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Abstract: When working with large parallel data sets, it is necessary to check

whether they are collected from different regression models before conducting fur-

ther modeling, estimation, and inference. We propose a novel metric for such het-

erogeneity based on a projection strategy. We then use this metric to a new fully

data-driven test for the equivalence of a large number of unknown regression mod-

els. We also construct the asymptotic normality of the proposed test, and apply

the test to identify outlying data sets with regression models that deviate from

the majority. Extensive numerical studies demonstrate that our methods perform

satisfactorily.
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1. Introduction

Large parallel data sets are becoming increasingly common in scientific fields

such as bioinformatics, computer science, mechanical engineering, and economics,

owing to the advancement of data collection techniques and devices. Thus, it is

necessary to measure and test the homogeneity of such data sets before further

data processing can occur. For example, in experimental studies, before inte-

grating the data, it is necessary to check the extend to which the underlying

distributions or models of the parallel data sets collected under different con-

ditions or treatments differ (Borgwardt et al. (2006); Tang and Song (2016)).

Moreover, even in the same treatment group, one needs to determine whether in-

dividuals share the same model before group-specific modeling (Ke, Li and Zhang

(2016); Vogt and Linton (2017)). Therefore, we require a formal test to provide

uncertainty quantification on data homogeneity. In such scenarios, we also need

to accurately estimate the overall pattern using a post-test diagnostic that can

identify outlying groups or individuals.
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Heterogeneity in data sets may come from various forms of variability across

parallel studies. In this study, we focus on data sets of paired measurements of

responses and covariates. Thus, testing the heterogeneity across multiple data

sets essentially means checking whether the data sets share a common regression

function. Suppose we have p parallel data sets, and the kth data set consists

of nk paired members {(Yki, Xki), i = 1, . . . , nk}, for k = 1, . . . , p, where Yki is

a scalar response and Xki denotes the associated d-dimensional covariates. We

model the data as follows:

Yki = mk(Xki) + εki, i = 1, . . . , nk; k = 1, . . . , p, (1.1)

where mk is a regression function and εki denotes random noise satisfying E(εki |
Xki) = 0, almost surely (a.s.). For k = 1, . . . , p, let Zk = {Zk1, . . . , Zknk

},
with Zki = (Yki, Xki), for i = 1, . . . , nk. We assume that the p data sets are

collected independently, that is, Zk is independent of Z`, for any (k, `), such that

1 ≤ k 6= ` ≤ p, and the paired covariates and noise (Xki, εki) are independent

and identically distributed (i.i.d.) as (X, ε), for i = 1, . . . , nk and k = 1, . . . , p.

Testing the homogeneity of the p data sets can thus be formulated as testing the

following null hypothesis:

H0 : P{m1(X) = · · · = mp(X)} = 1. (1.2)

Here, we require no knowledge of the structured functional forms of {mk}pk=1

and treat them as nonparametric. We consider a large-scale setup in the sense

that the number of parallel data sets p → ∞. Once we have rejected the null

hypothesis H0 in (1.2), we need to identify the outlying data sets that possess

different regression functions from the majority.

In fact, testing for heterogeneity among several (usually two) regression func-

tions has been widely researched. It is natural to perform a classical analysis

of variance if all regression functions are restricted to some parametric forms,

such as linear models. More recently, testing procedures with no restrictions on

the parametric structures have been proposed; see, for instance, Neumeyer and

Dette (2001), Neumeyer and Dette (2003), Pardo-Fernández, Van Keilegom and

González-Manteiga (2007), Srihera and Stute (2010), Koul and Li (2020), and

Cai and Wang (2021), among others. See also Section 7 in González-Manteiga

and Crujeiras (2013) for a brief overview. Our context differs from those of past

studies, because the number of regression functions can be very large, that is,

asymptotically speaking, p→∞. For example, treatments in experimental stud-

ies may be indicated by a categorical variable that takes a value from a large



HETEROGENEITY OF PARALLEL DATASETS 2789

collection of candidates, which naturally results in large parallel data sets. As

another example, econometricians investigating panel data may consider whether

the data is poolable over time (Baltagi, Hidalgo and Li (1996); Barras, Scaillet

and Wermers (2010)), where the number of periods could be very large. Further-

more, in studies of longitudinal data in which we need to estimate the overall

pattern from a large number of subjects (Chiou and Li (2007); Qiu and Xiang

(2014)), we need to know whether there are significant differences between indi-

vidual subjects. Such applications motivate the need for heterogeneity tests for

large parallel data sets.

In this paper, we first propose a model-free metric for the departure of two

regression functions, based on a projection approach. We then use this metric to

create a test statistic for testing for heterogeneity in large parallel data sets. The

proposed procedure makes no parametric assumptions on the regression functions,

and does not require direct estimations of the nonparametric models. Compared

with prior works, our approach is free of nuisance parameters, making it particu-

larly useful for the case of large p. We construct the asymptotic properties of the

test statistic when the sample sizes of all data sets diverge. We also propose a

bootstrap remedy to mimic the null distribution in cases of conservative sizes in

finite-sample performance, and establish its asymptotic validity and consistency.

In addition, we apply the proposed heterogeneity testing procedure to identify

outlying data sets. We offer a new perspective on outlier detection by perform-

ing a sequence of heterogeneity tests in a large-scale manner. We show that the

proposed method performs satisfactorily in terms of correctly detecting outlying

data sets, while controlling the false positive rate well.

