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Abstract: Although quantile regressions are widely employed for heterogeneous data,

simultaneously selecting covariates that globally affect the response and estimating

the coefficients is very challenging. We introduce a novel sparse composite quan-

tile regression screening method for the analysis of ultrahigh-dimensional hetero-

geneous data. The proposed method enjoys the sure screening property, provides

a consistent selection path, and yields consistent estimates of the coefficients si-

multaneously across a continuous range of quantile levels. An extended Bayesian

information criterion is employed to select the “best” candidate from the path. Ex-

tensive simulation studies demonstrate the effectiveness of the proposed method,

and an application to a gene expression data set is provided.
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1. Introduction

Ultrahigh-dimensional data are common in a variety of scientific fields, in-

cluding genomics, biomedical imaging, signal processing, and finance, among oth-

ers. For such data, the number of covariates p greatly exceeds the sample size n,

and even grows at an exponential rate of n. A major feature of these data sets is

their heterogeneity, which poses both challenges and opportunities for statistical

analysis.

Quantile regression, as an important alternative to linear regression, is a

technique used to investigate heterogeneity across quantiles (Koenker and Bassett

(1978)). For high-dimensional data, many penalized quantile regression methods

have been developed to examine the covariate effects at a single or at multiple

prespecified quantile levels (Zou and Yuan (2008); Wang, Wu and Li (2012); Fan,

Fan and Barut (2014)). However, these models are sensitive to the choices of

quantile levels and may overlook important covariates, which is undesirable from
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the viewpoint of interpretation. To resolve this issue, Belloni and Chernozhukov

(2011) and Zheng, Peng and He (2015, 2018) extended the quantile regression

methods to examine regression quantiles over a continuous set of quantile levels.

These kinds of quantile regression methods enjoy two advantages: (1) they use

all useful information across quantiles and draw robust conclusions; and (2) they

grasp global sparsity more concisely. These models offer a useful complement

to the regularized quantile regression, and are more flexible in terms of variable

selection, robust estimation, and heteroscedasticity detection. However, a reg-

ularized quantile regression may not perform well under ultrahigh-dimensional

scenarios, especially in terms of computational expediency, statistical accuracy,

and algorithmic stability (Fan and Lv (2010)). This inspired the development of

screening methods.

The sure independence screening (SIS) method was proposed for sparse re-

covery in ultrahigh-dimensional linear regression models (Fan and Lv (2008)).

Here, the idea is to rank all covariates using the marginal correlation between

each covariate and the response. This method enjoys the sure screening prop-

erty and is widely applied in various models (Fan, Samworth and Wu (2009);

Fan and Song (2010); Zhu et al. (2011); Fan, Feng and Song (2011); Liu, Li and

Wu (2014); Song et al. (2014); Fan et al. (2017); Kong et al. (2017); Pan et

al. (2019)). To derive robust statistics, He, Wang and Hong (2013) considered

a quantile-adaptive model-free variable screening method. Wu and Yin (2015)

developed a conditional quantile screening method using a goodness-of-fit-like

marginal utility. Ma, Li and Tsai (2017) employed the quantile partial correla-

tion and proposed three variable screening algorithms. For other related works,

refer to Zhang and Zhou (2018), Li, Ma and Zhang (2018), and the references

therein. Note that these screening methods only consider model sparsity at a sin-

gle or at multiple quantile levels. Recently, Ma and Zhang (2016) and Xu (2017)

proposed composite quantile correlations in which they integrate quantile levels

from zero to one. This enjoys the sure screening property and grasps global spar-

sity. However, these two works did not study the estimation of the coefficients,

nor did they consider an interval of quantile levels that well captures part or all

of the conditional distributions.

Against this background, we aim to develop a variable screening method that

simultaneously globally captures important features and estimates their coeffi-

cients. Motivated by the work of Zheng, Peng and He (2015), we adopt a quantile

regression model with an interval of quantile levels, denoted as Θ ⊂ (0, 1), and

propose an approach called the sparse composite quantile regression (SCQR) for

variable screening. The SCQR naturally embeds the sparsity information about
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the regression functions in the composite quantile regression, and identifies ac-

tive covariates using the estimates of the regression functions over a continuum of

quantile levels. It uses the joint effects rather than the marginal effects of candi-

date covariates, following Xu and Chen (2014) and Yang et al. (2018). However,

compared with these works, our method is robust in terms of model selection.

