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sufficient conditions for (C3), and the proofs of Proposition 1 and Theorems

1−6 in the main text.

1. Simulation Studies

In this section, simulation studies are conducted to examine the finite sam-

ple performance of the SCQR method. For comparison, several other meth-

ods are also considered: SQR(τ) and USQR; the ℓ1-penalized quantile re-

gression in high-dimensional sparse models in Belloni and Chernozhukov

(2011) over Θ, denoted by L1QR; the method of simply taking the union

of active covariate sets identified by quantile-adaptive model-free variable

screening method (He, Wang, and Hong (2013)), denoted by QaSIS; the



method of Xu and Chen (2014) with a ℓ1-penalized procedure, denoted

by PXC; and the sure screening method (Fan and Lv (2008)), denoted by

SIS. The following criteria are used to compare the performance of different

methods:

Cor: mean number of correctly identified variables (with nonzero coefficient

functions);

Inc: mean number of incorrectly selected variables;

UF: a proportion of under-fitted models;

CF: a proportion of correctly fitted models;

OF: a proportion of over-fitted models;

Err: the average of estimation errors, defined as [
∫
Θ
∥β̂τ − β⋆

τ∥22dτ ]1/2.

We set Θ = [0.1, 0.9] and choose τ = 0.25, 0.5, and 0.75 for the SQR(τ).

Typically, we use equally spaced grid points with the step size 0.01 on

[0.1, 0.9]. The Cn in the EBIC is taken as log(p)/2, which is also used by

Lee, Noh, and Park (2014). If not specified, the sample size is n = 200,

and the number of covariates is p = 1000. For the bandwidth, a smaller

h leads to a higher computation burden, while a larger one may result in

some bias of the estimate, and will make our method difficult to distinguish

the important covariates from the unimportant ones. We use the rule of

thumb bandwidth and choose h = 1.9n−1/3 ≈ 0.32, which performs well in



our simulation studies. All simulation results are based on 500 replications.

Scenario 1. We first consider a random coefficient model to compare the

performance of methods based on a continuous range of quantile levels and

that with a single or multiple quantile levels. Let Z1, . . . , Zp be independent

standard normal random variables, and U be a uniform random variable

on (−2, 2). Then define xj = |Zj + U |/2. The relationship between the

covariates and the response is Y = β⋆
τ,1x1 + β⋆

τ,2x2 + β⋆
τ,3x3. Set β

⋆
τ,1 =

1, β⋆
τ,2 = 2I(τ > 0.5), and β⋆

τ,3 = exp(τ 2), where τ follows a uniform

distribution on (0, 1).

Scenario 2. We consider a homogeneous error model. The covariates

(x1, . . . , xp)
⊤ follow a multivariate normal distribution Np(0,Σ), where Σ =

(σkl)p×p with σkl = 0.5 for k ̸= l and k ̸= 5, l ̸= 5, σ5l = σl5 = 0 for

l ̸= 5, and σkl = 1 for k = l. Thus, x5 is uncorrelated with xj (j ̸= 5). The

response is generated from the following model: Y = βx1 + βx2 + βx3 −

1.5βx4 + 0.25βx5 + ϵ, where ϵ is a random error term, and β is set to be

2.5. Under this setting, the marginal correlation of x4 and Y is zero, and

x5 has a small contribution to Y without “borrowing” strength from other

covariates. This model was also considered by Fan and Lv (2008).

Scenario 3. We consider a heteroscedastic location-scale model, and gen-



erate Z = (z1, . . . , zp)
⊤ from Np(0,Σ) with Σ = (σlk)p×p and σlk = 0.5|l−k|.

Then let xj = zj for j ̸= 3, and x3 = |z3|. The scalar response is gener-

ated from Y = x1 + 2x3 − x10 + 2x3ϵ. This implies that the coefficient of

x3 in model (2.1) is 2{1 + Φ−1(τ)}, which has a monotone behaviour in τ,

governed by the quantile function Φ−1(τ).

Scenario 4. We revise a challenging example fromWang (2009). Specifical-

ly, we first independently generate Zj and Wj from the standard multivari-

ate normal distribution. Then set xj = (Zj +Wj)/
√
2 for every 1 ≤ j ≤ 5,

and xj = (Zj +
∑5

j′=1 Zj′)/2 for every 5 < j ≤ p. The response is generated

from Y = x1 + 2x2 + 3x3 + 4x4 + 5x5 + ϵ. Note that it would be extreme-

ly difficult to identify x1 (for example) as an active covariate, because the

correlation of x1 and Y is much smaller than that of xj and Y for each

j > 5.

Scenario 5. We consider the case that the number of the nonzero coeffi-

cients is diverging with the sample size n. The covariates (x1, . . . , xp)
⊤ are

generated from Np(0,Σ) with Σ = (σlk)p×p and σlk = 0.5|l−k|. Let the true

model size s = [
√
n − 5], and β⋆

j = (−1)U1jU2j for 1 ≤ j ≤ s, where U1j is

from a Bernoulli distribution with success probability 0.4, and U2j is from a

uniform distribution on (2 log(n)/
√
n, 4 log(n)/

√
n). Other coefficients are

set to be zero. The response is generated from Y =
∑s

j=1 xjβ
⋆
j + ϵ. The



sample sizes are n = 200 and 400.

For Scenarios 2−5, the error term ϵ is independent of the covariates and

follows from the standard normal distribution N(0, 1) or a t-distribution

with degree of freedom 3, denoted by t(3). The simulation results for Sce-

narios 1−5 are reported in Tables A.1−A.5. In Scenario 1, SQR(0.25) fails

to identify the covariate x2, yielding Cor= 2.00 and UF= 1.00. SQR(0.5)

has a similar performance to SQR(0.25). On the other hand, the covariate

x2 has a strong effect on the response over Θ = [0.1, 0.9]. Therefore, the

SCQR successfully identifies the active covariate x2, yielding CF= 0.82.

Under Scenario 2, when the error term follows from N(0, 1), we observe

that both the SCQR and SQR(τ), with τ ∈ {0.25, 0.5, 0.75}, have very

similar performance in terms of model selection and estimation accuracy.

