, we have

P{l(η)− l(σ) ≥ 0} = P

{
nk∑
i=1

(Vi −Wi) ≥ 0

}

= P

{
nk∑
i=1

(Wi − Vi) ≤ 0

}
= P

{
e
∑nk
i=1(−r)(Wi−Vi) ≥ 1

}
≤
{
E
(
e−rW1

)
E
(
erV1

)}nk
.

Next, we find explicit expressions for the expectations E (e−rW1) and E (erV1):

E(e−rW1) = Ee−r[log(p/q)1[Xi=1]+log{(1−p)/(1−q)}1[Xi=0]]

= e−r log(p/q)αp+ e−r log{(1−p)/(1−q)}α(1− p) + (1− α)

=

(
q

p

)r
αp+

(
1− q
1− p

)r
α(1− p) + (1− α)

E(erV1) = Eer[log(p/q)1[Yi=1]+log{(1−p)/(1−q)}1[Yi=0]]

= er log(p/q)αq + er log{(1−p)/(1−q)}α(1− q) + (1− α)

=

(
p

q

)r
αq +

(
1− p
1− q

)r
α(1− q) + (1− α).

Taking r = 1/2 yields

E(e−rW1) = α
√
pq + α

√
(1− p)(1− q) + (1− α)

= 1 + α{√pq +
√

(1− p)(1− q)− 1},

E(erV1) = α
√
pq + α

√
(1− p)(1− q) + (1− α)

= 1 + α{√pq +
√

(1− p)(1− q)− 1}.

Hence,

log P {l(η)− l(σ) ≥ 0} ≤ nk logE(e−rW1) + nk logE(erV1)

≤ nk{2α(
√
pq +

√
(1− p)(1− q)− 1)}
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= nkα
[
(−1)

{
(
√
p−√q)2 + (

√
1− p−

√
1− q)2

}]
= −nkα

[
(
√
p−√q)2 + (

√
1− p−

√
1− q)2

]
. (4.1)

For k ≥ n/log logn, it is easy to check that nk ≥ (1/2m−1)(n/log log n)
(
n−1
m−1

)
.

Hence, by (4.1), we obtain

P {l(η)− l(σ) ≥ 0}
≤ e−{(

√
p−√q)2+(

√
1−p−

√
1−q)2}(t logn/nm−1)(1/2m−1)(n/log logn){nm−1/(m−1)!}

= e−{(
√
p−√q)2+(

√
1−p−

√
1−q)2}{t/2m−1(m−1)!}(n logn/log logn)

= e−c(n logn/log logn),

for some positive constant c. Clearly, there are
(
n/2
k/2

)2
choices for η, with d(σ, η) =

k. Note that
(
n/2
k/2

)2
≤ 2n. Then, the probability that there exists η with d(σ, η) =

k for k ≥ n/log log n is upper bounded by

n

2
· 2n · e−c(n logn/log logn) = en log 2+log(n/2)−cn(logn/log logn) = o(1).

For k < n/log log n, we have nk = (k/2m−1)
(
n−1
m−1

)
. Then,

P {l(η)− l(σ) ≥ 0} ≤ e−{(
√
p−√q)2+(

√
1−p−

√
1−q)2}(t logn/nm−1)(k/2m−1){nm−1/(m−1)!}

= e−[{(
√
p−√q)2+(

√
1−p−

√
1−q)2}/{2m−1(m−1)!}]tk logn

= n−[{(
√
p−√q)2+(

√
1−p−

√
1−q)2}/{2m−1(m−1)!}]/tk.

There are
(
n/2
k/2

)2
≤ nk choices for η with d(σ, η) = k. Then, the probability that

there exists η with d(σ, η) = k for k < n/log log n is upper bounded by

k ·
(
n
2
k
2

)2

P {l(η)− l(σ) ≥ 0} ≤ knk · n−[{(
√
p−√q)2+(

√
1−p−

√
1−q)2}/{2m−1(m−1)!}]tk

≤ knkn−(1+ε)k

=
k

nεk
= o(1),

where ε is a constant such that [{(√p−√q)2+(
√

1−p−
√

1−q)2}/{2m−1(m−1)!}]t
= 1+ε. This is possible by the condition t > 2m−1(m− 1)!/{(√p−√q)2+(

√
1− p

−
√

1− q)2}. The proof is complete.