Furthermore, the development of the theory and an algorithm is not a trivial

extension of existing methods, owing to the nonsmooth objective function.

This study contributes to the literature in two ways. First, we establish

the consistency properties of our method in terms of model selection and pa-

rameter estimation. Specifically, the SCQR method creates a solution path that

includes the true model with probability approaching one, and yields a consis-

tent estimate across a continuous range of quantile levels. To the best of our

knowledge, this is new in the screening literature. An extended Bayesian infor-

mation criterion (EBIC) (Lee, Noh and Park (2014)) is employed to identify the

ideal model. Second, we employ a smoothing technique to develop an iterative

groupwise-hard-thresholding method to approximate our proposed solution, es-

tablish the convergence of the proposed algorithm, and show the sure screening

property of the approximation solution. The proposed algorithm overcomes two

kinds of computational challenges. The first is that the objective function is not

differentiable at the zero point. The other comes from the `0 constraint, which re-

sults in a heavy computational burden for the existing programming for quantile

regression.

The rest of the paper is organized as follows. Section 2 provides some prelim-

inaries about high-dimensional sparse quantile regression models and describes

the SCQR method. Section 3 presents a highly efficient algorithm for the SCQR

procedure. Section 4 establishes the theoretical properties of the SCQR proce-

dure and the proposed algorithm. An application to a gene expression data set

is provided in Section 5, and Section 6 concludes the paper. Simulation studies

and all proofs are given in the online Supplementary Material.

2. Methodology

2.1. Some preliminaries

Let X = (1, x1, . . . , xp)
> be a (p + 1)-dimensional vector of covariates, and

let QY (τ |X) = inf{y|P (Y ≤ y|X) ≥ τ} denote the τth conditional quantile of a

response variable Y given X. For the analysis, the following quantile regression
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model (Zheng, Peng and He (2015)) is considered:

QY (τ |X) = X>β?τ , for τ ∈ Θ, (2.1)

where β?τ = (β?τ,0, β
?
τ,1, . . . , β

?
τ,p)
> is a (p + 1)-dimensional vector with unknown

coefficient functions of τ, Θ ⊂ (0, 1) is a prespecified continuous quantile index

set of interest, which can be taken, in general, as the union of multiple disjoint

intervals. In what follows, let |A| denote the cardinality of a set A, M?(τ) =

{1 ≤ j ≤ p : β?τ,j 6= 0}, and M? = ∪τ∈ΘM
?(τ).

We consider ultrahigh-dimensional data, namely log(p) = o(nξ0), with ξ0 > 0,

in which a large number of predictors are irrelevant to the response. Examples

of such data include gene expression microarray data, single nucleotide polymor-

phism data, and high-frequency financial data (Ma, Li and Tsai (2017)). Two

common sparsity assumptions for β̃?τ ≡ (β?τ,1, . . . , β
?
τ,p)
> ∈ Rp arise to ensure the

model interpretability and identifiability: the local sparsity (LS) condition (Bel-

loni and Chernozhukov (2011)), and the global sparsity (GS) condition (Zheng,

Peng and He (2015)). The LS condition assumes that |M?(τ)| = o(n), which

tends to cause over-fitting by simply taking the union of active covariate sets

selected separately for each τ ∈ Θ. The GS condition assumes |M?| = o(n),

which is indispensable to derive a parsimonious model. Thus, we employ the GS

assumption for variable screening to identify all significant covariates related to

the interesting segment of the conditional distribution of the response.

2.2. Sparse composite quantile regression

We approximate βτ by a piecewise constant function with respect to τ ∈ Θ.

Specifically, denote τ0 and τK as the infimum and supremum, respectively, of Θ.