Specifically, the values of Cor are both 5 (the true model size), and the

values of Inc are close to 0. Besides, the SCQR has a slightly better per-

formance in estimation accuracy than the other methods. The results also

suggest that the USQR and QaSIS methods tend to yield an over-fitted

model (2.1) with OF=0.87 and 0.86, respectively. Both the SIS and L1QR

tend to yield an under-fitted model with UF= 1.00. Moreover, when the

error term follows from a t(3) distribution, SQR(τ) has an unstable per-

formance with CF varying from 0.20 to 0.79. The results of Scenario 3 are



similar to those of Scenario 2. Under the challenging case of Scenario 4, the

QaSIS and SIS both tend to yield an under-fitted model, while the other

methods are all over-fitted. But the SCQR still enjoys the smallest Err

(=0.23) and Inc (=0.94) with the error N(0, 1), and Err (=0.18) and Inc

(=0.97) with the error t(3). For Scenario 5, Table A.5 suggests that our

method can also handle the case with the true model size diverging as the

sample size n increasing. Based on the results of Tables A.1−A.5, we also

observe that the SCQR method performs better than the PXC in terms

of correct-fitting. For example, under the setting of Scenario 2 with the

error N(0, 1), the SCQR method yields CF= 0.99, while the PXC method

only has CF= 0.09, due to over-fitting. On the other hand, when the data

follow from a heteroscedastic location-scale model (Scenario 3), the SCQR

procedure is more robust than the PXC, especially for heavy-tailed data.

Furthermore, to gain a direct insight into the efficiency of our algorithm,

the average computational times (in seconds) over 500 replications for the

SCQR, USQR, QaSIS and L1QR are reported in Table A.6. The results

indicate that the SCQR costs the least time among the four robust methods,

namely our method is fast to choose the correct model and estimate the

coefficients. We also conduct simulation studies to assess the impact of

h in practice. The simulation results under the setting of Scenario 2 are



reported in Table A.7. The results demonstrate that the model selection

results of our method are robust with the bandwidth h varying in a proper

interval. The results for the other scenarios are similar and are not shown

here to save space.

Scenario 6. We assess the performance of the proposed method in model s-

election and estimation accuracy at tail quantiles. The covariates (x1, . . . , xp)
⊤

are generated from Np(0,Σ) with Σ = (σlk)p×p and σlk = 0.5|l−k|. The

nonzero coefficients are set to be β⋆
τ,1 = 1, β⋆

τ,3 = 4/3, β⋆
τ,5 = 1 and

β⋆
τ,10 = 2. Other coefficients are set to be zero. The response is gener-

ated from Y = β⋆
τ,1x1 + β⋆

τ,3x3 + β⋆
τ,5x5 + β⋆

τ,10x10 + ϵ, where ϵ follows from

N(0, 1). We implement the SQR(0.06) as well as the SCQR, USQR, L1QR,

and QaSIS with Θ = [0.05, 0.1] and Θ = [0.04, 0.09], respectively. The re-

sults are reported in Table A.8. We observe that there is a slight variability

in model selection for the SQR when Θ varies from [0.05, 0.1] to [0.04, 0.09].

For the SCQR, the results are very similar for the two choices of Θ. These

suggest that the method focusing on examination of model sparsity at a s-

ingle or at multiple quantile levels may be sensitive to the choice of quantile

levels in model selection, while the SCQR approach is robust.



Table A.1. Simulation results for Scenario 1.

Method Cor Inc UF CF OF Err

SCQR 2.83 0.02 0.16 0.82 0.02 0.31

USQR 2.99 1.90 0.01 0.31 0.68 0.37

SQR(0.25) 2.00 0.00 1.00 0.00 0.00 0.88

SQR(0.5) 1.82 0.06 0.98 0.01 0.01 1.06

SQR(0.75) 2.88 0.34 0.07 0.72 0.20 1.05

L1QR 2.99 93.63 0.01 0.00 0.99 1.61

QaSIS 2.98 201.4 0.02 0.00 0.98 -

PXC 2.71 4.56 0.26 0.03 0.70 -

SIS 1.58 13.42 0.86 0.00 0.14 -

Table A.2. Simulation results for Scenario 2.

N(0, 1) t(3)

Method Cor Inc UF CF OF Err Cor Inc UF CF OF Err

SCQR 5.00 0.01 0.00 0.99 0.01 0.19 4.77 0.00 0.23 0.77 0.00 0.31

USQR 5.00 3.07 0.00 0.13 0.87 0.23 4.94 2.28 0.06 0.17 0.77 0.37

SQR(0.25) 5.00 0.05 0.01 0.94 0.05 0.24 4.50 0.25 0.49 0.20 0.31 0.82

SQR(0.5) 5.00 0.01 0.00 0.99 0.01 0.21 4.74 0.01 0.26 0.70 0.04 0.37

SQR(0.75) 4.99 0.04 0.01 0.95 0.04 0.24 4.81 0.01 0.21 0.79 0.00 0.31

L1QR 4.00 87.6 1.00 0.00 0.00 3.28 3.92 93.2 1.00 0.00 0.00 3.46

QaSIS 4.85 178.4 0.14 0.00 0.86 - 4.87 179.8 0.12 0.00 0.88 -

PXC 5.00 2.97 0.00 0.09 0.91 - 4.92 2.89 0.07 0.09 0.84 -

SIS 3.00 12.00 1.00 0.00 0.00 - 2.99 12.01 1.00 0.00 0.00 -



Table A.3. Simulation results for Scenario 3.

N(0, 1) t(3)

Method Cor Inc UF CF OF Err Cor Inc UF CF OF Err

SCQR 2.90 0.07 0.08 0.87 0.05 0.34 2.43 0.02 0.27 0.71 0.02 0.72

USQR 2.99 2.02 0.01 0.20 0.79 0.64 2.92 0.98 0.06 0.38 0.55 1.02

SQR(0.25) 1.96 0.03 0.99 0.01 0.00 1.67 1.76 0.00 1.00 0.00 0.00 1.72

SQR(0.5) 2.60 0.14 0.27 0.63 0.10 1.17 2.17 0.01 0.46 0.53 0.01 1.36

SQR(0.75) 2.72 0.29 0.17 0.69 0.14 1.35 2.22 0.15 0.35 0.56 0.09 1.55

L1QR 1.99 90.58 1.00 0.00 0.00 1.98 2.00 106.0 1.00 0.00 0.00 1.61

QaSIS 2.97 147.7 0.04 0.00 0.96 - 2.96 152.7 0.03 0.00 0.97 -

PXC 2.88 0.41 0.06 0.62 0.32 - 1.06 0.06 0.79 0.17 0.04 -

SIS 2.44 12.56 0.46 0.00 0.54 - 2.68 13.3 0.28 0.00 0.72 -

Table A.4. Simulation results for Scenario 4.