5. Proof of Theorem 3

This proof proceeds by showing that the probability that there exists a

mislabeled node goes to zero. By the definition of the hypergraph Ã, we have
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P(Ãi1i2...im = 1) =

{
log logn
logn

· αp, {i1, i2, . . . , im} ⊂ I+(σ) or I−(σ),
log logn
logn

· αq, otherwise.

=

{
tp log logn
nm−1 , {i1, i2, . . . , im} ⊂ I+(σ) or I−(σ),

tq log logn
nm−1 , otherwise.

Then, Ã has the same community structure as the original hypergraph A, and

in Ã, the order of a hyperedge probability is log log n/nm−1. With probability

1 − o(1), the weak recovery algorithm in Ahn, Lee and Suh (2018) recovers the

true labels of (1 − δ)n nodes of Ã, with δ = o(1). Denote the communities as

Ĩ+(σ) and Ĩ−(σ). Hence, with probability 1 − o(1), (δ/2)n nodes in Ĩ+(σ) and

Ĩ−(σ) are mislabeled. In the refinement step, a node i among the correctly labeled

{(1− δ)/2}n nodes in Ĩ+(σ) is mislabeled if

e{i, Ĩ+(σ)} < e{i, Ĩ−(σ)}.

A node among the mislabeled (δ/2)n nodes in Ĩ+(σ) remains mislabeled if

e{i, Ĩ+(σ)} ≥ e{i, Ĩ−(σ)}.

A similar result holds for nodes in Ĩ−(σ). Let Xi, Yi,Wi and Vi be defined as

in the proof of Theorem 2, and let W ′
i and V ′i be i.i.d. copies of Wi and Vi,

respectively. Then, a node i being mislabeled is equivalent to

((δ/2)n
m−1 )∑
i=1

Wi +

((n/2)
m−1)−((δ/2)n

m−1 )∑
i=1

Vi ≥
((1−δ)(n/2)

m−1 )∑
i=1

W ′
i +

((n/2)
m−1)−((1−δ)(n/2)

m−1 )∑
i=1

V ′i .

We bound the probability that node i is mislabeled and then apply the union

bound. Let r = 1/{δ
√

log(1/δ)}. Then, we have

pi = P(node i is mislabeled)

= P


((δ/2)n
m−1 )∑
i=1

Wi +

((n/2)
m−1)−((δ/2)n

m−1 )∑
i=1

Vi ≥
((1−δ)(n/2)

m−1 )∑
i=1

W ′
i +

((n/2)
m−1)−((1−δ)(n/2)

m−1 )∑
i=1

V ′i


= P


((n/2)
m−1)−((δ/2)n

m−1 )∑
i=1

(Vi −W ′
i ) +

((δ/2)n
m−1 )∑
i=1

Wi ≥
((n/2)
m−1)−((1−δ)(n/2)

m−1 )∑
i=1

V ′i

−
((n/2)
m−1)−((δn/2)

m−1 )−((1−δ)(n/2)
m−1 )∑

i=1

W ′
i
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≤ P


((n/2)
m−1)−((δ/2)n

m−1 )∑
i=1

(Vi −W ′
i ) ≥ −rδ log n

+

P


((δ/2)n
m−1 )∑
i=1

Wi +

((n/2)
m−1)−((δn/2)

m−1 )−((1−δ)(n/2)
m−1 )∑

i=1

W ′
i −

((n/2)
m−1)−((1−δ)(n/2)

m−1 )∑
i=1

V ′i ≥ rδ log n


= (I) + (II).

Next, we show (II) = O (n−2) and (I) = O
(
n−t/Im(p,q)

)
. It is easy to verify that

(II) ≤ P

((δ/2)n
m−1 )∑
i=1

Wi ≥
rδ

3
log n

+ P

((n/2)
m−1)−((δn/2)

m−1 )−((1−δ)(n/2)
m−1 )∑

i=1

W ′
i ≥

rδ

3
log n


+P

((n/2)
m−1)−((1−δ)(n/2)

m−1 )∑
i=1

−V ′i ≥
rδ

3
log n

 .