Let τ0 < · · · < τK be a partition of Θ, and define the approximate function as

β̄τ =
∑K

k=1 βτkI(τk−1 < τ ≤ τk) ≡ (β̄τ,0, β̄τ,1, . . . , β̄τ,p)
>, for τ ∈ Θ, where βτk =

(βτk,0, βτk,1, . . . , βτk,p)
> ∈ Rp+1, and I(·) denotes an indicator function. Define

D = (βτ1 , . . . ,βτK ) ≡ (d0, . . . ,dp)
> ∈ R(p+1)×K . Thus, determining whether

βτ,j ≡ 0 over Θ reduces to identifying whether or not dj is a zero vector (1 ≤ j ≤
p). The latter is a row-wise sparsity problem for the coefficient matrix D; hence,

we can use the group learning method.

Suppose that the observed data consist of n independent and identically

distributed (i.i.d) replicates of (Y,X>)>, denoted by {(Yi,X>i )>, i = 1, . . . , n}.
We employ the composite quantile regression (CQR) in Zou and Yuan (2008) to

estimate D. Let Un(D) = (nK)−1
∑K

k=1

∑n
i=1 ρτk(Yi −X>i βτk) be the objective

function, where ρτ (u) = u{τ − I(u < 0)} is the check function (Koenker (2005)).
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Based on the GS condition, we consider the following problem:

min
D
Un(D), subject to

p∑
j=1

I(‖dj‖2 6= 0) ≤ t, (2.2)

where t is a positive integer. Note that t controls the sparse level in problem

(2.2). If we take t < n, then there are at least (p − t) covariates screened out

from model (2.1). Let D̂ = (β̂τ1 , . . . , β̂τK ) be a minimizer of problem (2.2).

An efficient algorithm is proposed to solve problem (2.2) in Section 3. Denote

β̂τ =
∑K

k=1 β̂τkI(τk−1 < τ ≤ τk) ≡ (β̂τ,0, β̂τ,1, . . . , β̂τ,p)
> as the estimate of β̄τ ,

which is the approximation of β?τ , and define M̂t as the selected model index

using β̂τ ; that is, M̂t = ∪τ∈Θ{1 ≤ j ≤ p : β̂τ,j 6≡ 0}.
Because our method is a group learning method with a sparsity constraint

for composite quantile regression, we call it the sparse composite quantile regres-

sion (SCQR). The main difference between the CQR and the SCQR is that the

coefficients βτ,j are deemed to be constants over τ ∈ Θ in the CQR, but are a

group of functions in the SCQR. In addition, the proposed procedure employs

the joint effects of candidate variables, which makes it distinct from marginal

screening methods.

Let s = |M?| be the true mode size. As guaranteed by Theorem 3 in Section

4, one has that M̂s = M? holds with probability tending to one under certain reg-

ularity conditions. However, in practice, s is unknown and needs to be estimated.

Motivated by Wang (2009), we derive a solution path using problem (2.2), and

adopt an EBIC to estimate s. Specifically, let t̃ < n be a prespecified positive

integer. We solve problem (2.2) for given t ∈ {1, . . . , t̃}, obtaining a solution path

of candidate models: {M̂1, . . . , M̂t̃}. Theorem 3 implies that when choosing t̃ ≥ s,
one can always guarantee that M? is contained in one of the candidate models

{M̂1, . . . , M̂t̃}, with an overwhelming probability. For Xi = (1, xi1, . . . , xip)
> and

an arbitrary subset M ⊂ {1, . . . , p}, let Xi,M be the subvector of Xi consisting

of all xij , with j ∈M. Here, β̂τk,M is defined similarly for 1 ≤ k ≤ K. The EBIC

is defined as

EBIC(M̂t) = log

{
1

nK

K∑
k=1

n∑
i=1

ρτk

(
Yi −X>

i,M̂t
β̂τk,M̂t

)}
+ Cn

t log(n)

n
,

where Cn is a positive constant that diverges along with the sample size n. We

determine a hard-thresholding parameter t̂ as t̂ = argmin1≤t≤t̃EBIC(M̂t). Then,

the final selected model is defined as M̂ = M̂t̂.

Remark 1. Because there is a tradeoff between computation and model selection
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Figure 1. ψτ,h(u) is a smoothed approximation of ρτ (u).

accuracy when choosing t̃, we set t̃ = [n1/5 log(n)], where [a] denotes the largest

integer part of a. This empirical choice is analogous to the recommended t̃ values

in Xu and Chen (2014), and works well in both our simulation studies and our

real-data analysis.