N(0, 1) t(3)

Method Cor Inc UF CF OF Err Cor Inc UF CF OF Err

SCQR 5.00 0.97 0.00 0.03 0.97 0.18 5.00 0.94 0.00 0.06 0.94 0.23

USQR 5.00 11.51 0.00 0.00 1.00 0.33 5.00 7.66 0.00 0.00 1.00 0.34

SQR(0.25) 5.00 1.13 0.00 0.04 0.96 0.36 5.00 0.96 0.00 0.08 0.92 0.37

SQR(0.5) 5.00 1.03 0.00 0.03 0.97 0.29 5.00 0.96 0.00 0.05 0.95 0.29

SQR(0.75) 5.00 1.12 0.00 0.04 0.96 0.34 4.99 0.95 0.01 0.08 0.91 0.36

L1QR 5.00 88.8 0.00 0.00 1.00 1.00 5.00 99.03 0.00 0.00 1.00 5.87

QaSIS 2.77 184.6 0.87 0.00 0.13 - 1.25 282.5 1.00 0.00 0.00 -

PXC 5.00 2.52 0.00 0.01 0.99 - 4.99 2.43 0.01 0.00 0.98 -

SIS 0.11 14.89 1.00 0.00 0.00 - 0.09 15.9 1.00 0.00 0.00 -



Table A.5. Simulation results for Scenario 5.

n = 200 n = 400

Error Method Cor Inc UF CF OF Err Cor Inc UF CF OF Err

N(0, 1) SCQR 8.87 0.17 0.04 0.83 0.13 0.31 14.99 0.03 0.01 0.97 0.02 0.26

USQR 8.91 7.60 0.03 0.01 0.96 0.91 14.99 6.49 0.00 0.00 1.00 0.46

SQR(0.25) 7.74 0.67 0.29 0.38 0.33 0.89 14.82 0.31 0.05 0.76 0.19 0.38

SQR(0.5) 8.39 0.40 0.15 0.59 0.26 0.59 14.97 0.10 0.01 0.90 0.09 0.30

SQR(0.75) 7.62 0.65 0.30 0.35 0.34 0.94 14.88 0.36 0.04 0.71 0.25 0.37

L1QR 3.49 81.87 1.00 0.00 0.00 2.39 6.11 166.3 1.00 0.00 0.00 2.49

QaSIS 8.65 171.0 0.26 0.00 0.74 - 14.50 163.5 0.37 0.00 0.63 -

PXC 8.98 5.83 0.01 0.02 0.98 - 15.00 4.00 0.00 0.00 1.00 -

SIS 6.65 8.35 0.95 0.00 0.05 - 10.96 8.28 0.99 0.00 0.01 -

t(3) SCQR 5.88 0.02 0.63 0.35 0.02 1.32 13.12 0.03 0.32 0.66 0.02 0.70

USQR 7.23 1.47 0.48 0.11 0.41 1.93 14.21 2.10 0.18 0.14 0.68 1.45

SQR(0.25) 4.13 0.09 0.90 0.07 0.03 2.35 9.53 0.17 0.74 0.18 0.08 1.80

SQR(0.5) 5.57 0.09 0.66 0.26 0.07 1.73 2.57 0.10 0.37 0.56 0.07 0.96

SQR(0.75) 4.12 0.08 0.90 0.07 0.03 2.38 9.93 0.22 0.68 0.19 0.13 1.70

Table A.6. Average computational times (in seconds) for robust methods.

N(0, 1) t(3)

Scenario SCQR USQR L1QR QaSIS SCQR USQR L1QR QaSIS

1 35.9 58.5 485.4 129.0 - - - -

2 45.7 176.6 472.2 123.8 68.7 205.6 503.9 129.0

3 65.0 101.4 297.0 90.3 82.9 121.2 295.1 90.4

4 50.2 182.1 511.5 131.0 58.4 199.6 499.7 133.1

5 54.2 124.0 295.3 93.0 72.1 129.5 319.2 100.0



Table A.7. Simulation results of the SCQR method for Scenario 2 with

different bandwidths.

N(0, 1) t(3)

h Cor Inc UF CF OF Err Cor Inc UF CF OF Err

0.16 4.98 0.00 0.02 0.98 0.00 0.21 4.66 0.00 0.34 0.66 0.00 0.37

0.32 5.00 0.01 0.00 0.99 0.01 0.19 4.77 0.00 0.23 0.77 0.00 0.31

0.48 4.99 0.00 0.01 0.99 0.00 0.19 4.69 0.00 0.31 0.69 0.00 0.35

Table A.8. Simulation results for Scenario 6.

Θ = [0.04, 0.09] Θ = [0.05, 0.1]

Method Cor Inc UF CF OF Err Cor Inc UF CF OF Err

SCQR 3.99 7.66 0.01 0.01 0.98 0.02 4.00 4.60 0.00 0.07 0.93 0.02

USQR 4.00 23.16 0.00 0.00 1.00 0.02 4.00 17.63 0.00 0.00 1.00 0.02

SQR(0.06) 3.97 10.48 0.02 0.00 0.97 0.73 3.98 8.95 0.02 0.01 0.98 0.69

L1QR 4.00 81.99 0.00 0.00 1.00 0.04 4.00 82.30 0.00 0.00 1.00 0.04

QaSIS 3.34 67.37 0.51 0.00 0.49 - 3.42 65.76 0.48 0.00 0.52 -



2. Sufficient Conditions for (C3)

Some sufficient conditions for (C3) are presented in the following examples,

and the proofs are included at the end of the Supplementary. LetM ∈M2t
+ .

Example 1. Suppose that n−1
∑n

i=1 f(0|Xi)Xi,MX⊤
i,M is positive define.

This condition is considered by Koenker (2005) Then condition (C3) is

satisfied for sufficiently large n. Example 2. By Example 1, we can also

assume that f(0|Xi) > f for a constant f > 0, and n−1
∑n

i=1Xi,MX⊤
i,M is

bounded away from 0. Then condition (C3) holds.

Example 3. Suppose that the following conditions hold: (I) there exist

positive constants f and f̄ , which are independent of τ and x, such that

f < f(0|x) < f̄. (II) supu,x |f(u|x)− f(0|x)| ≤ A0|u| for a constant A0 > 0.

(III) The eigenvalues of n−1
∑n

i=1Xi,MX⊤
i,M are bounded from below and

above by some positive constants m̃1 and m̃2, respectively. (IV) Assume

that {
∑n

i=1(X
⊤
i u)

2}3/2/(
√
n
∑n

i=1 |X⊤
i u|3) = m̃3 > 0, where the support

of u belongs to M2t
+ and u ̸= 0, and m̃3 is a constant free of u. Condi-

tions (I) and (II) are considered by Zheng, Peng, and He (2015), while

condition (III) is a variant version of their condition (C4). Condition

(IV) is similar to condition (D.5) of Belloni and Chernozhukov (2011). If

∥u∥2 ≤ fm̃1m̃3/(2A0m̃
3/2
2 ), condition (C3) is satisfied for sufficiently large



n.

