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Abstract: In this study, we consider the problem of nonignorable missingness in the

framework of generalized method of moments. To model the missing propensity,

a semiparametric logistic regression model is adopted and we modify this model

with nonresponse instrumental variables to overcome the identifiability issue. Un-

der the identifiability conditions, we mitigate the effects of nonignorable missing

data through reformulated estimating equations imputed via a kernel regression

method, then the idea of generalized method of moments is applied to estimate

the parameters of interest and the tilting parameter in propensity simultaneously.

Moreover, the consistency and the asymptotic normality of the proposed estimators

are established and we find that the price we pay for estimating an unknown tilt-

ing parameter is an increased variance for the estimator of population parameters,

that is quite acceptable in contrast with validation sample, especially for practi-

cal problems. The proposed method is evaluated through simulation studies and

demonstrated on a data example.
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1. Introduction

Missing data is a common occurrence in many applications, including clin-

ical trials, sampling survey, and observational studies, among others. It may

arise due to subjects’ refusal to undergo complete examinations, unavailability

of measurements, and loss of data. Most statistical models for dealing with the

missing data depend on a missing data mechanism which is described by Little

and Rubin (1987). They defined missing completely at random (MCAR) to be a

process in which the probability of being observed is independent of observed or

missing quantities. And missing at random (MAR) refers to the case where the

propensity of missing data is conditionally independent of unobserved quantities

given the observed quantities. Both MCAR and MAR are said to be ignorable
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in the sense that the propensity of missing data depends only on the observed

data. If the missingness also depends on the unobserved quantities, the missing

data mechanism is termed nonignorable. For example, people with high incomes

may be less likely to report their incomes, and in clinical trials, people who are

getting worse are more likely to drop out than people who are getting better.

In contrast to the ignorable mechanism, nonignorable missingness is associated

with the unobserved values, and it leads to much more complexity for subsequent

statistical inference.

Various methods have been developed to handle missing data, especially

when missing mechanism is ignorable. But for nonignorable missing data, statis-

tical inference usually depends on some unverifiable assumptions, and incorrect

use of methods under ignorable assumptions may result in biased estimates. In

this study, we focus on the identifiability and estimation for parameters of interest

with nonignorable missing data. Let y be the response of interest subject to miss-

ingness, δ be the response status indicator of y. Suppose that a vector of covari-

ates x is always observed, and given x, the conditional density of y is f(y|x). The

conditional probability π(x, y) = P (δ = 1|x, y) is called the propensity of missing

data. Under some parametric assumptions on both π(x, y) and f(y|x), Green-

lees, Reece and Zieschang (1982) and Baker and Laird (1988) studied likelihood

estimators with nonignorable missing data. Their fully parametric assumption

for joint modeling of the propensity and the population model is restrictive and

the estimates are sensitive to failure of the assumed models. More efforts have

been made to develop semiparametric approaches because π(x, y)f(y|x) may be

nonidentifiable when both π(x, y) and f(y|x) are purely nonparametric (Robins

and Ritov (1997)). For example, Tang, Little and Raghunathan (2003) proposed

a pseudo-likelihood method with a parametric model for f(y|x) but an unspec-

ified π(x, y). Zhao and Shao (2015) studied the identifiability and estimation in

a generalized linear model with a nonparametric missing mechanism.

Qin, Leung and Shao (2002) and Kott and Chang (2010) studied a likelihood-

based estimation and a calibration weighting approach, respectively, for data with

nonignorable nonresponse, assuming a parametric model for π(x, y) and a non-

parametric model for f(y|x). Wang, Shao and Kim (2014) utilized a nonresponse

instrument, an auxiliary variable related to y but not related to the nonresponse

probability, to overcome the difficulty of identifiability, and applied the gener-

alized method of moments to estimate the parameters in parametric propensity

and nonparametric population. It is difficult to verify their model assumption on

propensity under nonignorable missingness, and a weaker assumption for π(x, y)
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is more desirable in applications. Kim and Yu (2011) proposed a semiparametric

logistic regression model for π(x, y) and studied the semiparametric estimation

of mean functional. This is weaker than the parametric assumption and some re-

fined methods based on this model can be found in Zhao, Zhao and Tang (2013),

Tang, Zhao and Zhu (2014) and Niu et al. (2014). However, to estimate the

parameters of population and avoid the identifiability issue, they all assumed

that the tilting parameter in the propensity is known or can be estimated us-

ing external data, which limits its applications to a great extent. To remove

this limitation on methodology, Shao and Wang (2016) proposed to estimate the

propensity using the generalized method of moments. Then other population

parameters can be estimated using the inverse propensity weighting approach.