3. Computational Algorithm

Koenker and D’Orey (1987) developed parametric linear programming to

compute a quantile regression function for all τ ∈ (0, 1). Many algorithms have

been introduced for high-dimensional sparse penalized quantile regression ap-

proaches; see Gu et al. (2018) for an overview. For problem (2.2), there are Ctp
candidate submodels to fit the data for a given t, where Ctp denotes the number of

t-combinations from a given set of p elements. This increases the computational

burden of the existing algorithm. In addition, the check function ρτ (u) is not

differentiable at point u = 0. To overcome these issues, we develop an efficient

algorithm to solve problem (2.2) that combines a smoothing technique and an

iterative hard-thresholding algorithm.

First, we approximate the indicator function I(u < 0) in ρτ (u) using a local

distribution function Φ(−u/h), where Φ(·) is the standard normal cumulative

distribution function, and h is a bandwidth that converges to zero as n → ∞.
This method was originally devised by Heller (2007) for a rank regression. Define

ψτ,h(u) = u{τ − Φ(−u/h)}, which is smooth and differentiable at point u = 0.

Note that if u ≥ 0, ψτ,h(u)→ uτ as n→∞, whereas if u < 0, ψτ,h(u)→ u(τ−1).

Figure 1 illustrates that ρτ (u) can be approximated well by ψτ,h(u) using an

appropriate h. Thus, a smoothed version of problem (2.2) is given as follows:
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min
D
Ũn(D), subject to

p∑
j=1

I(‖dj‖2 6= 0) ≤ t, (3.1)

where Ũn(D) = (nK)−1
∑K

k=1

∑n
i=1 ψτk,h(Yi −X>i βτk). If the bandwidth h satis-

fies nh→∞ and nh4 → 0 as n→∞, then Lemma 1 in the online Supplementary

Material indicates that the check function is equivalent to the smoothed version,

with probability tending to one. Thus, we can focus on solving problem (3.1). For

the bandwidth, we use the rule of thumb bandwidth, and choose h = O(n−1/3).

Let `τ (β) = n−1
∑n

i=1 ψτ,h(Yi − X>i β), and denote ḟ(·) and f̈(·) as the first

and second derivatives, respectively, of any function f(·). Consider the following

quadratic approximation to `τ (v) :

ϕτ (u|v) = `τ (v) + 〈u− v, ˙̀
τ (v)〉+

λ

2
‖u− v‖22, (3.2)

where 〈·, ·〉 denotes the inner product in the Euclidean space, and λ is a pre-

specified positive constant. It can be seen that ϕτ (v|v) = `τ (v), and thus

ϕτ (u|v) nicely approximates `τ (v) for u close to v. Let B = (β̌τ1 , . . . , β̌τK ) ≡
(b0, . . . , bp)

> ∈ R(p+1)×K . Given equation (3.2), the smoothed composite quantile

function Ũ(·) can be approximated by

Qλ(B|D) ≡ 1

K

K∑
k=1

ϕτk(β̌τk |βτk)

= Ũ(D) +
1

K

K∑
k=1

〈
β̌τk − βτk , ˙̀

τk(βτk)
〉

+
λ

2K
‖B −D‖2F ,

where ‖A‖F is the Frobenius norm of an arbitrary matrix A. Using Qλ(B|D), we

obtain an iterative solution to problem (3.1). Specifically, let D[l] be the estimate

of D at the lth iteration. We update D[l] by D[l+1], where

D[l+1] = argmin
B

Qλ(B|D[l]), subject to

p∑
j=1

I(‖bj‖2 6= 0) ≤ t.

This is also equivalent to

D[l+1] = argmin
B

∥∥∥∥B − [D[l] − 1

λ
Ψ̇(D[l])

]∥∥∥∥2

F

, subject to

p∑
j=1

I(‖bj‖2 6= 0) ≤ t,

(3.3)

where Ψ̇(D) = ( ˙̀
τ1(βτ1), . . . ,

˙̀
τK (βτK )) ∈ R(p+1)×K .
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Algorithm 1

Let L be a prespecified positive integer.