3. Technical Proofs

In this section, we establish the proofs of Proposition 1 and Theorems 1−6

in the main text. For any two numbers, a . (&) b means that there exists

a constant c > 0, satisfying a ≤ (≥) cb.

Lemma 1. If h → 0 and nh4 → 0, then we have that uniformly in τ and

βτ with supp(βτ ) ∈M2t
+ ,

1

n

n∑
i=1

ρτ (Yi −X⊤
i βτ ) =

1

n

n∑
i=1

ψτ,h(Yi −X⊤
i βτ ) + op(n

−1/2).

Proof. Let ϵ̃i = Yi − X⊤
i βτ for the ith subject. With a slight abuse of

notation, denote F (·) as the cumulative distribution function of ϵ̃i. Note

that

1

n

n∑
i=1

ρτ (Yi −X⊤
i βτ )−

1

n

n∑
i=1

ψτ,h(Yi −X⊤
i βτ )

=
1

n

n∑
i=1

ϵ̃i
[
Φ(−ϵ̃i/h)− I(ϵ̃i < 0)

]
=

∫
sΦ(−s/h)[dF̂ (s)− dF (s)]−

∫
sI(s < 0)[dF̂ (s)− dF (s)]

+

∫
s[Φ(−s/h)− I(s < 0)]dF (s|X)

≡U1 + U2 + U3,

where F̂ (·) is the empirical cumulative distribution of ϵ̃i, i = 1, . . . , n. Let



u = sh−1. For U1 and U2, the integration by parts gives

U1 = −h
∫

[F̂ (uh)− F (uh)]d{uΦ(−u)}

= −h
∫

[F̂ (uh)− F (uh)]Φ(−u)du+ h

∫
[F̂ (uh)− F (uh)]uϕ(−u)du

≡ U11 + U12,

U2 =

∫
[F̂ (u)− F (u)]I(u < 0)du.

Using oscillations of the empirical process (Shorack and Wellner (1986),

p.531), we have that uniformly in βτ and τ,

|U11 + U2| = Op

([h log(n)
n

log
( 1

h log(n)

)]1/2)
,

and

|U12| = Op

([h log(n)
n

log
( 1

h log(n)

)]1/2)
.

Applying the integration by parts and the Taylor’s expansion, we obtain

that |U3| = Op(h
2), which is free of βτ and τ. This, together with the results

of U1 and U2, gives∣∣∣1
n

n∑
i=1

ρτ (Yi −X⊤
i βτ )−

1

n

n∑
i=1

ψτ,h(Yi −X⊤
i βτ )

∣∣∣ ≤ |U1 + U2|+ |U3|,

which is of order

Op

([h log(n)
n

log
( 1

h log(n)

)]1/2
+ h2

)
.

Thus, the conclusion follows from h→ 0 and nh4 → 0.

3.1 Proofs of Proposition 1 and Theorems 1−2

Proof of Proposition 1. Suppose that B is an optimal solution, and

M̄ = {j : ∥bj∥2 ̸= 0} is the support of B. We can rewrite the objective



function as

∥B −D∥2F =
∑
j∈M̄

∥bj − dj∥22 +
∑
j /∈M̄

∥dj∥22.

Note that each term in the right hand side of the above equation is not

negative. Then set bj = dj for j ∈ M̄, and the objective function be-

comes
√∑

j /∈M̄ ∥dj∥22. Thus, to minimize the objective function, M̄ must

correspond to the indices of the largest t values of d∗j .

Proof of Theorem 1. To prove Theorem 1, we first show the convergence

of {Ũ(D[l])}. For this, it suffices to show that the inequality (3.6) in the main

text holds since {Ũ(D[l])} is bounded above. An application of Lipschitz

condition of ℓτ (β) gives that for any λ ≥ ϕ,

Ũ(B) ≤ Ũ(D) +
1

K

K∑
k=1

⟨
β̌τk

− βτk
, ℓ̇τk(βτk

)
⟩
+

λ

2K
∥B −D∥2F = Qλ(B|D).

(C.1)



By the definitions of Qλ(B|D) and D[l+1], we have

Ũ(D[l]) =Qλ[l](D[l]|D[l]) ≥ Qλ[l](D[l+1]|D[l])

=Ũ(D[l]) +
1

K

K∑
k=1

⟨
β[l+1]

τk
− β[l]

τk
, ℓ̇τk(β

[l]
τk
)
⟩
+
λ[l]

2K
∥D[l+1] −D[l]∥2F

=Ũ(D[l]) +
1

K

K∑
k=1

⟨
β[l+1]

τk
− β[l]

τk
, ℓ̇τk(β

[l]
τk
)
⟩
+

ϕ

2K
∥D[l+1] −D[l]||2F

+
λ[l] − ϕ

2K
∥D[l+1] −D[l]∥2F

=Qϕ(D
[l+1]|D[l]) +

λ[l] − ϕ

2K
∥D[l+1] −D[l]∥2F . (C.2)

By (C.1) and (C.2), we obtain

Ũ(D[l]) ≥ Ũ(D[l+1]) +
λ[l] − ϕ

2K
∥D[l+1] −D[l]∥2F , (C.3)

which implies that the inequality (3.6) in the main text holds whenever

λ[l] ≥ ϕ/(1 − ϱ). Because Ũ(D[l]) has an upper bound, (C.3) implies that

{Ũ(D[l])} has at least one limiting point in the feasible region.

We now show that there exists a subsequence such that D[l] is conver-

gent. When λ[l] → ∞ as l → ∞, the result is trivial. Next, we assume

that {λ[l]} is bounded, and hence there exists a subsequence S such that

λ[l] → λ̃. For each l ∈ S, denote the support of D[l] by M[l], that is,

M[l] = {j : K−1
∑K

k=1(β
[l]
τk,j

)2 ̸= 0}. By (C.3) and the fact that Ũ(D[l]) is

convergent, we know that ∥D[l+1] − D[l]∥2F → 0 as l ∈ S goes to infinity,

which implies that M[l] is also convergent. Also, M[l] is a discrete sequence,



and hence there exists a constant l∗ ∈ S such that M[l] = M[l∗] for all l ∈ S

and l ≥ l∗. Thus, Algorithm 1 becomes a gradient descent algorithm on the

space M[l] for all l ∈ S and l ≥ l∗. Since a gradient descent algorithm for

minimizing a convex function over a closed convex set yields a sequence of

iterations that converges (Nestenrov (2004)), we conclude that the subse-

quence {D[l] : l ∈ S} is convergent.

