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Abstract: Change-point hazard models have been extensively investigated by many

authors, but the literature on change-point problems with survival data subject

to censoring is rather small. In an earlier example provided by Matthews and

Farewell (1982), a set of nonlymphoblastic leukemia data were fitted by using a

change-point model. But for that data set, the Kaplan-Meier estimator of the

distribution function levels off well below 1, which indicates the presence of “long-

term survivors” in the data. In this paper, we propose a new change-point model

for survival data that accounts for long-term survivors. Estimation methods for

the proposed model are investigated, and large-sample properties of the estimators

are established. A simulation study is carried out to evaluate the performance of

the estimating methods. As an application, the nonlymphoblastic leukemia data

are re-analyzed using the new model.
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1. Introduction

In order to analyze data concerning treatment of leukemia patients, a change-
point model was introduced into the field of survival analysis by Matthews and
Farewell (1982); they assumed the hazard function λ(x) to be constant with the
exception of a jump. More specifically, the hazard function took the form

λ(x) = β + θI{x>τ}, (1.1)

where IA is the indicator function of an event A, β and β + θ are the hazard
rates before and after the change point, respectively, τ is the change-point for
the hazard rate, and θ represents the jump size at the change-point. Here β,
β + θ and τ are positive, but θ can be either positive or negative, reflecting an
increase or a decrease in hazard rate at the change-point. Three different aspects
of this model have been investigated in the literature. The first is model fitting
by means of maximum likelihood methods, see Matthews and Farewell (1982),
Nguyen, Rogers and Walker (1984) and Loader (1991). The second is testing a
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constant hazard rate versus an alternative with a change-point, considered by
Matthews, Farewell and Pyke (1985), Henderson (1990) and Loader (1991). The
third aspect is the structural properties, explored by Chang, Chen and Hsiung
(1994) and Gijbels and Gurler (2003). Their estimation procedures rely on a
certain functional of the estimated cumulative hazard function. Apart from these
investigations, the literature is rather small on change-point problems arising in
survival/censored data. For example, see Sen (1993) and Pons (2003), each of
whom considered a Cox model with change-point according to a threshold in
a covariate, and Muller and Wang (1990), who proposed a kernel method to
estimate the changes in hazard rate.

Although survival models with “long-term survivors” have been extensively
studied for decades and many applications have been reported, see the monograph
by Maller and Zhou (1996) for example, these models have not considered possible
change-point phenomena. In reality, however, long-term survivors may well exist
in change-point situations. For example, when nonlymphoblastic leukemia data
are fitted with a change-point model, as in Matthews and Farewell (1982), the
Kaplan-Meier estimator (KME) of the distribution function levels off below 1 (cf.,
Figure 1), indicating the presence of long-term survivors (those patients who will
never suffer a relapse of the leukemia) in the data (cf., Maller and Zhou (1996)).
This inspired us to pursue the change-point model (1.1) with possible presence
of long-term survivors.

The paper is structured as follows. After formulating the problem in Section
2, we present the estimation approaches in Section 3. Asymptotic properties are
investigated in Section 4. Some simulation results are reported in Section 5, and
an application to a set of nonlymphoblastic leukemia data is demonstrated in
Section 6. The proofs of theorems are provided in the Appendix.

2. Model Formulations

To motivate our approach, we first provide a brief review on the hazard rate
function for survival data with long-term survivors. The failure time is assumed
to be of the form

T = ηT ∗ + (1 − η)∞,

where T ∗ < ∞ denotes the failure time of a “susceptible” (who is not a long-term
survivor) and η indicates, by the values 1 or 0, whether the sampled subject is
a susceptible or long-term survivor, independently of T ∗. Let p = Pr(η = 1) de-
note the proportion of susceptibles, p ∈ (0, 1]. Then the cumulative distribution
function (cdf) of T is given by

F (x) = Pr(T ≤ x) = Pr(T ≤ x|η = 1)Pr(η = 1) = Pr(T ∗ ≤ x)p = pF0(x), (2.1)
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where F0(x) = Pr(T ∗ ≤ x) is a proper cdf (with F0(∞) = 1). Correspondingly,
the hazard rate function, provided that T ∗ has a density function f0(x), is given
by