In this study, we consider the problem of nonignorable missingness in the

framework of generalized method of moments with the propensity serving as aux-

iliary information. The properties of the population are characterized by some

parameters of interest via estimating equations without specifying distribution

for the underlying population. The semiparametric logistic regression model is

adopted to model the propensity. We propose to estimate the parameters of in-

terest and the tilting parameter of propensity simultaneously with the assistance

of a generalized method of moments. To estimate the parameters, we impute the

estimating equations by transforming the distribution of the unobserved data

into that of the observed data based on the exponential tilting model. Then

we get unbiased estimating equations consisted of both observed and missing

information of data through a kernel regression method. The key advantage of

this approach is that the parameters of interest and the tilting parameter can

be estimated simultaneously without a validation sample and restrictive assump-

tions concerning population and propensity. We establish the consistency and

asymptotic normality of the proposed estimators for both parameters of interest

and the tilting parameter of propensity.

The rest of this article is organized as follows. In Section 2, we discuss the

identifiability of the model and describe the model formulation. We describe the

estimation procedure in Section 3. In Section 4, we discuss the theoretical results

for the two cases in which the true value of the tilting parameter is known and

unknown. We also propose the method to estimate the asymptotic variance. The

results of simulation studies are reported in Section 5 and the data example is

studied in Section 6. Some concluding remarks are given in Section 7, and the

proofs are included in the Appendix.
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2. Basic Setup and Identifiability

Let (Xi, Yi), 1 ≤ i ≤ n, be n independent realizations of random variables

(X,Y ). Y is a response variable and the X are d-dimensional covariates. Sup-

pose there are q estimating functions ψ(y, x,θ) = (ψ1(y, x,θ), . . . , ψq(y, x,θ))τ

satisfying Eψ(Y,X,θ0) = 0, where θ0 is the true value of p-dimensional param-

eter θ and q > p. We are interested in making statistical inference on θ. If Y is

fully observed, we can estimate θ0 by minimizing{
1

n

n∑
i=1

ψ(Yi, Xi,θ)

}τ
W

{
1

n

n∑
i=1

ψ(Yi, Xi,θ)

}
,

where W is a q× q weight matrix, but this cannot be used directly with missing

data.

Here we focus on the case where Yi is subject to missingness and Xi is

always observed. Let δi be the missing indicator for Yi, δi = 1 if Yi is observed

and δi = 0 otherwise. We assume that δi is independent of δj for any i 6= j, and

that the response mechanism is δi|(Xi, Yi) ∼ Bernoulli(πi). The nonignorable

missingness means πi depends on Xi as well as Yi, so we write πi = π(Xi, Yi).

We consider a semiparametric logistic regression model for the propensity (Kim

and Yu (2011)),

π(X,Y ) = P (δ = 1|X,Y ) =
exp(αY + g(X))

1 + exp(αY + g(X))
, (2.1)

where g(·) is an unspecified function and α is the tilting parameter. Since g and

α are not identifiable without further assumptions, we study the identifiability

of the model before estimation. Similar to the discussion of Wang, Shao and

Kim (2014), the identifiability can be resolved with the aid of a nonresponse

instrument, the covariates X has two components, X = (U,Z), and Z acts as the

instrumental variable with Z independent of δ given Y and U , but is associated

with Y even in the presence of U . For the general case with semiparametric

propensity, we extend the results in Wang, Shao and Kim (2014).

Theorem 1. For missing data (Xi, Yi, δi), the observed likelihood∏
i:δi=1

π(Xi, Yi)f(Yi|Xi)
∏
i:δi=0

∫
{1− π(Xi, y)}f(y|Xi)dy.

is identifiable under the following conditions,

(C1) The covariates X can be decomposed into components, X = (U,Z), such

that P (δ = 1|Y,X) = P (δ = 1|Y,U) = H(g(U) + αY ), where α is an

unknown parameter and g is a continuously differentiable function not de-
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pending on z. H(·) is a known, strictly monotone, and twice differentiable

function.

(C2) For any given u, there exist two values of Z, z1 and z2, such that f(y|u, z1) 6=
f(y|u, z2), where f(y|u, z) has monotone likelihood ratio in the sense that

f(y|u, z1)/f(y|u, z2) is nondecreasing in y for any given u.

According to the identifiability conditions, we can reformulate the response

probability model (2.1) as

π(X,Y ) = π(U, Y ) =
exp(αY + g(U))

1 + exp(αY + g(U))
. (2.2)

Here, Z does not appear in model (2.2) but assists in resolving the identifiability

issue. Based on (2.2), we can identify all parameters including θ, α, and g. The

question then is how to estimate these parameters using the available data.