Next, we prove that Algorithm 1 will stop in a finite number of steps.

By (C.3) and assuming that λ[l] ≥ ϕ/(1− ϱ), we get

L∑
l=0

{Ũ(D[l])− Ũ(D[l+1])} ≥λ
[l] − ϕ

2K

L∑
l=0

∥D[l+1] −D[l]∥2F

≥ ϱϕ

2K(1− ϱ)

L∑
l=0

∥D[l+1] −D[l]∥2F ,

which yields that

min
0≤l≤L

∥D[l+1] −D[l]∥2F ≤ 2K(1− ϱ)

ϱϕ

{Ũ(D[0])− Ũ(D[l+1])}
L

.

Let λ⋆ = 2(1− ϱ)/(ϱϕ). By the above proofs, we know that the decreasing

sequence Ũ(D[l]) has at least one limiting point, denoted by Ũ(D⋆). Then

we have

min
0≤l≤L

∥D[l+1] −D[l]∥2F ≤λ
⋆K{Ũ(D[0])− Ũ(D[L+1])}

L

≤λ
⋆K{Ũ(D[0])− Ũ(D⋆)}

L
.



Note that λ⋆ and Ũ(·) are bounded above. Thus, for any ε > 0, there exists

L = O(1/ε2) such that for some 1 ≤ l̃ ≤ L, K−1∥D[l̃+1] − D[l̃]∥2F . ε2. In

other words, Algorithm 1 stops in a finite number of steps with the stopping

criteria being K−1/2∥D[l+1] −D[l]∥F . ε.

Proof of Theorem 2. Note that

∥D[l+1] −D⋆∥F =
∥∥∥{D[l+1] −D[l] +

1

λ[l]
Ψ̇(D[l])

}
+
{
D[l] − 1

λ[l]
Ψ̇(D[l])−D⋆

}∥∥∥
F

≤
∥∥∥D[l+1] −D[l] +

1

λ[l]
Ψ̇(D[l])

∥∥∥
F
+
∥∥∥D[l] − 1

λ[l]
Ψ̇(D[l])−D⋆

∥∥∥
F
.

By the definition of D[l+1] and s ≤ t, we have∥∥∥D[l+1] −
{
D[l] − 1

λ[l]
Ψ̇(D[l])

}∥∥∥
F
≤

∥∥∥D⋆ −
{
D[l] − 1

λ[l]
Ψ̇(D[l])

}∥∥∥
F
.

Thus,

∥D[l+1] −D⋆∥F ≤ 2
∥∥∥D[l] − 1

λ[l]
Ψ̇(D[l])−D⋆

∥∥∥
F
.

The Taylor’s expansion yields that

∥D[l] −D⋆ − (λ[l])−1Ψ̇(D[l])∥F

=

√√√√ K∑
k=1

∥β[l]
τk
− β⋆

τk
− 1

λ[l]
ℓ̇τk(β

⋆
τk
)− 1

λ[l]
ℓ̈τk(β̃τk

)(β[l]
τk
− β⋆

τk
)∥22

≤
√
2

√√√√ K∑
k=1

[
∥(I− 1

λ[l]
ℓ̈τk(β̃τk

))(β[l]
τk
− β⋆

τk
)∥22 +

1

λ[l]
∥ℓ̇τk(β

⋆
τk
)∥22

]

≤
√
2

√√√√ K∑
k=1

∥(I− 1

λ[l]
ℓ̈τk(β̃τk

))(β[l]
τk
− β⋆

τk
)∥22 +

√
2

λ[l]

√√√√ K∑
k=1

∥ℓ̇τk(β
⋆
τk
)∥22,



where β̃τk
lies between β[l]

τk
and β⋆

τk
, and I denotes the identity matrix. The

last two inequalities are due to the fact that (a + b)2 ≤ 2(a2 + b2) and√∑K
k=1 (a

2
i + b2i ) ≤

√∑K
k=1 a

2
i +

√∑K
k=1 b

2
i , respectively. This, combining

with ϕ < λ[l] < ϕ̃/[1− 1/(4
√
2)], yields that

∥D[l+1] −D⋆∥F ≤ 2−1∥D[l] −D⋆∥F +

√
2

ϕ
∥Ψ̇(D⋆)∥F .

Iterating this relationship, we obtain

∥D[l] −D⋆∥F ≤ 2−l∥D[0] −D⋆∥F +

√
8

ϕ
∥Ψ̇(D⋆)∥F .

This completes the proof.

3.2 Proofs of Theorems 3−6

Lemma 2. Under condition (C4), there exist positive constants c1 and b

such that for 1 ≤ j ≤ p,

P
{∣∣∣ 1
n

n∑
i=1

xij[I(ϵi ≤ 0)− τ ]
∣∣∣ ≥ b

}
≤ 2 exp{−c1nb2}.

Proof. Since {I(ϵi ≤ 0) : i = 1, . . . , n} are i.i.d. Bernoulli random variables

with mean τ, it follows from the Hoeffding’s inequality (Hoeffding (1963))

that

P
{∣∣∣ 1
n

n∑
i=1

xij[I(ϵi ≤ 0)− τ ]
∣∣∣ ≥ b

}
≤ 2 exp{−c1nb2}.

This completes the proof.

Proof of Theorem 3. Without loss of generality, we assume that Θ =

(0, 1). Define the collections of under-fitted models with model size t as



M t
− = {M : M⋆ * Mt}. For any M ∈ M t

−, define M
′ = M ∪M⋆ ∈ M2t

+ .

Consider βτ,M close to β⋆
τ,M such that

∫
Θ
∥βτ,M ′ − β⋆

τ,M ′∥22dτ = (ω1n
−κ1)2

for some ω1 and κ1 > 0. Let uk,M ′ = β̂τk,M ′ − β⋆
τk,M ′ . Then the definition

of integration implies that (ω1n
−κ2)2/2 ≤ K−1

∑K
k=1 ∥uk,M ′∥22 ≤ (2ω1n

−κ1)2

for sufficiently large K. Set ∆ = (u1,u2, . . . ,uK) = D̂−D⋆. Further define

the following criterion:

On(∆M ′) =
1

nK

K∑
k=1

n∑
i=1

[
ρτk

(
ϵik −X⊤

i,M ′uk,M ′
)
− ρτk

(
ϵik

)]
,

where ϵik = Yi − X⊤
i β

⋆
τk
, and ∆M ′ is the sub-matrix of ∆ associated with

the index of rows in M ′. By the identity (Knight (1998))

|r − s| − |r| = −s
{
I(r > 0)− I(r < 0)

}
+ 2

∫ s

0

[
I(r ≤ t)− I(r ≤ 0)

]
dt,

we have

ρτ (r − s)− ρτ (r) = s
{
I(r < 0)− τ

}
+

∫ s

0

[
I(r ≤ t)− I(r ≤ 0)

]
dt.