λ(x) =
F ′(x)

1 − F (x)
=

pf0(x)
1 − pF0(x)

. (2.2)

Note that λ(x) → 0 as x → ∞ for p < 1, hence the hazard rate cannot remain
constant when long-term survivors are present. A simple example is the expo-
nential lifetime with long-term survivors, where T ∗ is exponentially distributed
with a constant hazard rate ψ. Then the hazard rate of T is

λ(x) =
pψ exp(−ψx)

1 − p + p exp(−ψx)
,

which is no longer constant.
Now assume that the hazard rate of T ∗ is as in model (1.1) Then, its density

and cdf are, respectively,

f0(x) = λ0(x) exp
{
−

∫ x

0
λ0(t)dt

}
=

{
β exp(−βx), if 0 ≤ x ≤ τ,

(β + θ) exp{−βx − θ(x − τ)}, if x > τ,

F0(x) =

{
1 − exp(−βx), 0 ≤ x ≤ τ,

1 − exp{−βx − θ(x − τ)}, x > τ.

Thus, by (2.2), the hazard rate of T is

λ(x) =


pβ exp(−βx)

1 − p + p exp(−βx)
, 0 ≤ x ≤ τ,

p(β + θ) exp{−βx − θ(x − τ)}
1 − p + p exp{−βx − θ(x − τ)}

, x > τ.

(2.3)

The hazard rate λ(x) expressed in (2.3) also has a jump at τ of size

pθ exp(−βτ)
1 − p + p exp(−βτ)

,

which is increasing in p if θ > 0 and decreasing in p for θ < 0, and it reaches its
maximum (minimum) value θ at p = 1 for the case of θ > 0 (θ < 0). Obviously,
the hazard rate does not follow the same mathematical form before and after
point τ , and λ(x) ≤ λ0(x).

Recently, (1.1) has been extended by Wu, Zhao and Wu (2003) to the form

λ(x) = [β + θI{x>τ}]λ0(x, γ), (2.4)
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where λ0(x, γ) is a continuous baseline hazard function dependent on unknown
parameter vector γ. Model (2.4) covers many important models commonly used
in survival analysis, such as exponential, Weibull, extreme, log-logistic, and
generalized Weibull/gamma, etc. More recently, Dupuy (2006) further allowed
λ0(x, γ) in (2.4) to accommodate a time-varying covariate Z(t) among individu-
als, and specified the following hazards model

λ(x) = [β + θI{x>τ}] exp{(γ1 + γ2I{x>τ})
>Z(t)}. (2.5)

If long-term survivors are present, by incorporating (2.2), (2.4) or (2.5), the
hazard rate of T becomes

λ(x) =
−pdS0(t)

1 − p + pS0(t)
, (2.6)

where S0(t) = exp[(β +θ)Λ0(x, γ)−θΛ0(τ, γ)], and Λ0(x, γ) =
∫ x
0 λ0(s, γ)ds with

λ0(x, γ) defined in (2.4) or (2.5).
Wu et al. (2003) and Dupuy (2006) gave estimators of τ and β, θ, γ based on

(2.4) and (2.5) by the modified estimation procedure proposed by Chang et al.
(1994), which may be extended to models (2.3) or (2.6). In this paper, for ease of
presentation, we only investigate (2.3) based on the estimated cumulative hazard
function proposed by Chang et al. (1994), and further applied by Gijbels and
Gurler (2003). The approach we employ, however, is nonparametric in nature,
and can be applied to more general change-point models such as (2.6) as well.