A closely related work is that of Wang, Wang and Zou (2017), who study the

testing aspect. Our proposed test statistic is similar to theirs. For example, both

get rid of nonparametric estimations of the underlying regression models, and

both are related to U-statistics. Nevertheless, our study contributes to the liter-

ature in three ways. First, the proposed projection-based metric of heterogeneity

is new. Second, our test statistic is free of any tuning parameters. In contrast,

the test statistic of Wang, Wang and Zou (2017) involves an additional nuisance

parameter that needs to be specified in an elaborate manner. Moreover, they

treat the nuisance parameter as fixed, and provide no theoretical guarantees if a

data-dependent estimate is plugged-in. Third, our numerical studies reveal that

their procedure is sometimes conservative for large sample sizes. This issue is

mitigated by our method by our use of the proposed bootstrap calibrations. Fur-

thermore, the calibrations are based on an elaborate analysis of the asymptotic

behavior of the proposed test statistics, which makes the theoretical derivations
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much more involved. In addition, we present a novel outlier detection scheme

based on the proposed testing method.

The remainder of the paper is organized as follows. In Section 2, we develop

the heterogeneity measure and derive our test statistic. In Section 3, we inves-

tigate the proposed method from a theoretical viewpoint, and in Section 4, we

apply the proposed measure and testing procedure to identify outlying data sets.

In Section 5, we present several examples based on simulated and real data to

evaluate the numerical performance of the proposed method. We conclude the

paper in Section 6. Proofs of the theoretical results and additional numerical

results are deferred to the Supplementary Material.

2. A New Test Statistic for Heterogeneity Checking

In this section, we introduce a novel measure for heterogeneity that quantifies

the difference between two regression functions, and then propose our test statistic

based on the heterogeneity measure.

2.1. A novel measure for heterogeneity

Our testing procedure for (1.2) is motivated by a novel measure that charac-

terizes the equivalence or departure of two regression functions based on projec-

tions. It induces a testing procedure that avoids directly estimating the regression

functions by, for example, using kernel smoothing methods, and can be applied

to covariates with moderate or even large dimension. The key observation is

provided in Lemma 1.

Lemma 1. Suppose E|mk(X)| < ∞, for k = 1, 2. A necessary and sufficient

condition for m1(X) = m2(X) a.s. to hold is that

E {m1(X)I(βTX ≤ u)} = E {m2(X)I(βTX ≤ u)}

holds almost everywhere (β, u) ∈ Sd−1 × R, where Sd−1 = {β ∈ Rd : ‖β‖ = 1} is

the (d− 1)-dimensional unit sphere.

Projection-based characterizations are often used to avoid the curse of dimen-

sionality in the literature on goodness-of-fit testing (Escanciano (2006); Lavergne

and Patilea (2008); Xia (2009); Patilea, Sánchez-Sellero and Saumard (2016);

Cuesta-Albertos et al. (2019)). Lemma 1 offers a two-sample version. To aggre-

gate all information over (β, u) ∈ Sd−1 ×R, we propose the following projection-

averaging (PA)-based measure for the equivalence or departure of two regression

functions:
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PA(m1,m2) =

∫
β∈Sd−1

∫
u∈R

[E {m1(X)I(βTX ≤ u)}

−E {m2(X)I(βTX ≤ u)}]2 dFβTX(u)dλSd−1(β), (2.1)

where FβTX is the cumulative distribution function of the projected covariate

βTX, and λSd−1 represents the uniform probability measure on Sd−1. It is obvious

that PA(m1,m2) ≥ 0 and PA(m1,m2) = 0 if and only if P(m1(X) = m2(X)) = 1.

PA techniques similar to (2.1) are used by, among others, Escanciano (2006),

Zhu et al. (2017), and Kim, Balakrishnan and Wasserman (2020) for different

inferential purposes. One advantage of the PA approach is that it involves a

closed-form expression, as shown in Proposition 1.

Proposition 1. Suppose E|mk(X)| <∞, for k = 1, 2. Let X ′, X ′′ be i.i.d. copies

of X. Then,

PA(m1,m2) =E{m1(X)m1(X
′)K(X,X ′, X ′′)}

+ E{m2(X)m2(X
′)K(X,X ′, X ′′)}

− 2E{m1(X)m2(X
′)K(X,X ′, X ′′)}, (2.2)

where K(X,X ′, X ′′) = 2−1 − (2π)−1 arccos[{(X −X ′′)T(X ′ −X ′′)}/(‖X − X ′′‖
‖X ′ −X ′′‖)] if X 6= X ′′ and X ′ 6= X ′′. If X = X ′′ 6= X ′ or X ′ = X ′′ 6= X, then

K(X,X ′, X ′′) = 1/2, and if X = X ′ = X ′′, then K(X,X ′, X ′′) = 1.

Moreover, as we show later, the benefit of using (2.1) or (2.2) appears clearer

by observing that E(Yki | Xki) = mk(Xki) a.s., for i = 1, . . . , nk and k = 1, . . . , p,

which indicates how we construct the test statistic for H0 without any kernel

estimations of the regression functions.