Because p > q > 0, it follows that 1− q > 1− p, and then

Wi = log

(
p

q

)
1[Xi = 1] + log

(
1− p
1− q

)
1[Xi = 0]

≤ log

(
p

q

)
1[Xi = 1].

Then, by the multiplicative Chernoff bound, we have

P

((δ/2)n
m−1 )∑
i=1

Wi ≥
rδ

3
log n

 ≤ P


((δ/2)n
m−1 )∑
i=1

1[Xi = 1] ≥ rδ log n

3 log(p/q)


≤
{

(r/δm−2)2m−1(m− 1)!

e · 3pt log(p/q)

}−rδ logn/{3 log(p/q)}

= e−[logn/{3 log(p/q)
√

log(1/δ)}][log(1/δ)+(m−2) log(1/δ){1+o(1)}]

= e−[(m−1)
√

log(1/δ)/{3 log(p/q)}] logn {1+o(1)}

= O
(
n−2

)
.

Similarly, we have

P

((n/2)
m−1)−((δn/2)

m−1 )−((1−δ)(n/2)
m−1 )∑

i=1

W ′
i ≥

rδ

3
log n

 = O
(
n−2

)
.
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Note that

−V ′i = log

(
1− p
1− q

)
1[Ai = 0]− log

(
p

q

)
1[Ai = 1]

≤ log

(
1− p
1− q

)
1[Ai = 0].

Hence, by the multiplicative Chernoff bound, it follows that

P

((n/2)
m−1)−((1−δ)(n/2)

m−1 )∑
i=1

(−V ′i ) ≥ rδ

3
log n


≤ P

((n/2)
m−1)−((1−δ)(n/2)

m−1 )∑
i=1

1[Ai = 0] ≥ rδ log n

3 log{(1− q)/(1− p)}


≤
[

(r/δm−2)2m−1(m− 1)!

e · 3(1− p)t log{(1− q)/(1− p)}

]−rδ logn/[3 log{(1−q)/(1−p)}]

= e−{(1−δ logn)/[3 log{(1−q)/(1−p)}]}[(m−1) log(1/δ){1+o(1)}]

= e−{(m−1)
√

log(1/δ) logn/[3 log{(1−q)/(1−p)}]}{1+o(1)}

= O
(
n−2

)
.

Thus, we conclude that (II) = O (n−2).

Next, we bound (I). Note that
(
n/2
m−1

)
−
(
(δ/2)n
m−1

)
= [nm−1/{2m−1(m− 1)!}]{1+

o(1)}. By Markov’s inequality, we have

(I) = P

e1/2 ((n/2)
m−1)−((δ/2)n

m−1 )∑
i=1

(Vi−W ′i ) ≥ e−rδ logn/2


≤ erδ(logn/2)[E{e(1/2)V1e−(1/2)W

′
1}]n

m−1/{2m−1(m−1)!}

= erδ(logn/2){e−(1/2) log(p/q)αp
+e−(1/2) log{(1−p)/(1−q)}α(1− p) + (1− α)}n

m−1/{2m−1(m−1)!}

×[e(1/2) log(p/q)αq + e(1/2) log{(1−p)/(1−q)}α(1− q) + (1− α)]n
m−1/{2m−1(m−1)!}.

Taking the logarithm of both sides yields

log(I) ≤ 1

2
rδ log n+

nm−1α

2m−1(m− 1)!
{2√pq + 2

√
(1− p)(1− q)− 2}

=
1

2

log n√
log(1/δ)

− t log n

2m−1(m− 1)!
{(√p−√q)2 + (

√
1− p−

√
1− q)2}.
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Hence,

(I) ≤ n−t[{(
√
p−√q)2+(

√
1−p−

√
1−q)2}/{2m−1(m−1)!}]{1+o(1)} = n−{t/Im(p,q)}{1+o(1)}.

Because t > Im(p, q), by assumption, we have (I) ≤ n−(1+ε), for some small

constant ε > 0, and hence

pi ≤ (I) + (II) ≤ n−(1+ε).

By the union bound, the probability that a mislabeled node exists is bounded by

n−ε = o(1). The proof is complete.

Supplementary Material

The supplement provides more detail on the proof of theorem 4, and

demonstrates the results of the simulation study for the SDP algorithm and the

refined spectral algorithm proposed in this paper.
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