As is common in change-point models, we suppose the existence of bounds τ1

and τ2 such that 0 < τ1 ≤ τ ≤ τ2 < ∞. In medical research, one often has to deal
with censored survival times due to dropout of patients from the study or the
termination of the observation period. In particular, a long-term survivor will
always appear as being censored, but a censored observation is not necessarily
from a long-term survivor. Following the usual formulation, we postulate a “true”
survival time Ti for each individual i, which is only observed if it does not exceed
individual i’s censoring time Ci; otherwise, we observe Ci. Whether an individual
i is censored or not is recorded in a censoring indicator δi, with δi = 1 if Ti is
an actual failure time (uncensored) and δi = 0 if Ti is censored. The observable
survival time Yi, possibly censored, is given by Yi = Ti ∧ Ci = min(Ti, Ci),
i = 1, . . . , n. It is further assumed that Ti is independent of Ci for each i,
(Ti, Ci), i = 1, . . . , n, are mutually independent pairs, and C1, . . . , Cn have a
common cdf G.

3. Pseudo-Maximum Likelihood Estimation

With the change-point model defined in Section 2, we now focus on estimat-
ing the change point τ , the susceptible proportion p, and the unknown parameter
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vector (β, θ). From (2.3), the log-likelihood function can be written as

log L(τ, β, θ, p) =
n∑

i=1

{
δi log(pf0(Yi)) + (1 − δi) log[1 − pF0(Yi)]

}
(3.1)

=
n∑

i=1

l(τ, β, θ, p|Yi, δi), say, (3.2)

where l(τ, β, θ, p|y, δ) is the log-likelihood of a single observation (y, δ), and given
by

l(τ, β, θ, p|y, δ) = δ
{

log(pβ) − βy + I(y > τ)(log(1 + θ/β) − θ(y − τ))
}

+
{

(1 − δ)I(y ≤ τ) log(1 − p + p exp(−βy))
}

+
{

(1 − δ)I(y > τ) log(1 − p + p exp(−βy − θ(y − τ)))
}

. (3.3)

Due to the apparent irregularity of the likelihood function, the classical maxi-
mum likelihood method cannot be used (Nguyen, Rogers and Walker (1984)),
while the estimating procedure proposed by Chang et al. (1994) cannot be di-
rectly employed with a nuisance parameter p. Thus we resort to the pseudo-
likelihood approach, which overcomes such difficulties. It was proposed by Gong
and Samaniego (1981) and further studied by others including Huang (1996)
and Hu (1998). The key idea is to replace the true (but unknown) “nuisance”
parameters p and τ in (3.1) by their consistent estimators and then treat the log-
likelihood function log L(τ̂ , β, θ, p̂), now called the pseudo log-likelihood function,
as a usual likelihood function of β and θ to generate the pseudo-MLE (β̂, θ̂) of
(β, θ).

The consistent estimators of τ and p can be obtained by nonparametric
methods as follows. As in Maller and Zhou (1996), we take

p̂ = F̂n(Y(n)), (3.4)

where F̂n(t) denotes the Kaplan-Meier estimator of the cdf of failure times, and
Y(n) is the largest observation. Maller and Zhou (1996, Thms. 4.1−4.4), showed
that p̂ is consistent and asymptotically normal for p when 0 < p < 1, provided
that the follow-up is sufficient in a certain sense. To get a consistent estimator
of τ , note from (2.3) that the cumulative hazard function of T is now given by

Λ(x) =

{
− log(1 − p + p exp(−βx)), 0 ≤ x ≤ τ,

− log(1 − p + p exp(−βx − θ(x − τ))), τ < x.
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Let

Λ∗(x) = − log
{

1
p

[
exp(−Λ(x)) − 1 + p

]}
=

{
βx, 0 ≤ x ≤ τ,

βx + θ(x − τ), τ < x,

which is a piecewise linear function of x. Further define

X(t) =
[
Λ∗(D) − Λ∗(t)

D − t
− Λ∗(t) − Λ∗(0)

t

]
g(t(D − t)) (3.5)

for 0 < t < D, where D > τ2 and g(x) = xq, 0 ≤ q ≤ 1. Then we have

X(t) =
Λ∗(D)g(t(D − t))

D − t
− Λ∗(t)g(t(D − t))