2.2. The test statistic

The idea in the two-sample scenario can be generalized to the context of

multiple samples. To this end, we introduce

θp = {p(p− 1)}−1
∑

1≤k 6=`≤p
PA(mk,m`)

to serve as the heterogeneity measure of m1, . . . ,mp. By Lemma 1, the p regres-

sion functions mk are equivalent (i.e., H0 holds) if and only if θp = 0. To form a

test statistic, we need an estimate of θp or estimates of all pairwise discrepancy

measures PA(mk,m`).
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For any x, x′ ∈ Rd, define

K(x, x′) = E{K(X,X ′, X ′′) | X = x,X ′ = x′},

where K is defined in Proposition 1. Suppose, for the moment, that K is known.

Recall that E(Yki | Xki) = mk(Xki), for i = 1, . . . , nk and k = 1, . . . , p. For

each pair (k, `) such that 1 ≤ k 6= ` ≤ p, we propose an unbiased estimate of

PA(mk,m`) as

P̃Ak,` ={nk(nk − 1)}−1
∑

1≤i1 6=i2≤nk

Yki1Yki2K(Xki1 , Xki2)

+ {n`(n` − 1)}−1
∑

1≤j1 6=j2≤n`

Y`j1Y`j2K(X`j1 , X`j2)

− 2n−1k n−1`

nk∑
i=1

n∑̀
j=1

YkiY`jK(Xki, X`j).

Then, an unbiased estimate of θp is

Up = {p(p− 1)}−1
∑

1≤k 6=`≤p
P̃Ak,`. (2.3)

However, K is difficult to specify in a closed form, and may even be unknown.

Hence, we need good approximations of K. To this end, we propose using the

following moment estimates. For each pair (k, `) such that 1 ≤ k < ` ≤ p, define

K̂−k`(x, x′) = n−1r

nr∑
s=1

K(x, x′, Xrs),

where r = ` + 1 if ` < p, and r = 1 + I(k = 1) if ` = p. For 1 ≤ ` < k ≤ p, we

define K̂−k`(x, x′) = K̂−`k(x, x′). We estimate PA(mk,m`), again without bias,

by

P̂Ak,` ={nk(nk − 1)}−1
∑

1≤i1 6=i2≤nk

Yki1Yki2K̂−k`(Xki1 , Xki2)

+ {n`(n` − 1)}−1
∑

1≤j1 6=j2≤n`

Y`j1Y`j2K̂−k`(X`j1 , X`j2)

− 2n−1k n−1`

nk∑
i=1

n∑̀
j=1

YkiY`jK̂−k`(Xki, X`j).
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This motivates the test statistic

Tp = {p(p− 1)}−1
∑

1≤k 6=`≤p
P̂Ak,`. (2.4)

Note that Tp is free of any tuning parameters. Because Tp is also unbiased

for θp, large values of Tp indicate that we should rejeect H0 that these p data sets

are homogeneous.

3. Theoretical Properties

In this section, we establish the asymptotic null distribution of the test statis-

tic Tp, and use the jackknife method to estimate its asymptotic variance in order

to implement the test. In addition, we propose a bootstrap procedure to calibrate

the critical value of the test. Finally, we study the asymptotic power of the test

under a finite-component mixture model.

3.1. Asymptotic null distribution

Our discussion is under a large-scale setup in the sense that the number of

parallel data sets p → ∞. Recall that Zk = {(Yk1, Xk1), . . . , (Yknk
, Xknk

)}, for

k = 1, . . . , p. We first make the following assumptions.

Assumption 1. (Model). Zk is independent of Z`, for any 1 ≤ k 6= ` ≤ p,

and (Xki, εki) are i.i.d. as (X, ε), for i = 1, . . . , nk and k = 1, . . . , p. In addition,

there exists a constant δ > 0 such that E
{
|mk(X)|2+δ

}
< ∞, for k = 1, . . . , p,

and E(|ε|2+δ) <∞.

Assumption 2. (Number of data sets and sample sizes). Suppose p→∞
and nk → ∞ as p → ∞, for k = 1, . . . , p; in addition, there exist positive

constants c1 and c2 such that c1 ≤ inf1≤k,`≤p nk/n` ≤ sup1≤k,`≤p nk/n` ≤ c2.

With zi = (yi, xi), for i = 1, 2, define

h(2,0)(z1, z2) = y1y2K(x1, x2) + E
{
m1(X)m1(X

′)K(X,X ′)
}

−y1E {m1(X)K(x1, X)} − y2E {m1(X)K(x2, X)} . (3.1)

Denote σ2p,0 = 8p−1
∑p

k=1{nk(nk − 1)}−1E
[ {
h(2,0)(Zk1, Zk2)

}2 ]
. The next theo-

rem gives the asymptotic distribution of Tp under the null hypothesis.

Theorem 1. Suppose Assumptions 1–2 hold. Under H0, p1/2Tp/σp,0 → N(0, 1)

in distribution as p→∞, and σ2p,0 = O(n−21 ).
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By Theorem 1, the convergence rate of Tp to its population counterpart, that

is, the heterogeneity measure θp, is of the order p−1/2n−11 . The proof of Theorem

1 is given in the Supplementary Material. The key idea is to use Hoeffding’s

decomposition (Hoeffding (1948)) of U -statistics. In fact, Tp is asymptotically

equivalent to Up, a U -statistic of degree two with a kernel that may depend on

p and nk, under H0. Moreover, the kernel of Up is a two-sample U -statistic of

degree (2, 2) on its own. Following the proof of Theorem 1 in the Supplementary

Material, we have Tp = 2p−1
∑p

k=1 Ξp,k +Op(p
−1n−11 ) under H0, where

Ξp,k = {nk(nk − 1)}−1
∑

1≤i1 6=i2≤nk

h(2,0)(Zki1 , Zki2).