Step 1. Choose an initial value for D[0], such as D[0] = 0;

Step 2. For each l ∈ {0, 1, . . . , L},
Step 2.1. Compute D[l+1] using equation (3.5);

Step 2.2. Stop Step 2 if the linear search criterion (3.6) is satisfied; otherwise,
take the step-size to be 2λ[l], and return to Step 2.1 ;

Step 3. Stop the algorithm if l > L or ‖D[l+1] −D[l]‖F < δ‖D[l]‖F , where δ > 0 is a
prespecified tolerance parameter. Otherwise, increase l, and return to Step 2.1.

In our simulation studies and real-data analysis, we take L = 1,000 and set
δ = % = 10−5.

Proposition 1. Let D = (d0, . . . ,dp)
> ∈ R(p+1)×K be an arbitrary matrix. If

B̂ = (b̂0, . . . , b̂p)
> is an optimal solution to the problem

min
B∈R(p+1)×K

‖B −D‖2F , subject to

p∑
j=1

I(‖bj‖2 6= 0) ≤ t,

then B̂ has a closed form, with the jth row defined as

b̂0 = d0 and b̂j = djI(d∗j ≥ d∗(t)), for 1 ≤ j ≤ p, (3.4)

where d∗j = ‖dj‖2, and d∗(t) is the t-th largest value of d∗1, . . . , d
∗
p.

The proof is given in the online Supplementary Material. Proposition 1

indicates that equation (3.4) is indeed a hard-thresholding rule. It first ranks the

importance of the covariates according to the estimates of ‖dj‖2 in decreasing

order, and then filters out those with small effects over Θ.

Based on Proposition 1, we obtain that D[l+1] defined in (3.3) has the fol-

lowing form:

d
[l+1]
j = ď

[l]
j I(‖ď[l]

j ‖2 ≥ ď(t)), for 1 ≤ j ≤ p, (3.5)

where ď
[l]
j is the transposition of the jth row of [D[l]−λ−1Ψ̇(D[l])], and ď(t) is the

tth largest value of ‖ď[l]
1 ‖2, . . . , ‖ď

[l]
p ‖2.

However, there still exists a step-size λ in updating rule (3.5), which plays

an important role in the convergence of the algorithm. Our empirical studies

indicate that a large value of λ often leads to a slow convergence rate, while a

small value of λ results in failing to identify active covariates. In what follows,

a backtracking method is employed to find λ, such that the objective function

decreases monotonically after each iteration. Specifically, we choose the step-size
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λ[l] at the lth iteration as the minimum value, such that

Ũn(D[l+1]) ≤ Ũn(D[l])− %λ[l]

2K
‖D[l+1] −D[l]‖2F , (3.6)

where % ∈ (0, 1) is a fixed small constant. The proposed algorithm is presented

in the following Algorithm 1.

4. Theoretical Properties

4.1. Convergence analysis of algorithm

To show the convergence property of the proposed algorithm, we need the

following Lipschitz condition:

‖ ˙̀
τ (β1)− ˙̀

τ (β2)‖2 ≤ φ‖β1 − β2‖2,

where φ is a positive constant independent of τ. The Lipschitz condition is satis-

fied if the largest eigenvalue of ῭
τ (β) is uniformly bounded in β and τ. A more

serious concern is whether, for each l ≥ 0, the step size λ[l] is bounded. Following

similar arguments to those in Gong et al. (2013), the Lipschitz condition, together

with criterion (3.6), guarantees the boundedness of the step size λ[l] in Step 2.2.

The following theorem summarizes the convergence property of Algorithm 1.

Theorem 1. Let {D[l]} be the sequence generated by Algorithm 1. If λ[l] >

φ/(1 − %), then as l → ∞, there exists at least one subsequence such that {D[l]}
is convergent. In addition, if the stopping criterion is K−1/2‖D[l+1]−D[l]‖F ≤ ε,
we have that Algorithm 1 stops in a finite number of steps, where ε > 0 is a

prespecified small constant.

The proof can be found in the online Supplementary Material, and indi-

cates that the proposed algorithm yields an approximate solution. The next

theorem presents an upper bound for the estimation error of D[l]. Let φ̃ =

min0<‖x‖0≤3t{x> ῭
τ (β)x}/(x>x) > 0 be the restricted eigenvalue, where ‖a‖0 =∑p

j=1 I(aj 6= 0) for a vector a = (a1, . . . , ap)
> ∈ Rp. The restricted eigenvalue

condition is frequently used in the literature on high-dimensional data analysis

(Candes and Tao (2007); Belloni and Chernozhukov (2011)). Let D? denote the

true value of D.