3. Estimation Procedure

To estimate the unknown parameters θ0 of interest, we propose to impute

the estimating functions ψ(Y,X,θ) using the observed data. Under the ignorable

missing mechanism condition, Zhou, Wan and Wang (2008) proposed to estimate

parameters based on the estimating functions

ψ∗(Yi, Xi,θ) = δiψ(Yi, Xi,θ) + (1− δi)m̂(Xi,θ),

where m̂(Xi,θ) is a consistent estimator of m(Xi,θ) = E{ψ(Y,X,θ)|X = Xi}.
Under the nonignorable propensity (2.2), we consider the adjusted functions

ψ̃(Yi, Xi,θ) = δiψ(Yi, Xi,θ) + (1− δi)m0(Xi,θ), (3.1)

where m0(x,θ0) = E{ψ(Y,X,θ0)|X = x, δ = 0} is the conditional expectation of

ψ(Y,X,θ0) given X = x and δ = 0 that can be expressed based on the observed

data. Actually, the conditional distribution of the missing data given x can be

written as

f(y|x, δ = 0) = f(y|x, δ = 1)× exp(γy)

E{exp(γY )|x, δ = 1}
, (3.2)

where γ = −α, and it describes the deviation from the ignorable assumption.

Equation (3.2) also shows that the density for the nonrespondents is an expo-

nential tilting of the density for the respondents, which yields,

m0(X,θ) = E

[
ψ(Y,X,θ)× exp(γY )

E{exp(γY )|X, δ = 1}

∣∣∣∣X, δ = 1

]
=
E{ψ(Y,X,θ) exp(γY )|X, δ = 1}

E{exp(γY )|X, δ = 1}
=
E{(1− δ)ψ(Y,X,θ)|X}

E(1− δ|X)
.
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Then we have

E{ψ̃(Y,X,θ)} = E{δψ(Y,X,θ) + (1− δ)m0(X,θ)}

= E

[
δψ(Y,X,θ) + (1− δ)E{(1− δ)ψ(Y,X,θ)|X}

E(1− δ|X)

]
= 0.

Hence, we can estimate θ0 based on ψ̃(Y,X,θ) under the propensity model (2.2).

However, m0(x,θ) is always unknown in the presence of missing data and we need

to estimate it consistently in advance.

Let K(·) be a d-variate kernel function satisfying
∫
K(u)du = 1. Assume

that K(·) has a compact support with
∫
uα1

1 · · ·u
αd

d K(u)du = 0, for 0 < α1 +

· · · + αd < m, m > d. Let H be a diagonal bandwidth matrix, then Kh(u) =

|H|−1K(H−1u). For simplicity, we take the same bandwidth for each component

in H. Thus, with a known tilting parameter γ = γ0, we can estimate m0(x,θ)

through the kernel regression method,

m̂0(x,θ) =

∑n
i=1 δiψ(Yi, Xi,θ) exp(γ0Yi)Kh(Xi, x)∑n

i=1 δi exp(γ0Yi)Kh(Xi, x)
, (3.3)

where Kh(u, x) = h−dK{(u − x)/h} = h−dK{(u1 − x1)/h, . . . , (ud − xd)/h}.
According to the consistency of the nonparametric kernel estimator, m̂0(X,θ) is

a consistent estimator of m0(X,θ). By substituting m̂0(Xi,θ) for m0(Xi,θ) in

(3.1), we obtain the estimating functions,

ψ̂(Yi, Xi,θ) = δiψ(Yi, Xi,θ) + (1− δi)m̂0(Xi,θ).

It can be shown that ψ̂(Yi, Xi,θ) is asymptotically unbiased and we can estimate

θ0 by minimizing

A1(θ) =

{
1

n

n∑
i=1

ψ̂(Yi, Xi,θ)

}τ
W1

{
1

n

n∑
i=1

ψ̂(Yi, Xi,θ)

}
,

where W1 is a positive-definite matrix. We denote the minimizer by θ̂g1, termed

a GMM estimator. Under some mild regularity conditions, θ̂g1 is a consistent

estimator of θ0.

Here m̂0(x,θ) depends on γ0, which is unknown in practice, and thus θ̂g1
also depends on the unknown quantity. To estimate γ0, one approach is based

on an independent survey or a validation sample which can be a subsample of

the nonrespondents (Kim and Yu (2011)). This is costly and even infeasible in

many cases, because the nonrespondents may still be reluctant to answer ques-

tions. Another approach is based on the method proposed by Shao and Wang

(2016), applying the generalized method of moments by profiling the nonpara-

metric component with a kernel-type estimator. Then the population parameters
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can be estimated using the inverse probability weighting (IPW) approach. Here,

we provide an alternative way to estimate θ0 and γ0. Now A1(θ) can be regarded

as a function of θ0 and γ0 without involving the nonparametric component g(·),
which makes it possible to estimate θ0 and γ0 simultaneously.