In other words, Tp is asymptotically equivalent to an average of a sequence of

independent, but not identically distributed, random variables. We can then

construct the asymptotic normality of Tp using a central limit theorem for double

arrays of random variables.

3.2. A jackknife estimate of variance

It remains to estimate σ2p,0 in order to fulfill the testing procedure based on

Tp. Instead of directly estimating E
[{
h(2,0)(Zk1, Zk2)

}2]
, we use the jackknife

estimator of the variance of U -statistics of degree two (Sen (1977)). Denote

Ûp,k = (p− 1)−1
∑p

`=1
6̀=k

P̂Ak,`. We estimate σ2p,0 by

σ̂2p,0 = 4(p− 1)(p− 2)−2
p∑

k=1

(
Ûp,k − Tp

)2
.

In fact, under H0, Ûp,k can be viewed as an approximation to E(P̂Ak,` | Zk), or

essentially to Ξp,k. Hence, σ̂2p,0 is simply the sample variance based on {2Ûp,1, . . . ,
2Ûp,p} up to a negligible factor (p − 1)2(p − 2)−2. The following proposition

guarantees the consistency of σ̂2p,0.

Proposition 2. Suppose Assumptions 1–2 hold. Under H0, σ̂2p,0/σ
2
p,0 → 1 in

probability as p→∞.

The null hypothesis is rejected when p1/2Tp/σ̂p,0 > zα, where zα is the upper

α-quantile of N(0, 1). Slutsky’s theorem combined with Theorem 1 and Propo-

sition 2 ensures that p1/2Tp/σ̂p,0 is asymptotically standard normal, and thus is

the size of the test at the significance level α.



HETEROGENEITY OF PARALLEL DATASETS 2795

3.3. Bootstrap calibrations

Our testing procedure with the jackknife variance estimate σ̂2p,0 can be ap-

plied directly, free of any nuisance parameters. However, our simulation studies

indicate that in some finite-sample situations, this results in conservative sizes.

Noting that, under H0, Tp = 2p−1
∑p

k=1 Ξp,k + Op(p
−1n−11 ), where {Ξp,k}pk=1

are independent, but not identically distributed, we propose using a Studentized

bootstrap procedure to calibrate the critical value of the test.

We use Ûp,k = (p − 1)−1
∑p

`=1
6̀=k

P̂Ak,` to approximate Ξp,k, for k = 1, . . . , p.

Proposition S.1 in the Supplementary Material indicates that Ûp,k is consistent

for Ξp,k under the null hypothesis. Let Fp,U be the empirical distribution of

{Ûp,k}pk=1. We randomly draw Û∗p,1, . . . , Û
∗
p,p from Fp,U . Because E(Û∗p,1 | Fp,U ) =

p−1
∑p

k=1 Ûp,k = Tp, a Studentized bootstrap version of the test statistic is

p1/2(T ∗p −Tp)/S∗p,U , where T ∗p = p−1
∑p

k=1 Û
∗
p,k and S∗2p,U = p−1

∑p
k=1(Û

∗
p,k−T ∗p )2.

Then, the distribution of p1/2(T ∗p − Tp)/S∗p,U conditional on Fp,U is used to es-

timate that of p1/2Tp/σ̂p,0 under the null hypothesis. The following theorem

establishes the theoretical support for the bootstrap method.

Theorem 2. Suppose Assumptions 1–2 hold. Under H0, as p→∞,

sup
x∈R

∣∣∣∣∣P
{
p1/2(T ∗p − Tp)

S∗p,U
≤ x

∣∣∣∣Fp,U
}
− P

(
p1/2Tp
σ̂p,0

≤ x

)∣∣∣∣∣ = op(1).

Let z∗α be the upper α-quantile of the conditional distribution of p1/2(T ∗p −
Tp)/S

∗
p,U . Then, the null hypothesis is rejected when p1/2Tp/Sp,U > z∗α. The

value of z∗α can be approximated using a Monte Carlo simulation by repeatedly

sampling from Fp,U a large number of times. Our numerical studies indicate that

the test based on the bootstrap calibration enjoys better performance in term of

size.

Remark 1. The computational complexity of the jackknife or bootstrap-based

testing procedures lies mainly in the calculation of the test statistic Tp, which

is O(p2n31) if all nk are O(n1). Once we have {Ûp,k}pk=1 in the computation of

Tp, both procedures can be performed in an efficient manner, with no additional

refitting required. However, computing the test statistic Tp is itself sometimes

computationally expensive, especially for very large p and nk, which is unavoid-

able at this moment, given how we construct the test statistic.



2796 PENG, WANG AND ZOU

3.4. Asymptotic power

To determine the asymptotic power of our proposed test with a bootstrap

calibration, we introduce the following finite-component mixture model.

Assumption 3. (Clusters). There are finite (say L) different regression func-

tions {m∗1, . . . ,m∗L} such that P{m∗`1(X) = m∗`2(X)} < 1, for any 1 ≤ `1 6=
`2 ≤ L, and the underlying regression functions {m1, . . . ,mp} fall into L clus-

ters, such that in the `th cluster, the regression functions are identical to m∗` , for

` = 1, . . . , L.

Theorem 3. Suppose Assumptions 1–3 hold. Let p` be the number of regression

functions in the `th cluster, for ` = 1, . . . , L, and p(1) and p(2) be the largest two

values of {p`}L`=1, and assume that p(2) → ∞ and p(2)/(p
1/2n

−1/2
1 ) → ∞. Then,

the power of the test with a bootstrap calibration converges to one as p→∞.