Theorem 2. (Upper Bound of Algorithm 1). If s ≤ t and φ < λ[l] < φ̃/{1 −
1/(4
√

2)}, then
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‖D[l] −D?‖F ≤ 2−l‖D[0] −D?‖F +

√
8

φ
‖Ψ̇(D?)‖F .

Theorem 2, combined with the convergence property of Algorithm 1, implies

that there exists at least one subsequence such that the difference between the

limiting point and the true value D? can be bounded by ‖Ψ̇(D?)‖F . Moreover, if

we take the initial value D[0] = 0, after at most l = [log2(‖D?‖F /‖Ψ̇(D?)‖F )] + 1

iterations, the sequence {D[l]} satisfies ‖D[l] − D?‖F ≤ (1 +
√

8/φ‖Ψ̇(D?)‖F .
Thus, in a finite number of steps, the estimation error can be controlled using

‖Ψ̇(D?)‖F .

4.2. Sure screening property

Let M be an arbitrary subset of {1, . . . , p} and Mt = {M : |M | ≤ t}. Define

the collection of over-fitted models with model size t as M t
+ = {M : M? ⊂ Mt}.

To study the asymptotic properties of the proposed SCQR, we need the following

regularity conditions:

(C1) log(p) = o(nξ0), for 0 < ξ0 < 1.

(C2) There exist some positive constants ω1, ω2, ξ1, and ξ2, such that for a given

hard-thresholding parameter t in (2.2), the true model size s ≤ t < ω1n
ξ1 ,

and

min
j∈M?

[∫
Θ

(β?τ,j)
2dτ

]1/2

≥ ω2n
−ξ2 .

Condition (C2) suggests that the minimum signal of the active set is bounded

away from zero, but it is allowed to converge to zero in O(n−ξ2). This encompasses

what is considered by Xu and Chen (2014) for the generalized linear model.

(C3) Let ε = Y −X>β?τ , and let F (·|x) and f(·|x) be the cumulative distribution

function and density function, respectively, of ε given X = x. There exist

positive constants ν and δ∗ free of τ such that, for sufficiently large n and

each vector u ∈ {v : ‖vM‖2 < δ∗, M ∈M2t
+ },

1

n1−ξ2

n∑
i=1

∫ X>i u

0

[
F
( s
nξ2
|Xi

)
− F

(
0|Xi

)]
ds ≥ ν‖u‖22.

Condition (C3) is similar to condition (2) of Zou and Yuan (2008), which is used

to establish the asymptotic properties of a composite quantile regression. Indeed,

condition (C3) can be replaced by sufficient conditions that are commonly used
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in quantile regression. Some examples are given in the online Supplementary

Material.

(C4) For Xi = (1, xi1, . . . , xip)
>, there exists a positive constant m such that

supi,j |xij | ≤ m.

Condition (C4) is commonly used in the context of high-dimensional data analysis

(Wang, Wu and Li (2012); Lee, Noh and Park (2014)). This assumption can be

relaxed to a tail probability inequality that there exist some positive constantsm0,

m1, and α such that, for sufficiently large η, P{|xij | > η} ≤ m0 exp{−m1η
α}. In

this case, the theoretical results still hold with slight modifications in the proofs.

Theorem 3. (Sure Screening Property). Suppose that conditions (C1)−(C4)

hold with max{ξ1 + ξ2, ξ1/2 + 2ξ2} < (1− ξ0)/2. Then, for sufficiently large K,

P
{
M? ⊂ M̂t

}
→ 1 as n→∞.

Theorem 3 states that with probability tending to one, all relevant variables

can be identified by carrying out the SCQR at most O(nξ1) times, which is much

smaller than n under condition max{ξ1 + ξ2, ξ1/2 + 2ξ2} < (1 − ξ0)/2. Based

on Theorem 3, the strong screening consistency (Huang, Li and Wang (2014)) is

further provided in the following corollary.

Corollary 1. Under the conditions of Theorem 3, we have

P
{
M? = M̂s

}
→ 1 as n→∞.