(D − t)t

= θ
D − τ

D − t
g(t(D − t))I{t≤τ} + θ

τ

t
g(t(D − t))I{t>τ},

which is increasing (decreasing) on [0, τ ] and decreasing (increasing) on [τ,D]
for θ > 0 (θ < 0). Let Xn(t) be the empirical version of (3.5) with unknown
cumulative hazard function Λ(·) and p replaced, respectively, by the Nelson-
Aalen type estimator

Λ̂(t) =
∑

i:Zi≤t

δi

n − i + 1
=

∫ t

0

{ n∑
i=1

Hi(s)
}−1

d
∑
i=1

Ni(s) (3.6)

and the KME p̂ in (3.4), where Z1 < · · · < Zn are the order statistics of Y1, . . . , Yn,
Ni(t) = 1[Yi,∞)(t∧Ci), and Hi(t) = 1(0,Yi](t). Then similar to Chang et al. (1994),
an estimator of τ is given by

τ̂n =

{
inf{t ∈ [τ1, τ2] : Xn(t±) = supu∈[τ1,τ2] Xn(u)} if θ > 0,

inf{t ∈ [τ1, τ2] : Xn(t±) = infu∈[τ1,τ2] Xn(u)} if θ < 0.
(3.7)

Chang et al. (1994) showed, in the absence of long-term survivors, that τ̂n is a
consistent estimator of τ , with τ̂n − τ = Op(n−1), and is asymptotically normal
under some mild conditions. Using the asymptotic properties of p̂, and the
Nelson-Aalen estimator of Λ(·), we establish the asymptotic properties of τ̂n in
Theorem 1 (its proof is given in the Appendix).

Theorem 1. Assume the i.i.d. censoring model with 0 < p ≤ 1, and that F is
continuous at τH in case τH < ∞. Further assume that τF0 > D, where τH and
τF0 are the right extremes of H = 1− (1− F )(1−G) and F0, respectively. Then
the estimator τ̂n of τ defined at (3.7) is consistent.

Now we can estimate parameters β and θ as follows. First replace the param-
eters p and τ in (3.2) by their consistent estimators p̂ defined in (3.4), and τ̂n de-
fined in (3.7), respectively. Then treat log L(β, θ|τ̂n, p̂) as a likelihood function of
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β and θ only. The estimators β̂ and θ̂ are obtained by applying the usual method
of maximum likelihood, but to the pseudo-likelihood function log L(β, θ|τ̂n, p̂).

4. Asymptotic Properties of Parameter Estimators

4.1. Asymptotic properties of parameter estimators

We first introduce some notations that are convenient in the theory of em-
pirical process (cf., Huang (1996, pp.553−557)). For ease of presentation, we
consider the case θ > 0 only. Let φ = (φ1, φ2, φ3, φ4) = (τ, β, θ, p) ∈ Θ =
[τ1, τ2] × (0,∞) × (0,∞) × (0, 1), µ = (β, θ) ∈ Θ1 = (0,∞) × (0,∞), and ν =
(τ, p) ∈ Θ2 = [τ1, τ2] × (0, 1). Write P for the probability measure of X = (Y, δ)
and PM =

∫
MdP for any function M(x). Let Pn be an empirical version of

P from {Xi = (Yi, δi), i = 1, . . . , n}. Then PnM =
∫

MdPn = n−1
∑n

i=1 M(Xi).
For the log-likelihood function l(φ|X) of a single observation, the score func-
tion is denoted by l̇φi

(φ|X) = ∂l(φ|X)/∂φi, i = 1, 2, 3, 4. The true value of
φ = (τ, β, θ, p) is denoted by φ0 = (τ0, β0, θ0, p0) and the true distribution by
P0(x). In addition, we temporarily assume the existence of P0 l̇φi

(φ|X).
Based on independent observations X1, . . . , Xn, the log-likelihood function

can be written as log L(φ|X) = nPnl(φ|·) =
∑n

i=1 l(φ|Xi). For some small num-
bers A1, A2 > 0 and η1, η2 > 0, define the parameter spaces for µ and ν as{

C0 = {µ = (β, θ) : β ≥ A1, θ ≥ A2},
Cη = {ν = (τ, p) : |τ − τ0| ≤ η1, |p − p0| ≤ η2}.