Theorem 3 shows that as long as the number of regression functions in the

second largest cluster satisfies p(2) →∞ and p(2)/(p
1/2n

−1/2
1 )→∞, our proposed

test is consistent against the alternative with a fixed number of clusters. If

p = O(n1), it suffices to require that p(2) → ∞ to achieve consistency. We

restrict p(2) →∞, because our estimated variance σ̂p,0 may be inconsistent under

the alternative models.

Remark 2. To gain some insight into the conditions on p(2), we consider the case

of only two clusters for the regression functions. Let p1 and p2 denote the number

of curves in each cluster, and we assume p1 ≥ p2, without loss of generality. In

this case, the signal

θp = {p(p− 1)}−1
∑

1≤k 6=`≤p
PA(mk,m`) = 2p1p2{p(p− 1)}−1PA(m∗1,m

∗
2),

which is of order p2p
−1. In addition, the noise (standard deviation of Tp) is

of order p−1/2n
−1/2
1 . Thus, the signal-to-noise ratio is at an order of at least

p2p
−1/2n

1/2
1 , which diverges when p2/

(
p1/2n

−1/2
1

)
→∞.

4. Application: Identifying Heterogeneity

Once we have rejected the null hypothesis H0 that the p data sets are homoge-

neous, we need to identify any outlying data sets that depart from the majority of

data sets that possess a common regression function. In this setting, we assume

that the proportion of outlying data sets is not too large. In the terminology

of outlier detection, we refer to an outlying data set that consists of multiple
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measurements as an outlier.

Conventionally, outlier detection starts by finding a “clean” subset of the

data, from which we can estimate the overall pattern of the underlying data-

generating process, or, in our context, the common regression function. We

then perform marginal comparisons between the models estimated by each data

set with the overall pattern. If the marginal discrepancy measure takes a large

value, then the corresponding data set is declared an outlier. This essentially

performs a sequence of two-sample comparisons between each data set and the

set of identified homogeneous data sets. Instead of estimating each marginal

model and the common regression models, we first use a screening rule to obtain

a “clean” subset of the data consisting of homogeneous data sets. The screening

statistics are simply components of our global heterogeneity test statistic,

Ûp,k = (p− 1)−1
p∑
`=1
` 6=k

P̂Ak,`, for k = 1, . . . , p. (4.1)

If k corresponds to an outlying regression function, then Ûp,k will tend to be

large. Denote the order statistic of Ûp,k as Ûp,(1) ≤ Ûp,(2) ≤ · · · ≤ Ûp,(p), such

that Ûp,(j) = Ûp,kj , for j = 1, . . . , p and kj ∈ {1, . . . , p}. We can treat the data sets

with indices S = {k1, . . . , kSp
} as homogeneous or clean, say ZS = {Zk, k ∈ S}.

Our numerical studies suggest that Sp = bcpc with c = 70% exhibits robust

performance. Proposition 3 provides a certain theoretical guarantee in the case

of a simple two-cluster model.

Proposition 3. Suppose Assumptions 1, 2, and 3 hold with L = 2. Let Cj be the

set of indices corresponding to the data sets in the jth cluster, with cardinality pj,

for j = 1, 2. Without loss of generality, we assume p1 ≥ p2. If p(3+δ)/(2+δ)/{(p1−
p2)n

1/2
1 } → 0, then there exists a positive constant C such that as p → ∞ and

n1 →∞,

P

(
min
k2∈C2

Ûp,k2 − max
k1∈C1

Ûp,k1 ≥ C(p1 − p2)p−1
)
→ 1.

Proposition 3 shows that outlying data sets can be differentiated from the

clean data sets with probability approaching one under the two-cluster model.

The condition p(3+δ)/(2+δ)/{(p1−p2)n1/21 } → 0 requires that p cannot diverge too

fast. In addition, p1 and p2 cannot be too close, which is reasonable in the context

of outlier detection. In the case of {p1 − p2}/p → c0, for some positive constant

c0 ≤ 1 as p → ∞, the condition is satisfied when p = o(n
1+δ/2
1 ). However, this
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weakens with a higher moment condition on mk(X) and ε.

Remark 3. To calculate the screening statistics Ûp,k, we use a proportion of

the data, say {(Ykij , Xkij ), ij ∈ {1, . . . , nk}, j = 1, . . . ,m}pk=1, to facilitate our

computation when nk is large. The screening rule is still valid if m replacing n1
satisfies the conditions in Proposition 3.

Once we obtain the clean or normal majority, we can apply the heterogeneity

testing procedure to form marginal outlier detection statistics. The key idea is

to construct parallel data sets for each marginal comparison. That is, for each

k = 1, . . . , p, we first randomly divide the kth data set Zk into qk = bnk1/2c
disjoint subsets, such that the sample sizes of these qk parallel data sets are

roughly equal. Then, we sample nk measures from the normal majority apart

from Zk, that is, ZS\Zk. These are split further into qk new data sets, again

each with roughly equal sample sizes. Now, we obtain 2qk parallel data sets, with

one half exactly substituting the original Zk, and the other half sampled from

the normal data sets. Finally, we apply our heterogeneity testing procedure in

Section 2 to these 2qk data sets, and denote the resulting p-value as Pk. If Zk
is from the normal majority, we would not expect to have enough evidence to

reject the null hypothesis that the 2qk data sets are homogeneous. In contrast,

if Zk is a true outlier that possesses a regression function that deviates from the

common one, then the p-value Pk should be small to reject the null. Hence, Pk
is an appropriate measure for outlier detection. We denote the set of identified

outliers as O = {k : Pk ≤ α}, for some nominal significance level α.