Let β = (θτ , γ)τ and write m0(x,β) to stress the parameters in m0(x,θ).

The estimating functions for θ0 and γ0 can be expressed as,

ψ̂(Yi, Xi,β) = δiψ(Yi, Xi,θ) + (1− δi)m̂0(Xi,β),

where m̂0(X,β) is the same estimate as (3.3), except that the tilting parameter

γ0 is treated as an unknown parameter just like the population parameter θ.

Since q ≥ (p + 1) and p + 1 is the dimension of β, we can still use the idea of

generalized method of moments to estimate β0 = (θτ0 , γ0)
τ . The valid objective

function can be organized as

A2(β) =

{
1

n

n∑
i=1

ψ̂(Yi, Xi,β)

}τ
W2

{
1

n

n∑
i=1

ψ̂(Yi, Xi,β)

}
, (3.4)

where W2 is a positive-definite symmetric weight matrix. We denote the mini-

mizer by β̂g2 = (θ̂
τ

g2, γ̂g2)
τ .

4. Theoretical Results and Asymptotic Variance Estimation

In this section, we study the theoretical properties of estimators θ̂g1 and β̂g2,

corresponding to the cases with known and unknown tilting parameter, and give

the choice of optimal matrices.

Theorem 2. Suppose that γ0 is known and there is a unique value θ0 such that

E{ψ(Y,X,θ0)} = 0. Then under the conditions in Theorem 1 and the conditions

(A1)–(A7) stated in the Appendix, as n→∞, θ̂g1 → θ0 in probability. Moreover,
√
n(θ̂g1 − θ0)

D→ N(0,Σg1), where Σg1 = (ΓτθW1Γθ)
−1ΓτθW1DW1Γθ(Γ

τ
θW1Γθ)

−1.

Here Γθ = Γ(θ0) = E{∂ψ̃(Y,X,θ0)/∂θ} and D = D(θ0) = E{ψ(Y,X,θ0)
⊗2} +

E[{1/π(U, Y )−1}{ψ(Y,X,θ0)−m0(X,θ0)}⊗2], where for a vector a, a⊗2 = aaτ .

For the asymptotic covariance matrix Σg1, the optimal weight matrix is W1 =

D−1. With this choice of W1, the asymptotic covariance matrix Σg1 reduces to

(ΓτθD
−1Γθ)

−1 and Σg1 − (ΓτθD
−1Γθ)

−1 is a nonnegative definite matrix.

Theorem 3. Assume that the conditions in Theorem 2 are satisfied. Let γ0
be the underlying value of the tilting parameter γ. Then, as n → ∞, we have

that the GMM estimators in (3.4) satisfy θ̂g2 → θ0 and γ̂g2 → γ0 in prob-

ability. Moreover, the estimators are asymptotically normal with
√
n(β̂g2 −
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β0)
D→ N(0,Ωg2), where Ωg2 = (ΓτβW2Γβ)−1ΓτβW2DW2Γβ(ΓτβW2Γβ)−1. Here

Γβ = Γ(β0) = E{∂ψ̃(Y,X,β0)/∂β} and D = D(β0) is essentially identical with

D(θ0) in Theorem 2.

For the asymptotic covariance matrix Ωg2, the optimal weight matrix is

W2 = D−1. With this choice of W2, Ωg2 reduces to (ΓτβD
−1Γβ)−1 and Ωg2 −

(ΓτβD
−1Γβ)−1 is a nonnegative definite matrix.

From Theorems 2 and 3, we can see that the GMM estimators θ̂g1 and β̂g2
share the same optimal weight matrix in theory. In practice, we usually use the

identity matrix in the first step to obtain a GMM estimator and, based on the

first-step GMM estimator, we obtain an estimated optimal matrix, which is the

matrix we utilize to get the final GMM estimator. If we write Γγ = Γ(γ0) =

E{∂ψ̃(Y,X,β0)/∂γ}, we have

ΓτβD
−1Γβ =

(
ΓτθD

−1Γτθ ΓτθD
−1Γγ

ΓτγD
−1Γθ ΓτγD

−1Γγ

)
.