(4.1)

From (3.3), the log-likelihood of a single observation X = (Y, δ) is given by

l(µ, ν|X) = δ

[
log(pβ) − βY +

(
log

(
1 +

θ

β

)
− θ(Y − τ)

)
I(Y > τ)

]
+

{
(1 − δ)I(Y ≤ τ) log(1 − p + p exp(−βY ))

}
+

{
(1 − δ)I(Y > τ) log(1 − p + p exp(−βY − θ(Y − τ))

}
,

and the first partial derivatives of l(µ, ν|x) with respect to µ = (β, θ) are

l̇β(µ, ν|X) = −Y + δ

[
1
β
− θ

β(β + θ)
I(Y > τ)

]
+ (1 − δ)(1 − p)Y

×
[

I(Y ≤ τ)
1−p+p exp(−βY ))

+
I(Y > τ)

1−p+p exp(−βY −θ(Y −τ))

]
, (4.2)

l̇θ(µ, ν|X) =
δI(Y > τ)

β + θ
− (1−δ)p(Y −τ) exp(−βY −θ(Y −τ))I(Y > τ)

1 − p + p exp(−βY − θ(Y − τ))
. (4.3)
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From (4.2) and (4.3), it is easy to check that |l̇θ(µ, ν|X)| < (β + θ)−1 + (1 −
δ)(Y − τ)I(Y > τ). Thus we have

P0 l̇µ(µ, ν|X) < ∞, P0 l̇
2
µ(µ, ν|X) < ∞, (4.4)

provided the censoring distribution has a finite variance. Note that µ0 is the
unique point such that P0 l̇µ(µ, ν0|X) = 0, hence we obtain µ̂ by solving
Pn l̇µ(µ, ν0|X) = 0.

The main results on the asymptotic properties of the estimators in Section 3
are presented in the next three theorems; their proofs are given in the Appendix.

Theorem 2. Suppose that the parameter spaces are listed in (4.1), and that p̂

and τ̂ are given by (3.4) and (3.7), respectively. Then Pnl̇µ(µ̂, ν̂) = op∗(n−1/2)
almost surely, where l̇µ(µ, ν) is defined in (4.2)−(4.3), and µ̂ converges in outer
probability to µ0.

Theorem 3. Under the conditions of Theorem 2,
√

n(µ̂ − µ0) = Op∗(1).

Theorem 4. Under the conditions of Theorem 2,
√

n(µ̂ − µ0) is asymptotically
normal with mean 0 and variance {P0 l̈µµ(µ0, ν0)}

−2
V , where V = V ar(Λ1 +

P0 l̈µν(µ0, ν0)Λ2.

Remark 1. A precise representation of V , in the asymptotic variance of
√

n(µ̂−
µ0) in Theorem 4, can be found in Corollary 3.1.4 of Hu (1998) for our i.i.d. setup.
In this case there exists α(X,µ0, ν0) 6= 0 such that

√
nP0 l̈µµ(µ0, ν0)(ν̂ − ν0) =√

nPnα(·, µ0, ν0) + op(1), which gives V = V ar[l̇µ(µ0, ν0|X)] + V ar[α(X,µ0, ν0)],
where α(·, µ0, ν0) is defined by (3.1.21) in Hu (1998). Without such an α(X,
µ0, ν0), a closed form of V is not available, but we can estimate the variance by
the bootstrap method as discussed below.

4.2. Bootstrap method for standard errors of estimators

In Section 4.1, we discussed the asymptotic properties of estimators. How-
ever, since the asymptotic variances of µ̂ and ν̂ are often intractable, we resort
to the bootstrap method.

The bootstrap technique was introduced by Efron (1979), originally as a tool
for “estimating” ad-hoc-estimators that could not be calculated explicitly (see
also Efron (1982) and Efron and Tibshirani (1986)). Many authors, including
Singh (1981) and Bickel and Freedman (1981), showed that the bootstrap, as an
estimator for the distribution of a (standardized) estimator, often gives a better
approximation to the true distribution than its limiting distribution.