Remark 4. Dividing Zk into a large number (qk) of bins is motivated by the

nature of the proposed heterogeneity testing procedure. One can trivially treat

all screened normal data sets as a whole and perform the heterogeneity test on

these qk + 1 data sets. However, this could be computationally inefficient, and

may cause unbalanced sample sizes, which goes against the assumption for the

validity of our proposed test. Hence, we propose sampling just nk measurements,

which are split further into another qk data sets, with each of the final 2qk subsets

having roughly comparable sample sizes. The detailed algorithm is provided as

Algorithm 1 in the Supplementary Material.

Let pnormal and poutliers be the numbers of normal and outlying data sets,

respectively, among all p data sets. Denote |Onormal| as the number of data sets

declared as outliers, but that are actually normal. By Proposition 3, our proposed

detection rule guarantees that the false positive rate is approximately controlled

at α, that is, E{|Onormal|}/pnormal ≈ α.
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5. Numerical Studies

We carried out extensive numerical studies, including simulations and real-

data analyses, to assess the performance of our proposed test and algorithm.

5.1. Heterogeneity testing

In this section, we evaluate the finite-sample performance of our proposed

method by considering the test statistic with a jackknife estimate of the variance

(Section 3.2) and the procedure with bootstrap calibrations (Section 3.3), referred

to as “Jack” and “Boots,” respectively. The method proposed by Wang, Wang

and Zou (2017), which is based on Fourier transformations, is considered as a

benchmark, and is referred to as “WWZ.” The WWZ method involves a nuisance

parameter that is specified according to the suggestion given by Wang, Wang and

Zou (2017).

To allow different sample sizes, we consider Model (1.1) with nk = Nk + 2,

for k = 1, . . . , p, where Nk are independently sampled from a Poisson distribution

with mean n0 − 2. We vary p over the values {10, 25, 50, 100} and vary n0 over

{10, 20, 40}. The dimension of all covariates {Xki, i = 1, . . . , nk; k = 1, . . . , p} is

fixed at d = 5, and they are i.i.d. sampled from (i) a standard normal distribu-

tion N(0, 1) or (ii) a standardized uniform distribution with zero mean and unit

variance. The noise {εki, i = 1, . . . , nk, k = 1, . . . , p} is i.i.d. sampled from (1)

N(0, σ2) or (2) σ{Exp(1)−1}, where Exp(1) is the exponential distribution with

rate one. We consider the following regression functions of x = (x(1), . . . , x(d))T:

m∗1(x) = d−1/2
d∑
j=1

x(j), m∗2(x) =
√

2 log d

{
max
j=1,...,d

x(j) −
√

2 log d

}
,

m∗3(x) =

d∑
j=1

x(j), m∗4(x) =

d1∑
j=1

x(j) + b sin

π d∏
j=d1+1

x(j)

 ,

m∗5(x) =

d1∑
j=1

x(j) + b exp

−
 d∑
j=d1+1

x(j)

2 ,

m∗6(x) =

d1∑
j=1

x(j) + b

 d∑
j=d1+1

x(j)

2

.

To examine the sizes of the three tests, we consider three scenarios for

{m1, . . . ,mp}: (I) mk = m∗1, for k = 1, . . . , p; (II) mk = m∗2, for k = 1, . . . , p;

and (III) mk = m∗4, for k = 1, . . . , p, with d1 = 3 and b = 1. We set σ = 2.



2800 PENG, WANG AND ZOU

Table 1. Observed sizes (in %) of various tests carried out at the 5% nominal level for
various (p, n0)-settings under scenarios (I–III)-(i)(1).

p 10 25 50 100

n0 10 20 40 10 20 40 10 20 40 10 20 40

Scenario (I)-(i)(1)

Boots 5.6 4.0 2.5 4.8 4.2 4.5 4.9 5.6 5.7 4.9 4.8 6.0

Jack 3.8 2.0 1.4 2.6 2.4 2.6 2.4 3.6 3.5 2.7 3.1 4.4

WWZ 3.7 3.0 2.4 3.2 3.0 2.8 2.5 3.3 3.4 3.6 2.5 4.4

Scenario (II)-(i)(1)

Boots 6.7 3.6 2.2 4.1 4.9 4.0 5.0 4.5 6.1 5.4 4.6 5.5

Jack 3.8 2.4 1.2 2.6 3.2 1.8 2.7 2.8 3.6 3.6 2.9 4.3

WWZ 3.4 3.1 2.0 3.1 3.2 2.9 3.0 3.6 4.6 4.1 3.2 4.1

Scenario (III)-(i)(1)

Boots 5.3 3.7 3.0 3.9 3.9 4.3 4.5 4.7 5.8 4.5 4.5 5.1

Jack 2.5 2.2 1.9 1.9 1.9 2.3 3.0 2.6 3.3 2.7 2.9 3.5

WWZ 3.0 2.9 2.4 1.4 2.3 2.2 3.3 3.0 3.5 3.5 3.1 3.4

Table 1 presents the observed sizes (in %) of the three tests carried out at the

5% nominal level for various (p, n0)-settings under scenarios (I–III)-(i)(1). The

results show that the sizes of all tests are, in general, close to the nominal level.