Thus with the optimal weight matrix, the asymptotic normality for θ̂g2 and γ̂g2
can be expressed separately as

√
n(θ̂g2 − θ0)

D→ N(0,Σg2),
√
n(γ̂g2 − γ0)

D→ N(0, σg2),

where Σg2 = {ΓτθD−1Γθ−ΓτθD
−1Γγ(ΓτγD

−1Γγ)−1ΓτγD
−1Γθ}−1, σg2 = {ΓτγD−1Γγ−

ΓτγD
−1Γθ(Γ

τ
θD
−1Γθ)

−1ΓτθD
−1Γγ}−1. An appealing feature of this result is that

our method does not require a validation sample for estimating γ, but only at

the cost of a larger variance of the estimator for θ. We treat the larger variance

Σg2 as the price we pay for estimating the unknown tilting parameter, which is

quite acceptable for practical problems.

Take the estimation of mean function for example, the interesting parameter

is θ0 = E(Y ). With a known γ0, the observed likelihood is identifiable under

(2.1). We can estimate θ0 using the estimating function ψ1(y, θ) = y − θ and it

can be shown from Theorem 2 that
√
n(θ̂− θ0)

D→ N(0, σ21), where σ21 = E{(Y −
θ0)

2}+E[{1/π(X,Y )−1}{Y −m0(X)}2], and m0(x) = E(Y |X = x, δ = 0). That

is the result of Theorem 1 in Kim and Yu (2011). If π(X,Y ) does not depend on

Y , σ21 reduces to the asymptotic variance in Cheng (1994). If γ0 is unknown, the

estimation function ψ1(y, θ) is not enough to estimate θ and γ0 simultaneously.

Under this case, we suppose that the distribution of Y is symmetric and construct

another estimating function, ψ2(y, θ) = (y − θ)3. In principle, other higher odd

moments can also be used. Then we can use the proposed method to estimate

β0 = (θ0, γ0)
τ by minimizing A2(β) in (3.4). By Theorem 3, we have that both
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θ̂g2 and γ̂g2 are asymptotically normal.

The results for nonignorable missing data are also applied to the ignorable

case where γ0 = 0. In this case, the observed likelihood is identifiable and the

propensity may depends on the whole X, π(X,Y ) = π(X), which can be regarded

as a nonparametric model because γ0 = 0. Then our results are consistent with

those of Zhou, Wan and Wang (2008).

The asymptotic normality results provide a basis for estimating the variances

of the proposed estimators. Based on our results, it suffices to estimate D, Γθ,

and Γβ . First, we can consistently estimate Γθ and Γβ by

Γ̂θ =
1

n

n∑
i=1

∂ψ̂(Yi, Xi,θ)

∂θ

∣∣∣∣
θ=θ̂g1

, Γ̂β =
1

n

n∑
i=1

∂ψ̂(Yi, Xi,β)

∂β

∣∣∣∣
β=β̂g2

,

respectively. The consistent estimators for D(θ0) and D(β0) are D̂(θ̂g1) = (1/n)∑n
i=1 η̂iη̂

τ
i and D̂(β̂g2) = (1/n)

∑n
i=1 η̃iη̃

τ
i , respectively, where

η̂i = m̂0(Xi, θ̂g1) +
δi

π̂(Ui, Yi)
{ψ(Yi, Xi, θ̂g1)− m̂0(Xi, θ̂g1)},

η̃i = m̂0(Xi, β̂g2) +
δi

π̃(Ui, Yi)
{ψ(Yi, Xi, θ̂g2)− m̂0(Xi, β̂g2)}.

Hence, we need to estimate the propensity π(U, Y ), which involves estimating

g(U). For any given γ, let ζ(U, γ) = exp(−g(U)), which can be estimated by its

kernel regression estimator:

ζ̂(U, γ) =

∑n
j=1(1− δj)Kh(U,Uj)∑n

j=1 δj exp(γYj)Kh(U,Uj)
.

If we use ζ̂(U, γ0) and ζ̂(U, γ̂g2) to distinguish between γ0 is known and unknown,

we can estimate the propensity π(U, Y ) with

π̂(Ui, Yi) =
1

1 + ζ̂(Ui, γ0) exp(γ0Yi)
, π̃(Ui, Yi) =

1

1 + ζ̂(Ui, γ̂g2) exp(γ̂g2Yi)
,

respectively. The asymptotic variances of the GMM estimators can be esti-

mated consistently by Σ̂g1 = (Γ̂τθW1Γ̂θ)
−1Γ̂τθW1D̂(θ̂g1)W1Γ̂θ(Γ̂

τ
θW1Γ̂θ)

−1, and

Ω̂g2 = (Γ̂τβW2Γ̂β)−1Γ̂τβW2D̂(β̂g2)W2Γ̂β(Γ̂τβW2Γ̂β)−1.