Corollary 1 suggests that if one has prior knowledge on the model size s, the

selected model M̂s is exactly the true model M? with probability approaching

one. This corollary is important, because it guarantees that the true model is

one of our candidate models {M̂1, . . . , M̂t̃}, as long as t̃ ≥ s. The consistency

property for the EBIC procedure is established in the following theorem.

Theorem 4. Suppose that conditions (C1)−(C4) hold with max{ξ1 + ξ2, ξ1/2 +

2ξ2} < (1 − ξ0)/2. If E(|ε|) < ∞, C−1
n = o(1), and Cn log(n)/(n1−ξ1) = o(1).

Then, P
{
M? = M̂

}
→ 1 as n→∞.

Theorem 4 suggests that with probability approaching one, the true model

index can be correctly identified by the SCQR when the EBIC is employed as the

stopping criterion.

Theorem 5. Under conditions (C1)−(C4) with max{ξ1 + ξ2, ξ1/2 + 2ξ2} < (1−
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ξ0)/2, we have that there exists a constant c0 > 0, such that

P

{[∫
Θ
‖β̂τ − β?τ‖22dτ

]1/2

≥ c0n
−ξ2

}
→ 0 as n→∞.

Theorem 5 indicates that the integral squared error of the proposed esti-

mate can be bounded by Op(n
−ξ2). This, combined with Theorem 3, implies that

the SCQR procedure can perform variable screening and parameter estimation

simultaneously. The consistency property of Algorithm 1 is guaranteed by the

following theorem.

Theorem 6. Suppose that conditions (C1)−(C4) hold with max{ξ1 + ξ2, ξ1/2 +

2ξ2} < (1 − ξ0)/2. If E(|ε|) < ∞ and φ < λ[l] < φ̃/{1 − 1/(4
√

2)}. Then, there

exists a constant c1 > 0 such that, after l = [log2(‖D?‖F /‖Ψ̇(D?)‖F )] + 1 itera-

tions,

P

{[∫
Θ
‖β̂[l]

τ − β?τ‖22dτ

]1/2

≥ c1n
−ξ2

}
→ 0 as n→∞.

Theorems 5 and 6 indicate that the estimates generated by Algorithm 1 and

problems (2.2) and (3.1) have the same consistency rate, Op(n
−ξ2). Theorem 6

also implies the following result, which indicates the sure screening property of

Algorithm 1.

Corollary 2. (Sure Screening of Algorithm 1). Under the conditions of Theorem

6, we have that, after l = [log2(‖D?‖F /‖Ψ̇(D?)‖F )] + 1 iterations,

P
{
M? ⊂ M̂ [l]

t

}
→ 1 as n→∞.

Remark 2. To guarantee the sure screening property, Xu and Chen (2014) pro-

posed using an appropriate Lasso-type initial value in their algorithm. However,

the Lasso-type estimate may be unstable and time consuming under ultrahigh-

dimensional settings. Corollary 2 generalizes their results, stating that zero is a

reasonable initial value for Algorithm 1. This finding further enriches the SCQR

method from a practical perspective.

5. Real-Data Analysis

In this section, the proposed method is applied to a gene expression data

set to investigate gene regulation in the mammalian eye and to identify genetic

variations relevant to human eye disease (Scheetz et al. (2006)). This data set

has 31,042 gene expression probe sets on 120 rats, and the gene expression levels
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are analyzed on a log scale with base 2. The response variable of interest is

the expression of gene TRIM32 (probe 1389163 at), which is known to cause

hereditary diseases of the human retina. As in Huang, Ma and Zhang (2008),

Wang, Wu and Li (2012), and Zheng, Peng and He (2015), the main aim of this

analysis is to study how the response variable depends on the gene expression of

other probes. The data set is available in the R package “flare,” which has been

processed to exclude probes that are not expressed or that lack variation. There

are 200 probes left as covariates.