The WWZ and Jack methods based jackknife estimates seem a little conservative.

In contrast, the Boots method that performs bootstrap calibrations yields bet-

ter performance, overall. Complete numerical results for various combinations of

model settings are deferred to Figures S.1–S.3 in Section S3 of the Supplementary

Material, which show similar conclusions.

Then, we consider two scenarios to examine the power of the three tests.

The first is a two-component mixture model: (IV) Each mk, for k = 1, . . . , p, is

identical to m∗1 with probability 1− ρ and to m∗2 with probability ρ. We consider

the following two examples: (IV-a) p varies, n0 = 20, ρ = 0.5, and σ = 3; and (IV-

b) p = 100, n0 = 20, ρ varies, and σ = 3. Figure 1 depicts the observed power

(in %) of the three tests carried out at the 5% nominal level under Examples

(IV-a)-(i/ii)(1) and (IV-b)-(i/ii)(1). The results show that under (i), where the

covariates are normally distributed, WWZ performs slightly better than Boots.

However, Boots is overwhelmingly better than WWZ under scenario (ii), where

the distribution of the covariates is uniform.

The second experiment is conducted using a four-component mixture model:

(V) Each mk, for k = 1, . . . , p, is allocated to clusters of ID 1–4 with probabilities

(ρ1, ρ2, ρ3, ρ4), such that
∑4

`=1 ρ` = 1, where in the `th cluster, for ` = 1, . . . , 4,

the regression functions are identical to m∗`+2. Again, we examine two examples:
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Figure 1. Observed power (in %) of various tests carried out at the 5% nominal level
under Examples (IV-a)-(i/ii)(1) and (IV-b)-(i/ii)(1).

(V-a) p = 100, n0 varies, ρ` = 0.25, for ` = 1, . . . , 4, and σ = 6; and (V-b)

p = 100, n0 = 20, ρ1 varies with ρ2 = ρ3 = ρ4 = (1− ρ1)/3, and σ = 4. In both

examples, we fix d1 = 3 and b = 1. Figure 2 shows the observed power (in %) of

the three tests carried out at the 5% nominal level under Examples (V-a)-(i/ii)(1)

and (V-b)-(i/ii)(1). We can see from this plot that under both scenarios (i) and

(ii) for the distribution of the covariates, Boots uniformly outperforms WWZ and

Jack methods because of the proposed bootstrap calibrations.

5.2. Identifying outlying data sets

Now, we investigate the finite-sample performance of our proposed in detect-

ing outlying data sets. To facilitate practical use, Algorithm 1 in the Supple-

mentary Material describes the outlier detection process. For illustrative pur-

poses, we consider the numerical setting (IV) in Section 5.1 with p ∈ {100, 200},
n0 ∈ {50, 100, 200}, d = 5, and σ = 1, and we range the proportion of outlying

data sets ρ over the values {5%, 10%, 15%, 20%}. We set the nominal significance

level to 5%.

Table 2 reports the average sizes (in %), that is, the proportions of falsely

identified outlying data sets among all homogeneous data sets, under different
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ρ

Figure 2. Observed power of various tests carried out at the 5% nominal level under
Examples (V-a)-(i/ii)(1) and (V-b)-(i/ii)(1).

Table 2. Average sizes (in %) under different configurations of (p, n0, ρ) when the covari-
ates and noise are both normally distributed.

p = 100 p = 200

ρ n0 = 50 n0 = 100 n0 = 200 n0 = 50 n0 = 100 n0 = 200

5% 4.18 4.27 4.46 4.24 4.35 4.46

10% 4.29 4.44 4.68 4.30 4.37 4.57

15% 4.14 4.64 4.92 4.29 4.41 4.74

20% 4.35 4.81 5.76 4.26 4.44 5.08

configurations of (p, n0, ρ) when the covariates and noise are both normally dis-

tributed. Here, our proposed method provides satisfactory observed sizes. In

other words, the number of mistakenly declared outliers is well controlled. Fig-

ure 3 depicts the average power (in %), that is, the proportions of correctly

identified outlying data sets among all truly outlying data sets under the same

settings. We observe that most truly outlying data sets are discovered by our

method, with the type-I error rate being well controlled. Moreover, the average

power increases as more measurements are collected.
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Figure 3. Average power (in %) under different configurations of (p, n0, ρ) when the
covariates and noise are both normally distributed.

5.3. Real data analysis

In this section, we apply our proposed testing procedure and heterogeneity

identification algorithm to Melbourne housing data. The data set consists of

transaction details of properties in 2016 in Melbourne, Victoria, Australia. We

focus on transactions with the property type “House” and suburbs with at least

50 transactions in 2016. After preprocessing, the subset contains 238 suburbs

with 33,973 transactions. We are interested in the relative change of housing

prices in 2016 compared with those in 2015, as explained by eight covariates:

the month of transaction, latitude, longitude, number of bedrooms, number of

bathrooms, land size, building area, and year the property was built. For each

suburb, we define the growth rate of housing prices as the excess rate of the sold

price of the property in each transaction compared with the median price within

the suburb in 2015. This variable serves as the response.