5. Simulation Studies

In this section, we report on simulation studies to evaluate the finite sample

performance of the proposed estimators.

Experiment 1. We considered a simple case where the only covariate was the

instrumental variable, X = Z, and the propensity model was given by π(Yi) =
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Table 1. Simulation results for Experiment 1.

γ0 = 0.7, MR = 26.06% γ = 0.5, MR = 30.62%

Bias SE SD CP(%) Bias SE SD CP(%)

θ̂g1 0.0009 0.0202 0.0199 94.70 0.0003 0.0202 0.0203 94.80
γ0 unknown, MR = 26.06% γ0 unknown, MR = 30.62%

Bias SE SD CP(%) Bias SE SD CP(%)

θ̂g2 0.0016 0.0280 0.0272 94.60 0.0048 0.0302 0.0300 94.70
γ̂g2 −0.0021 0.3456 0.3377 96.70 0.0528 0.2937 0.2916 96.00

exp(α0Yi)/{1 + exp(α0Yi)}, while γ0 = −α0 was used to control the missing rate.

We generated data from the model

Y = θZ + θ(Z − 1)2 + ε,

where the true value of θ was θ0 = 1 and the Z were generated from N(1, 1) and

ε ∼ N(0, 1). Similar to Zhou, Wan and Wang (2008), the estimating functions

are given by

ψ(Y,Z, θ) =

(
ψ1(Y, Z, θ)

ψ2(Y, Z, θ)

)
=

(
Y 2 − 2θ2 − 2θ2Z(Z − 1)− θ2(Z − 1)4 − 1

Y − θZ − θ

)
.

We carried out 1,000 replications with sample size n = 1,000 and used the

proposed methods to estimate θ and γ. In estimation, the Gaussian kernel

K(u) = exp(−u2/2)/
√

2π was adopted. The selected bandwidth for estimating

m̂0(Z, θ) was h = cσ̂Zn
−1/3, where σ̂Z is the standard deviation of Zi in the

sample and c is a constant. We used the optimal Gaussian kernel bandwidth

h = 1.06σ̂Zn
−1/5 to estimate π̂(Yi). The results are summarized in Table 1.

In Table 1, Bias and SE are the bias, estimated standard error based on

the asymptotic normality results, averaged over 1,000 replications. SD is the

standard deviation calculated using the estimated values from 1,000 replications.

CP is the coverage probability of the nominal 95% confidence interval. The

estimator θ̂g1 was based on the kernel-assisted estimating equation imputation

scheme when γ0 was known. The estimators θ̂g2 and γ̂g2 were obtained based

on the proposed method when γ0 was unknown. From Table 1, we see that the

bias, SE and SD of θ̂g1 are smaller than that of θ̂g2 under two settings with

different missing rates. When γ0 is unknown, the estimate γ̂g2 is also unbiased.

Comparing across the results, we see that the proposed estimates are unbiased

and the estimated variances are close to the true sampling variation. Overall,

this provides empirical evidence for the asymptotic properties of the proposed
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estimators.

Experiment 2. Here we added another covariate U , X = (Z,U), and assessed

the performance of the proposed estimators under several missingness mecha-

nisms. First, we generated Z from a binomial distribution with success probability

0.5. Given Z, U ∼ N(Z, 1). We standardized U and Z, and generated Y from

the model Y = θ1U + θ2Z + ε, where ε ∼ N(0, 1), the true value of θ = (θ1, θ2)

was θ0 = (−1, 1). The estimating functions are given by

ψ(Y,X, θ) =

ψ1(Y,X,θ)

ψ2(Y,X,θ)

ψ3(Y,X,θ)

 =

 Y − θ1U − θ2Z
UY − θ1U2 − θ2UZ
ZY − θ1UZ − θ2Z2

 .

The missing indicator δ was generated from the Bernoulli distribution with prob-

ability π(U, Y ). We considered two response probability models similar to Kim

and Yu (2011),

M1. (Linear Ignorable): π(Ui, Yi) = exp(φ0 + φ1Ui)/{1 + exp(φ0 + φ1Ui)}, where

(φ0, φ1) = (1.2, 0.1) for missing rate about 23%, (φ0, φ1) = (0.4, 0.3) for

missing rate about 40%.

M2. (Nonlinear Nonignorable): π(Ui, Yi) = exp(φ0 + φ1Ui + φ2U
2
i + φ3Yi)/{1 +

exp(φ0 + φ1Ui + φ2Ui + φ3Yi)}, where (φ0, φ1, φ2, φ3) = (1, 0.5, 0.2, 0.1) for

missing rate about 24%, (φ0, φ1, φ2, φ3) = (0.3, 0.5, 0.2, 0.1) for missing rate

about 40%.