As in Zheng, Peng and He (2015), two reasonable choices for Θ are considered:

(0.2, 0.8) and (0.25, 0.75). The bandwidth is chosen as h = 1.9n−1/3 and Cn =

log(p)/2 in the EBIC. For comparison, two other methods are also considered:

our proposed method, with Θ degenerating to one point τ , denoted by SQR(τ),

with τ ∈ {0.25 + 0.05k, for k = 0, 1, . . . , 10}; and the method of simply taking

the union of the active covariate sets identified by SQR(τ) at each τ, denoted by

USQR. To evaluate each method, we consider 400 random partitions. For each

partition, the data are divided randomly into two equal data sets: a training

data set and a testing data set. Based on the training data set, we implement

the screening methods and obtain the estimate of βτ . Subsequently, we compute

the prediction error

PE(Θ) =
1

|T |
∑
i∈T

∫
Θ
ρτ (Yi −X>i β̂τ )dτ,

where T = {i : the ith subject in the testing data set} is the testing set index.

For SQR(τ), we treat the coefficient functions as constants over τ ∈ Θ, and

calculate PE(Θ). A smaller value of the prediction error indicates a better per-

formance.

The results averaged over 400 random partitions are reported in Table 1. The

table indicates that the SCQR procedure selects four of the same genes that are

significantly related to the response variable for two different choices of Θ. This

suggests that the SCQR method is robust to the selection of Θ, which is a de-

sirable feature from the perspective of model selection. For the SQR(τ) method,

the chosen set of probes varies with τ. For instance, the genes 1370551 a at and

1398389 at are selected by SQR(τ), with τ from 0.4 to 0.6, but they are overlooked

at lower and higher τ . These may suggest a heterogeneous relationship across dif-

ferent quantile levels. Further, the results indicate that three probes are selected

by SQR(0.4), but that no probe is selected by SQR(0.35). This implies that the

SQR(τ) method may be sensitive to the choice of τ . For the USQR procedure,
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Table 1. Probe sets identified by various methods.

PE(Θ)

Θ Method Probes [0.25, 0.75] [0.2, 0.8]

[0.25, 0.75] SCQR “1370551 a at, 1374106 at, 1384862 at, 1389457 at” 0.020(0.002) -

[0.2, 0.8] SCQR “1370551 a at, 1374106 at, 1384862 at, 1389457 at” - 0.028(0.003)

[0.25, 0.75] USQR 5 probes 0.034(0.002) -

[0.2, 0.8] USQR 5 probes - 0.042(0.002)

0.25 SQR 0 probes 0.040(0.003) 0.047(0.003)

0.30 SQR 0 probes 0.038(0.003) 0.046(0.004)

0.35 SQR 0 probes 0.035(0.003) 0.042(0.004)

0.40 SQR “1370551 a at, 1384886 at, 1398389 at” 0.029(0.004) 0.035(0.005)

0.45 SQR “1370429 at, 1370551 a at, 1398389 at” 0.022(0.002) 0.027(0.003)

0.50 SQR “1370551 a at, 1398389 at” 0.021(0.003) 0.025(0.003)

0.55 SQR “1370551 a at, 1374106 at, 1398389 at” 0.022(0.002) 0.027(0.003)

0.60 SQR “1370429 at, 1370551 a at, 1398389 at” 0.028(0.004) 0.034(0.004)

0.65 SQR 0 probes 0.032(0.004) 0.039(0.005)

0.70 SQR 0 probes 0.034(0.004) 0.043(0.004)

0.75 SQR 0 probes 0.037(0.003) 0.045(0.004)

five probes are selected both for Θ = (0.25, 0.75) and Θ = (0.2, 0.8). Compared

with the selection results of the USQR, the SCQR yields slightly smaller predictor

errors.

6. Conclusion

We have considered a sparse composite quantile regression method for an-

alyzing ultrahigh-dimensional heterogeneous data across a continuous range of

quantile levels. An efficient iterative algorithm was developed to implement

our proposed method. The properties of the proposed procedure were provided.

Specifically, the theoretical results suggest that the SCQR method with ultrahigh-

dimensional covariates can successfully identify active covariates with probability

approaching one. At the same time, the SCQR method yields consistent estimates

of coefficients. Furthermore, the proposed algorithm enjoys consistent properties

in terms of variable screening and parameter estimation.

Supplementary Material

The online Supplementary Material includes simulation studies, some suffi-

cient conditions for (C3), and the proofs of Proposition 1 and Theorems 1−6.
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