By treating each suburb as a group, we obtain 238 parallel data sets. Here, we

want to know whether the eight covariates contribute differently to the housing

price growth rate across suburbs. After standardizing the eight covariates, we

implement our proposed heterogeneity test on the 238 suburbs to test whether

they share the same regression function. The p-value of the heterogeneity test

is less than 0.0001 when using 10,000 bootstrap iterations, indicating significant

evidence against the eight covariates having the same contribution to the relative

change in housing prices across suburbs.

Now that we have rejected the homogeneity hypothesis, we wish to identify

outlying suburbs. In order to avoid unbalanced sample sizes across suburbs,
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Figure 4. Plot of all suburbs, with detected outliers indicated in yellow and the majority
in blue. The suburbs in gray are those with less than 50 transactions in 2016.

we randomly sample 50 transactions from each suburb. The proposed outlier

detection algorithm identified 20 out of 238 suburbs as outliers, with significance

level α = 5%. Figure 4 shows whether a suburb is detected as an outlier (filled

in yellow). The suburbs in gray are those with less than 50 transactions in 2016.

After identifying the 20 outlying suburbs, we need to determine how they

differ from the majority (the other 218 suburbs) in terms of modeling and pre-

diction. Thus, we carry out the following simulation to verify the significance of

separating the outlying suburbs from the majority. Denote the data set contain-

ing all 20 outlying suburbs as O1, and the data set containing all 218 majority

suburbs as M1. In each iteration, we randomly split M1 into two subsets, M2 and

M3, where M3 has the same size as O1. The subset M2 serves as the training set

from the majority, and M3 and O1 are test sets from the majority and outliers,

respectively. A random forest model is trained on M2, and then used for predic-

tions based on M3 and O1. Averaged over 100 iterations, the R2 of the random

forest modeling is 69.5%, which indicates a reasonable fit. The average mean

squared error for M3 is 0.1249, and is 0.1392 for O1, which is 11.45% higher than
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that of M3. This simulation result suggests the risk of obtaining a larger error

when using the model fitted from the majority to predict outlying suburbs. In

summary, the outlier detection result provides guidance for further data modeling

and analyses of specific outlying suburbs.

6. Conclusion

We have discussed heterogeneity measurement, testing, and identification

problems for large parallel data sets collected from multiple regression models.

We have proposed a new metric for the equivalence or departure of two regression

models, based on the projection approach. Motivated by this, we developed a

procedure to test for homogeneity. For non-homogeneous data sets, we have

proposed a detection procedure to identify outlying data sets that come from

different regression models to that of the majority. The proposed method is

model free and data adaptive, which makes it convenient to use in practice.

Our proposed method assumes that the covariates are i.i.d. across data sets.

However, domain shifts could happen in practical applications; that is, the dis-

tributions of the covariates may differ across data sets. Of primary interest is to

test whether domain shifts occur. If the covariates have densities, Zhan and Hart

(2014) propose using a kernel smoothing-based procedure to test the equality

of a large number of densities. We believe that similar projection averaging-

based metrics for the departure of two distributions (e.g., Kim, Balakrishnan and

Wasserman (2020)), together with the proposed large-scale testing scheme, can

still be applied to achieve this purpose. If domain shifts do occur, the proposed

method cannot be used directly to test for the equality of the regression functions

(cf., Eq. (1.2)). Model-free and data-adaptive testing procedures that allow for

different distributions of the covariates warrant further research. Recently, Xiao,

Ke and Li (2021) studied individual regression heterogeneity in panel data and

allowed the data to exhibit outliers. On the other hand, regression functions

and domain shifts are both sources of heterogeneity in parallel data sets. It is

challenging, and possibly infeasible to identify the real cause of heterogeneity in

a nonparametric setup, which is left as future work.

Recently, there has been an increase in the number of distance-based ap-

proaches, such as the distance correlation (Székely, Rizzo and Bakirov (2007)) and

the maximum mean discrepancy (Gretton et al. (2012)). The projection-based

method proposed here also seeks to avoid the curse of dimensionality. Thus, it

would be interesting to study the relationship between the distance-based method

and our proposed projection-based approach. This too is left to future research.
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Supplementary Material

The online Supplementary Material contains proofs of the main results pre-

sented in the paper, an algorithm for identifying outlying data sets, and additional

numerical results.

Acknowledgments

The authors contributed equally to this work, and are listed in alphabetical

order. The authors would like to acknowledge the editor, associate editor, and two

referees for their constructive comments and suggestions. Wang’s research was

supported by the NNSF of China Grant 11901314. Zou’s research was supported

by the NNSF of China Grants 11925106, 11931001, and 11971247, the NSF of

Tianjin Grant 18JCJQJC46000, and the 111Project B20016.

References

Baltagi, B. H., Hidalgo, J. and Li, Q. (1996). A nonparametric test for poolability using panel

data. Journal of Econometrics 75, 345–367.

Barras, L., Scaillet, O. and Wermers, R. (2010). False discoveries in mutual fund performance:

Measuring luck in estimated alphas. The Journal of Finance 65, 179–216.

Borgwardt, K. M., Gretton, A., Rasch, M. J., Kriegel, H.-P., Schölkopf, B. and Smola, A. J.

(2006). Integrating structured biological data by Kernel Maximum mean Discrepancy.

Bioinformatics 22, e49–e57.

Cai, L. and Wang, S. (2021). Global statistical inference for the difference between two regression

mean curves with covariates possibly partially missing. Statistical Papers 62, 2573–2602.

Chiou, J.-M. and Li, P.-L. (2007). Functional clustering and identifying substructures of lon-

gitudinal data. Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy) 69, 679–699.
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