For each missing case, we carried out 1,000 replications with sample size

n = 1,000 and used our methods to estimate θ = (θ1, θ2) and γ0. The Gaussian

kernel was adopted in all cases, and we used the selection method described in

Experiment 1 to choose the bandwidth. The results for missing mechanisms M1

and M2 are presented in Tables 2 and 3, respectively. From these tables, the

estimates derived when γ0 is unknown are comparable with the results when γ0
is known. Under a high missing rate, our methods still give reliable results. The

bias are all negligible, SEs and SDs are close, and CP are all around 95%, thus

the asymptotic approximations work well for these approaches.

Experiment 3. We conducted simulations to compare our methods with two

estimators: (1) the benchmark estimator that uses the complete data; (2) the

naive method that uses the observed data and ignores the missing part. First, we

generated data based on the logistic regression model

P (Y = 1|Z,U) =
exp(θ1Z + θ2U)

1 + exp(θ1Z + θ2U)
,
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Table 2. Simulation results for M1.

γ0 = 0, MR = 23.20% γ0 = 0, MR = 40.35%

Bias SE SD CP(%) Bias SE SD CP(%)

θ̂g1 −0.0010 0.0394 0.0408 96.20 −0.0008 0.0458 0.0468 94.80
0.0017 0.0405 0.0403 94.40 −0.0012 0.0460 0.0456 94.50
γ0 unknown, MR = 23.20% γ0 unknown, MR = 40.29%

Bias SE SD CP(%) Bias SE SD CP(%)

θ̂g2 −0.0011 0.0418 0.0409 93.90 0.0002 0.0481 0.0468 94.70
0.0003 0.0399 0.0403 94.70 0.0015 0.0457 0.0456 94.80

γ̂g2 −0.0002 0.1622 0.1582 94.30 −0.0006 0.1055 0.1033 94.40

Table 3. Simulation results for M2.

γ0 = −0.1, MR = 24.43% γ0 = −0.1, MR = 40.00%

Bias SE SD CP(%) Bias SE SD CP(%)

θ̂g1 −0.0003 0.0399 0.0407 94.50 −0.0005 0.0430 0.0451 95.90
−0.0014 0.0413 0.0409 94.20 −0.0019 0.0469 0.0457 94.10

γ0 unknown, MR = 24.49% γ0 unknown, MR = 40.00%

Bias SE SD CP(%) Bias SE SD CP(%)

θ̂g2 −0.0009 0.0407 0.0410 95.70 −0.0015 0.0438 0.0453 95.80
0.0003 0.0398 0.0411 96.70 −0.0000 0.0462 0.0458 95.00

γ̂g2 −0.0059 0.1624 0.1520 95.20 0.0004 0.1120 0.1072 93.80

where Z ∼ U [0, 2], U ∼ N(0, 1). The true values of θ1 and θ2 were θ1 = 1 and

θ2 = −1. The estimating functions were

ψ(Y, Z, U, θ1, θ2) = (1, Z, U)T
{
Y − exp(θ1Z + θ2U)

1 + exp(θ1Z + θ2U)

}
.

To generate the missing indicator, we considered

M3. (Linear Nonignorable): π(Ui, Yi) = exp(φ0 + φ1Ui + φ2Yi)/{1 + exp(φ0 +

φ1Ui + φ2Yi)}, where (φ0, φ1, φ2, φ3) = (0.7, 0.45, 0.5, 0.2) for the missing

rate about 23% and (φ0, φ1, φ2, φ3) = (0.45, 0.1,−0.15,−0.2) for the missing

rate 40%.

We conducted 1,000 replications with n = 1,000, and adopted the Gaussian

kernel and the same method to select bandwidth. The results are summarized

in Table 4. The benchmark and the naive estimator are denoted by θ̂b and

θ̂n, respectively. Table 4 shows that the naive estimator performs the worst.

The other three estimators are comparable in terms of bias, but the SE and SD

increase in the order θ̂b, θ̂g1, and θ̂g2. The coverage probabilities of the three

estimators are all close to 95%. Overall, the results indicate that our method
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Table 4. Simulation results for M3.