Thus, On(∆M ′) can be written as follows:

On(∆M ′) =
1

nK

K∑
k=1

n∑
i=1

X⊤
i,M ′uk,M ′

[
I(ϵik ≤ 0)− τk

]
+

1

nK

K∑
k=1

n∑
i=1

∫ X⊤
i,M′uk,M′

0

[
I(ϵik ≤ t)− I(ϵik ≤ 0)

]
dt

≥− 1

K

K∑
k=1

∥∥ 1
n

n∑
i=1

Xi,M ′ [I(ϵik ≤ 0)− τk]
∥∥
2
∥uk,M ′∥2

+
1

nK

K∑
k=1

n∑
i=1

∫ X⊤
i,M′uk,M′

0

[
I(ϵik ≤ t)− I(ϵik ≤ 0)

]
dt

=− I1 + I2. (C.6)

Let

I2k = n−1

n∑
i=1

∫ X⊤
i,M′uk,M′

0

[
I(ϵik ≤ t)− I(ϵik ≤ 0)

]
dt.

An application of Hoeffding’s inequality (Hoeffding (1963)) yields that for

some c2 and ν1 > 0,

P{|I2k − EI2k| > (ν1/2)n
−2ξ2} ≤ 2 exp{−c2n1−4ξ2}.

This, combining with conditions (C2) and (C4), implies that with proba-

bility greater than 1− 2n exp{−c2n1−4ξ2},

1

nK

K∑
k=1

n∑
i=1

∫ X⊤
i,M′uk,M′

0

[
I(ϵik ≤ t)− I(ϵik ≤ 0)

]
dt ≥ ν1

2K

K∑
k=1

∥uk,M ′∥22.

Define the event

Ω =
{
I2 >

ν1
2K

K∑
k=1

∥uk,M ′∥22
}
.



In view of (C.6), to prove P{On(∆M ′) < 0} → 0, it suffices to establish

P{I1 > I2} → 0. On the event Ω, we obtain that for some positive constant

ν2,

P{I1 > I2}

≤P
{ 1

K

K∑
k=1

∥∥ 1
n

n∑
i=1

Xi,M ′ [I(ϵik ≤ 0)− τk]
∥∥
2
∥uk,M ′∥2 ≥

ν1
2K

K∑
k=1

∥uk,M ′∥22
}

≤P
{[

max
1≤k≤K

∥∥ 1
n

n∑
i=1

Xi,M ′ [I(ϵik ≤ 0)− τk]
∥∥
2

][ 1

K

K∑
k=1

∥uk,M ′∥2
]
≥ ν1

2K

K∑
k=1

∥uk,M ′∥22
}

≤P
{[

max
1≤k≤K

∥∥ 1
n

n∑
i=1

Xi,M ′ [I(ϵik ≤ 0)− τk]
∥∥
2

][ 1

K

K∑
k=1

∥uk,M ′∥22
]1/2

≥ ν1
2K

K∑
k=1

∥uk,M ′∥22
}

≤P
{[

max
1≤k≤K

∥∥ 1
n

n∑
i=1

Xi,M ′ [I(ϵik ≤ 0)− τk]
∥∥
2

]
≥ ν1ω1

4
n−ξ2

}
≤

K∑
k=1

∑
j∈M′

P
{∣∣∣ 1
n

n∑
i=1

xij[I(ϵik ≤ 0)− τk]
∣∣∣ ≥ ν2t

−1/2n−ξ2
}
. (C.7)

By Lemma 2 and condition (C4), there exist some positive constants c3 and

c4 such that

P
{∣∣∣1
n

n∑
i=1

xij[I(ϵik ≤ 0)− τk]
∣∣∣ ≥ ν2t

−1/2n−ξ2
}
≤ c3 exp

{
− c4n

1−ξ1−2ξ2
}
.

(C.8)

Note that P{Ωc} ≤ 2n exp{−c2n1−4ξ2}. This, together with (C.7) and (C.8),

yields that

P{U(D⋆
M ′) ≥ U(DM ′)} ≤ 2n exp{−c2n1−4ξ2}+ c3Kt exp

{
− c4n

(1−ξ1−2ξ2)α
α+2

}
.

(C.9)



Therefore, the Bonferroni inequality implies that

P
{
U(D⋆

M ′) ≥ min
M∈Mt

−

U(DM)
}

≤2npt exp{−c2n1−4ξ2}+ c3Kn
ξ1pt exp

{
− c4n

1−ξ1−2ξ2
}
.

Note that U(D) is strictly convex. Thus, the above results hold for any βτ

such that
√∫

Θ
∥βτ,M ′ − β⋆

τ,M ′∥22dτ ≥ ω2n
−ξ2 . For any M ∈ M t

−, let β̃τ,M ′

be the augmented vector of βτ,M with zeros corresponding to the elements

in M ′/M⋆, where M ′/M⋆ is the complement set of M⋆ in M ′. Since M ′ =

{M ∪ (M⋆/M)} ∪ {M ′/M⋆}, it follows from condition (C2) that ∥β̃τ,M ′ −

β⋆
τ,M ′∥2 ≥ ∥βτ,M ′/M⋆∥2, and hence

√∫
Θ
∥β̃τ,M ′ − β⋆

τ,M ′∥22dτ ≥ ω2n
−ξ2 . Then

the definition of integration implies that (ω1n
−κ2)2/2 ≤ K−1

∑K
k=1 ∥β̃τk,M ′−

β⋆
τk,M ′∥22 ≤ (2ω1n

−κ1)2 for sufficiently large K. Consequently, we have that

under condition max{ξ1 + ξ2, ξ1/2 + 2ξ2} < (1− ξ0)/2,

P
{

max
M∈Mt

+

U(DM) ≥ min
M∈Mt

−

U(DM)
}

≤P
{
U(D⋆

M ′) ≥ min
M∈Mt

−

U(D̃M)
}

≤2npt exp{−c2n1−4ξ2}+ c3Kn
ξ1pt exp

{
− c4n

1−ξ1−2ξ2
}
→ 0.