For the bootstrap method on censored data, Efron and Tibshirani (1986)
resampled from the pairs (Yi, δi), i = 1, . . . , n, ignoring the special structure
provided by its parametric model. This plan is likely to be “model-robust” as
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it is less sensitive to departures from parametric model (Hjort (1992)). Follow-
ing Efron and Tibshirani (1986), we can obtain our bootstrap estimators. The
simulation algorithm proceeds in three steps.

1. Re-sample the pairs {(Y1, δ1), . . . , (Yn, δn)} with probability 1/n at each pair
(Yi, δi). Denote the re-sampled data by d∗(1), . . . , d∗(B), for some positive
integer B.

2. For each set of bootstrap data d∗(b), evaluate the estimates of interest.
3. Calculate the sample means and standard deviations of the statistics of inter-

est.

We use the above procedure in the analysis on a set of nonlymphoblastic
leukemia data in Section 6 below.

5. Simulation Results

We now investigate the performance of the proposed method to estimate τ ,
β, θ, p via simulation. We simulated data from the change-point model with
hazard function defined at (2.3), as τ = 1, β = 1, θ = 1, and p = 0.9. The
distribution function corresponding to (2.3) is

F (x) =
{

1 − p + p exp{−βx}, x ∈ [0, τ ],
1 − p + p exp{−(β + θ)x + θτ}, x > τ.

Moreover, we took a uniform censoring distribution on the interval [1, 2], which
results in a censoring proportion of about 30%. Finally, we let q = 0 for g(t) in
(3.5), so that g(t) ≡ 1.

Since the method involves some choices of intervals and/or other parameters,
we simulated data for a number of settings. The results presented are based on
1,000 repetitions with various sample sizes. Table 1 summarizes them and reports
on the average estimates denoted by m(·), and standard deviations denoted by
s(·), of the four parameters. The choices of the intervals [τ1, τ2] and the upper
limit D are also listed in Table 1.

From Table 1 we can see that the choice of the interval [τ1, τ2] as well as
the upper limit D affects the estimation more for smaller sample sizes, but the
impact diminishes with larger samples. The estimations of τ and of θ are sensitive
to the choice of D and τ1, τ2 with sample size 50 or 100, while the estimation
of β is less sensitive, and the sensitivity is reduced with increasing sample size.
The estimated variances of θ̂ appear quite large, but that can be overcome by
increasing sample size and/or choosing a larger τ1, D and a small τ2, which is
supported by simulations not reported here, such as with τ1 = 0.75, τ2 = 1.25
and D = 4.5. The estimator of θ performs well even for a small sample size
n = 50. The estimation of the susceptible proportion p is quite accurate and
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Table 1. Performance of the estimators for the true values of the parameters
τ = 1, β = 1, θ = 1, p = 0.9.

[τ1, τ2] D n m(p̂) s(p̂) m(τ̂) s(τ̂) m(β̂) s(β̂) m(θ̂) s(θ̂)

[0.5, 1.5] 2.5 50 0.889 0.061 1.131 0.258 0.990 0.210 1.600 1.054

100 0.892 0.047 1.127 0.244 1.025 0.150 1.533 0.831

400 0.892 0.046 1.221 0.214 1.005 0.099 1.148 0.501

800 0.894 0.019 1.190 0.234 1.005 0.081 1.029 0.316

[0.5, 1.5] 3 50 0.893 0.062 0.916 0.244 0.961 0.213 1.276 0.768

100 0.891 0.044 0.965 0.207 0.977 0.154 1.123 0.581

400 0.894 0.024 1.061 0.015 1.016 0.078 1.167 0.309

800 0.894 0.017 1.011 0.018 1.013 0.064 1.118 0.242

[0.5, 1.5] 3.5 50 0.889 0.061 0.847 0.240 0.952 0.209 1.175 0.786

100 0.891 0.046 0.862 0.211 0.969 0.154 1.041 0.523

400 0.894 0.022 0.965 0.111 0.996 0.075 1.043 0.288

800 0.894 0.018 0.994 0.013 1.001 0.057 1.051 0.051

[0.25, 1.75] 3.5 50 0.888 0.059 0.689 0.360 0.874 0.415 1.056 0.765

100 0.890 0.043 0.730 0.320 0.919 0.167 0.961 0.504

400 0.893 0.024 0.948 0.177 0.991 0.083 1.034 0.283

800 0.894 0.017 0.995 0.073 1.002 0.053 1.056 0.192

Table 2. Performance of bootstrap estimation for the standard deviations.