This completes the proofs.

Proof of Corollary 1. If M̂s ̸⊂ M⋆, then there exists some j ∈ M̂s but

j ̸∈M⋆. Thus, it follows from Theorem 3 that |M⋆| < |M̂s| with probability



tending to 1. This is contradictory to the fact |M⋆| = |M̂s|. Hence, we must

have M̂s ⊂M⋆ with probability tending to 1. This, together with Theorem

3, yields the conclusion.

Lemma 3. Suppose that conditions (C1)−(C4) hold. Then for a constant

c5 > 0,

lim
n→∞

P
{ 1√

K
∥D̂ −D⋆∥F ≤ c5n

−ξ2
}
= 1.

Proof. By the convexity of ρτ (·), it suffices to show that for any given a > 0,

lim inf
n→∞

P{ inf
M∈Mt

+

inf
∥∆∥F=b

On(∆M) > 0} ≥ 1− a,

where b = c5
√
Kn−ξ2 . Following similar arguments to the proofs of (C.5),

(C.7) and (C.9), we can obtain the conclusion.

Proof of Theorem 4. For any M ∈ M t
−, define M

′ = M ∪M⋆ ∈ M2t
+ .

Similarly to (C.7), we can get that with probability tending to 1,

ν1
4
n−2ξ2 < On(∆) =

1

nK

K∑
k=1

n∑
i=1

[
ρτk

(
ϵik −X⊤

i,M ′uk,M ′
)
− ρτk

(
ϵik

)]
≤ ν1n

−2ξ2 .

(C.10)

Under the assumption E(|ϵ|) < ∞, we obtain that n−1
∑n

i=1 ρτk(ϵik) →p

E{ρτk(ϵik)}, and ν−1
3 < E{ρτk(ϵ)} < ν3 for some constant 0 < ν3 < ∞.

Therefore, we have that with probability tending to 1,

1

ν3
<

1

nK

K∑
k=1

n∑
i=1

ρτk
(
ϵik −X⊤

i,M ′uk,M ′
)
< 2ν3. (C.11)



In view of Lemma 3, (C.11) and condition (C3), following similar arguments

to the proof of (A.20) in the online Supplementary Material of Lee, Noh,

and Park (2014), we can show that there exists some constant ν4 > 0 (

independent of M ∈M t
−) such that with probability tending to 1,

1

nK

K∑
k=1

n∑
i=1

[
ρτk(Yi −X⊤

i,M β̂τk,M
)− ρτk(Yi −X⊤

i,M ′β̂τk,M ′)
]
> 2ν4 > 0.

(C.12)

Then it follows from (C.11) and (C.12) that with probability tending to 1,

min
M∈M t

−

EBIC(M)− EBIC(M ′)

= min
M∈M t

−

[
log

{
1 +

(nK)−1
∑K

k=1

∑n
i=1[ρτk

(
Yi −X⊤

i,M β̂τk,M

)
− ρτk

(
Yi −X⊤

i,M ′β̂τk,M ′

)
]

(nK)−1
∑K

k=1

∑n
i=1 ρτk

(
Yi −X⊤

i,M ′β̂τk,M ′

) }
+ (|M | − |M ′|)Cn

log(n)

2n

]

≥ min
M∈M t

−

min

{
log(2),

(nK)−1
∑K

k=1

∑n
i=1[ρτk

(
Yi −X⊤

i,M β̂τk,M

)
− ρτk

(
Yi −X⊤

i,M ′β̂τk,M ′

)
]

2(nK)−1
∑K

k=1

∑n
i=1 ρτk

(
Yi −X⊤

i,M ′β̂τk,M ′

) }

− tCn
log(n)

n

≥ min
M∈M t

−

{
log(2),

ν4
2ν3

}
− ω1n

ξ1Cn
log(n)

n
> 0, (C.13)

where the first inequality follows from log(1+x) ≥ min{x/2, log(2)} for any

x > 0, and the last inequality follows from the assumption Cn log(n)/n
1−ξ1 =

o(1). By (C.13), we have that for any underfitted modelM with size t, there

exists an overfitted model M ′ =M ∪M⋆ such that EBIC(M) > EBIC(M ′)



with probability tending to 1 as n → ∞. Thus, to prove Theorem 4, it

suffices to show

P{ min
M∈Mt

+

EBIC(M) > EBIC(M⋆)} → 1. (C.14)

Note that

min
M∈M t

+

EBIC(M)− EBIC(M⋆)

= min
M∈M t

+

[
log

{
1 +

(nK)−1
∑K

k=1

∑n
i=1[ρτk

(
Yi −X⊤

i β̂τk,M

)
− ρτk

(
Yi −X⊤

i,M⋆β̂τk,M⋆

)
]

(nK)−1
∑K

k=1

∑n
i=1 ρτk

(
Yi −X⊤

i,M⋆β̂τk,M⋆

) }
+ (|M | − |M⋆|)Cn

log(n)

2n

]
≥ min

M∈M t
+

min
{
log(2),

(nK)−1
∑K

k=1

∑n
i=1

[
ρτk(Yi −X⊤

i β̂τk,M
)− ρτk(Yi −X⊤

i β̂τk,M⋆)
]

2(nK)−1
∑K

k=1

∑n
i=1 ρτk(Yi −X⊤

i β̂τk,M⋆)

}
+ (|M | − |M⋆|)Cn

log(n)

n

≥ min
M∈M t

+

min{log(2), ν1
4ν3

n−2ξ2}+ Cn
log(n)

n
> 0,

where the second inequality follows from (C.10) and (C.11). This implies

that (C.14) holds, and hence completes the proof.

Proof of Theorem 5. Note that for sufficiently large K,

[ ∫
Θ

∥β̂τ − β⋆
τ∥22dτ

]1/2
≤
[ 1

K

K∑
k=1

∥β̂τk
− β⋆

τk
∥22 + (c5n

−ξ2)2
]1/2

≤
[ 1

K

K∑
k=1

∥β̂τk
− β⋆

τk
∥22
]1/2

+ c5n
−ξ2

=
1√
K

∥D̂ −D⋆∥F + c5n
−ξ2 ,



where the first inequality follows from the definition of integration, and

the second inequality follows from
√
|a|+ |b| ≤

√
|a| +

√
|b|. Therefore, it

follows from Lemma 3 that

P
{[ ∫

Θ

∥β̂τ − β⋆
τ∥22dτ

]1/2 ≥ 2c5n
−ξ2

}
≤ P

{ 1√
K

∥D̂ −D⋆∥F ≥ c5n
−ξ2

}
→ 0.