ŝ(p̂) ŝ(τ̂) ŝ(β̂) ŝ(θ̂)

0.0415 (0.0081) 0.3046 (0.0861) 0.2009 (0.0508) 0.5166 (0.0708)

stable throughout all settings, but is slightly biased downwards, which is expected
as so is the KME.

We also checked the performance of bootstrap estimation for the standard
deviations of the parameter estimators. Table 2 below reports the simulation
results for τ1 = 0.25, τ2 = 1.75, D = 3.5, and sample size n = 100. In Table 2,
ŝ(·) represents the average of 200 bootstrap estimates (with B = 1, 000) of the
standard deviations of the relevant parameter estimator, and the standard errors
of these 200 estimates are also reported in parentheses.

Table 2 shows that the performance of the bootstrap estimation is quite
satisfactory. The results for other cases are similar.

6. An Application

We consider the application of our model and estimation procedure on a set
of nonlymphoblastic leukemia data that were analyzed in Matthews and Farewell
(1982) by change-point models without long-term survivors. The data consist of
survival times (in days), defined as the time from remission induction to relapse
for 84 patients with acute nonlymphoblastic leukemia. Of these, 51 are uncen-
sored (relapse observed) and 33 are censored (relapse not observed). The data
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Table 3. Ordered remission durations for 84 patients with acute nonlym-
phoblastic leukemia.

24 46 57 57 64 65 82 89 90 90 111

117 128 143 148 152 166 171 186 191 197 209

223 230 247 249 254 258 264 269 270 273 284

294 304 304 332 341 393 395 487 510 516 518

518 534 608 642 697 955 1160 68∗ 119∗ 182∗24 583∗

1310∗ 1538∗ 1634∗ 1908∗ 1996∗ 2057∗

are listed in Table 3 below, where ∗ indicates censored observations, and 182∗24

indicates 24 observations censored at 182 days.
The Kaplan-Meier estimator (KME) of the distribution function for the data

is plotted in Figure 1, together with its pointwise 95% confidence intervals (cf.,
Maller and Zhou (1996, p.11)). The KME levels off below 1 and the upper limits
of the confidence intervals are below 1 as well, indicating strong evidence for the
presence of long-term survivors. Hence our proposed model (2.3) is suitable to
analyze the data. Based on the change-point model (1.1), the MLE of the pa-
rameters were calculated to be (β̂, θ̂, τ̂) = (0.00204,−0.0016, 697.0) in Matthews
and Farewell (1982), which implies that the hazard function has a change-point
of around 697.0 days with a jump of −0.0016. Furthermore, Qin and Sun (1997)

Figure 1. Kaplan-Meier Estimator of the Distribution Function (DF) for the
Nonlymphoblastic Leukemia Data.
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Table 4. Bootstrap estimates for nonlymphoblastic leukemia data with B = 1, 000.

p̂ s(p̂) τ̂ s(τ̂) β̂ s(β̂) θ̂ s(θ̂)

0.8712 0.0181 697.94 0.0640 0.0026 0.0020 -0.0017 0.0012

found strong evidence against the null hypothesis of constant hazard rate (no
change-point). Using (2.3) with [τ1, τ2] = [10, 800] and D = 1, 600, and the boot-
strap procedure described in Section 4.2, our estimates for (τ, β, θ, p), together
with their standard errors (denoted by s(·)), are shown in Table 4 below.