This completes the proof.

Proof of Theorem 6. Let Mτ = M̂τ ∪M⋆. As in the proof of Theorem

5, it suffices to show that for sufficiently large K,

P
{ 1√

K
∥D[l] −D⋆∥F ≥ c5n

−ξ2
}
→ 0 as n→ ∞. (C.15)

To show (C.15), in view of the proof of Theorem 2, we have

P
{ 1√

K
∥D[l]

Mτ
−D⋆

Mτ
∥F ≥ c5n

−ξ2
}
≤P

{ 1√
K

∥Ψ̇Mτ (D
⋆)∥F ≥ c5n

−ξ2
}

≤2KτP
{
|ℓ̇τk,j(β

⋆
τk
)| ≥ c̃5n

−0.5ξ1−ξ2
}
,

(C.16)

where c̃5 = c5/(2ω1). By the definition of ℓτ (β), we get

|ℓ̇τk,j(β
⋆
τk
)| ≤

∣∣∣1
n

n∑
i=1

xij
[
τk − 1 + Φ(

ϵik
h
)
]∣∣∣+ ∣∣∣ 1

nh

n∑
i=1

xijϵikΦ̇(
ϵik
h
)
∣∣∣

=
∣∣∣1
n

n∑
i=1

xij
[
τk − 1 + Φ(

ϵik
h
)
]∣∣∣+ ∣∣∣ 1√

2πnh

n∑
i=1

xijϵik exp{−
ϵ2ik
2h2

}
∣∣∣.

(C.17)



Note that exp{−ϵ2ik/(2h2)} = op(hn
−ξ2) as h → 0. Then for sufficiently

large n,

∣∣∣ 1

nh

n∑
i=1

xijϵik exp{−
ϵ2ik
2h2

}
∣∣∣ = op(n

−ξ2)
∣∣∣ 1
n

n∑
i=1

xijϵik

∣∣∣.
Moreover, the assumption E(|ϵ|) < ∞ and condition (C4) imply that

n−1|
∑n

i=1 xijϵik
∣∣ < ∞. Therefore, we get that the second term in the right

hand side of (C.17) is of order op(n
−ξ2).

For the first term in the right hand side of (C.17), it can be checked

that

∣∣∣1
n

n∑
i=1

xij
[
τk − 1 + Φ(

ϵik
h
)
]∣∣∣

=
∣∣∣1
n

n∑
i=1

xij
[
(τk − I(ϵik < 0)) + (Φ(

ϵik
h
)− I(ϵik ≥ 0))

]∣∣∣
≤
∣∣∣1
n

n∑
i=1

xij[τk − I(ϵik < 0)]
∣∣∣+ ∣∣∣ 1

n

n∑
i=1

xij[Φ(
ϵik
h
)− I(ϵik ≥ 0)]

∣∣∣. (C.18)

Note that [Φ(ϵik/h) − I(ϵik ≥ 0)] = Φ(ϵik/h) if ϵik < 0, and [Φ(ϵik/h) −

I(ϵik ≥ 0)] = −Φ(−ϵik/h) if ϵik ≥ 0. Thus, we have

∣∣∣ 1
n

n∑
i=1

xij[Φ(
ϵik
h
)− I(ϵik ≥ 0)]

∣∣∣ = op(hn
−ξ2)

∣∣∣ 1
n

n∑
i=1

xij

∣∣∣.
Then by condition (C4), we obtain that the second term in the right hand

side of (C.18) is also of order op(n
−ξ2). It follows from (C.16)−(C.18) and



Lemma 2 that for some positive constants c6 and c7,

P
{ 1√

K
∥D[l] −D⋆∥F ≥ c5n

−ξ2
}
≤KpP

{
|ℓ̇τk,j(β

⋆
τk
)| ≥ c5n

−ξ2
}

≤KpP
{∣∣∣ 1
n

n∑
i=1

xij[τk − I(ϵik < 0)]
∣∣∣ > c5n

−ξ2/8
}

≤c6Kp exp{−c7n1−ξ1−2ξ2},

which implies that (C.15) holds with 0 < (ξ1 + 2ξ2) < (1− ξ0).

3.3 Proofs of Examples 1−3

Example 1. For simplicity, we assume that for each vector u ∈ {u :

∥uM∥2 < δ, M ∈ M2t
+ }, X⊤

i u > 0 for all 1 ≤ i ≤ n. Define B =

n−1
∑n

i=1 f(0|Xi)Xi,MX⊤
i,M . Note that

1

n1−ξ2

n∑
i=1

∫ X⊤
i u

0

[
F (

s

nξ2
|Xi)− F (0|Xi)

]
ds =

1

n

n∑
i=1

∫ X⊤
i u

0

[
sf(0|Xi) + o(s)

]
ds

=
1

2n

n∑
i=1

f(0|Xi)(X
⊤
i,MuM)2 + o(u⊤Bu)

≥1

4
u⊤

MBuM ≥ v∥u∥22,

where the first inequality follows from the fact that the largest eigenvalue

of B is bounded above by some positive constant. The second inequality

holds because the smallest eigenvalue of B is bounded away from 0.

Example 2. The proof of Example 2 can be obtained with a slight modifi-

cation of the proof of Example 1.



Example 3. Note that

1

n1−ξ2

n∑
i=1

∫ X⊤
i u

0

[
F (

s

nξ2
|Xi)− F (0|Xi)

]
ds

≥ 1

n

n∑
i=1

∫ X⊤
i u

0

(
sf(0|Xi)− A0s

2
)
ds ≥ 1

2n

n∑
i=1

f(0|Xi)(X
⊤
i u)

2 − A0

3n

n∑
i=1

|X⊤
i u|3

=
1

2
u⊤

M

(
n−1

n∑
i=1

f(0|Xi)Xi,MX⊤
i,M

)
uM − A0

3

[
u⊤

M(n−1
∑n

i=1Xi,MX⊤
i,M)uM

]3/2
m̃3

≥
fm̃1

2
∥u∥22 −

A0

3

(∥u∥22)3/2m̃
3/2
2

m̃3

=∥u∥22
(fm̃1

2
− A0

3

∥u∥2m̃3/2
2

m̃3

)
,

where the first inequality follows from the mean value theorem and condi-

tion (II), and the third equality follows from conditions (I), (III) and (IV).

If we take ∥u∥2 ≤ fm̃1m̃3/(2A0m̃
3/2
2 ), we obtain that condition (C3) holds

with v = fm̃1/3.
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