The results in Table 4 give an estimate of p at around 0.87, indicating a
proportion of 13% for the long-term survivors. The change-point τ is estimated
as 698 days, with an estimated jump of about −0.001 for the hazard rate. Com-
pared with the results of Matthews and Farewell (1982), we see that the impact
of allowing long-term survivors is rather small on the estimates of the parameters
τ and θ, but much greater on β (30%) and the jump size (60%). Furthermore, the
bootstrap method allowed us to easily estimate the standard errors of the esti-
mators, which are quite small for p̂ and τ̂ , indicating high precision of estimation.
The standard errors of the other estimators (β̂ and θ̂) are also reasonable.

Matthews and Farewell (1982) analyzed these data and gave a test for a
change-point in the hazard function, but they did not consider the possibility
of long-term survivors. In this section, we fit the data using the survival cure
model in (2.3), which is supported by the Kaplan Meier estimator of the failure
distribution (cf., Figure 1). But is there really a change-point present in the haz-
ard function for the data? This is an important question that determines which
model is more appropriate to describe the data. It can be answered by testing
the null hypothesis H0 : there is no change point in the survival distribution or
τ = +∞ (cf., Qin and Sun (1997)). Following the results of Qin and Sun (1997),
together with our model (2.3), the modified deviance test statistic is given by

RMF (τ) = sup
τ1≤τ≤τ2

2
{

log L(τ, β̂τ , θ̂τ , p̂τ ) − log L(∞, β̂0, θ̂0, p̂0)
}

,

where log L is defined in (3.2). likelihood estimator of the parameters corre-
sponding to model (2.3), with and without change point are β̂τ , θ̂τ , p̂τ and β̂0,
θ̂0, p̂0, respectively. This gives a deviance RMF (τ) = 13.7032. Hence, the p-value
of the deviance test is Pr(RMF (τ) > 13.7032) = Pr(χ2

3 > 13.7032) = 0.0022,
significantly less than 0.01. Hence there is overwhelming evidence to reject the
null hypothesis H0 and conclude that a change point does exist for the data.

We also performed a goodness-of-fit test for the fitted change-point model
(2.3) using the method developed by Li and Sun (2000) under the assumption
of τ = 697.94, as follows. First generate L standard normal random samples
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ξ
(l)
1 , . . . , ξ

(l)
n , l = 1, . . . , L. Then calculate

Z∗
nl(t) =

√
n(1−Fω̂(t))

∫ t

0

∑n
i=1 ξ

(l)
i dNi(s)∑n

i=1 Hi(s)
−

F
′
ω̂(t)>Î−1

√
n

∫ ∞

0

h
′
ω̂(t)

hω̂(t)

n∑
i=1

ξ
(l)
i dNi(s)

for l = 1, . . . , L, where Ni(s) and Hi(s) are defined in (3.6), ω = (β, θ, p) with
maximum likelihood estimator ω̂, Fw(t) and hw(t) are the failure distribution and
hazard function in model (2.3) with partial derivative vectors F

′
w(t) and h

′
w(t),

respectively, and Î is the estimated information matrix of ω. Denote by cn(α) the
100(1−α)th (sample) percentile of sup0<t<τ0 |Z

∗
nl(t)|, . . ., l = 1, . . . , L. According

to the method of Li and Sun (2000), we reject (2.3) if sup0<t<τ0 |Zn(t)| > cn(α),
where Zn(t) = n1/2(Fn(t)−Fω̂(t)) and Fn(t) is the Kaplan-Meier estimator. For
α = 0.05, we calculated sup0<t<τ0 |Zn(t)| = 0.3892 and cn(α) = 0.5578 with
L = 200 and τ0 = 2, 100. Thus we accept the hypothesis that the data are drawn
from the change-point model (2.3).

Remark 2. Many commonly used parametric distributions have hazard func-
tions with very flexible shapes, particularly the generalized gamma (GG) dis-
tribution. We fitted the data by using the GG distribution, and performed a
goodness-of-fit test using the above method. The test result, however, rejected
the null hypothesis that the data are drawn from the GG distribution. This
further supports the need to consider the change-point model for the data.
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