MR = 25% MR = 45%

Bias SE SD CP(%) Bias SE SD CP(%)

θ̂b 0.0071 0.0777 0.0764 94.70 0.0073 0.0755 0.0764 95.80
−0.0062 0.0944 0.0902 93.70 −0.0079 0.0941 0.0902 94.20

θ̂n 0.0712 0.0921 0.0916 89.80 −0.0609 0.1014 0.1020 89.80
−0.0429 0.1110 0.1066 92.60 −0.0139 0.1237 0.1214 95.20

θ̂g1 0.0042 0.0945 0.0888 93.60 0.0086 0.1031 0.0999 94.40
−0.0088 0.1108 0.1046 93.30 −0.0115 0.1190 0.1188 95.40

θ̂g2 −0.0047 0.1670 0.1632 93.30 0.0015 0.1753 0.1801 95.10
0.0004 0.1294 0.1277 95.40 −0.0033 0.1257 0.1192 94.10

γ̂g2 0.0106 0.7553 0.7596 95.80 0.0069 0.4357 0.4438 96.10

can give close estimators to the no missing data estimators and are reliable and

effective.

6. Data Example

We applied the method to the Baseball data described in Michael (1991).

A total of 322 baseball players’ information were collected, including the annual

salary on opening day (in USD 1,000) in 1987, experience as measured by years

in the major leagues, and players’ division, as well as some performance metrics

such as times at Bat, hits, the number of runs scored by a player (Runs), Runs

Batted In (RBI), and so on. Some studies indicate that the baseball players

are paid based on their on-the-field performance(Hoaglin and Velleman (1995);

Magel and Hoffman (2015)). Here we are interested in estimating the players’

annual salaries using the players’ performance statistics: the response variable

Y is the log of annual salary and its missing rate is about 18.3%. As indicated

by Stone and Pantuosco (2008), years in the major leagues and players’ division

are significant predictors for the baseball players’ salaries. Our initial analysis

confirms this finding. In addition to the players’ experiences, performance in

the field is a primary variable. As among all performance metrics, hits is highly

correlated with other variables, hits is the only incorporated measure of players’

ability in our model. We considered the linear regression model

Y = θ0 + θ1X1 + θ2X2 + θ3X3 + ε,

where X1, X2, X3 stand for years in the major leagues, players’ division, and hits,

respectively. We assumed that E(ε|X1, X2, X3) = 0 and E(ε2|X1, X2, X3) = σ2.

To estimate the parameters, we used the estimating functions
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Table 5. Result for baseball data.

Estimates SE Confidence interval Estimates SE Confidence interval
θ0 4.0252 0.1303 [3.7698, 4.2807] θ2 0.2084 0.0685 [0.0741, 0.3427]
θ1 0.0963 0.0069 [0.0829, 0.1098] θ3 0.0095 0.0010 [0.0076, 0.0114]
γ −3.1300 0.0094 [−3.1484, −3.1117]

ψ(Y,Z, θ) =


ψ1(Y,X, θ)

ψ2(Y,Z, θ)

ψ3(Y,X, θ)

ψ4(Y,X, θ)

ψ5(Y,X, θ)

 =


Y − θ0 − θ1X1 − θ2X2 − θ3X3

X1(Y − θ0 − θ1X1 − θ2X2 − θ3X3)

X2(Y − θ0 − θ1X1 − θ2X2 − θ3X3)

X3(Y − θ0 − θ1X1 − θ2X2 − θ3X3)

X1X2(Y − θ0 − θ1X1 − θ2X2 − θ3X3)

 .

The nonignorable missing assumption appears reasonable here, as the players

with high income tend not to report their salaries. To apply the method, we

need to determine which covariate can be used as the instrumental variable Z.

We considered the estimates with all possible instrument subsets to investigate

the effect of invalid instrumental variables, and found that the estimates of the

regression coefficients are not sensitive to this choice. Here, we only include the

result with years in the major leagues (X1) serving as the instrumental variable.

For other scenarios with different instrumental variables, the results are reported

in the supplementary material. From the results in Table 5, the players with

longer time in the major leagues tend to have higher salaries, while the players’

division is also an important factor. High hits, as a measure of player’s on-field

ability, can increase the salary to a certain extent. The estimate of γ indicates

that the nonignorable missing assumption holds for the response variable.

7. Discussion

This study provides an alternative method to handle nonignorable missing

data in the framework of GMM. To apply the method, we need more unbiased

estimating equations than the population parameters to account for the tilting

parameter. We use a nonresponse instrument that is related to the response but

can be excluded from the propensity, to avoid the identifiability issue. Similar to

Shao and Wang (2016), we select an instrument using the criterion D

D =

∥∥∥∥∥ 1

n

n∑
i=1

δiXi

π̃(Ui, Yi)
− 1

n

n∑
i=1

Xi

∥∥∥∥∥ ,
that converges to zero if and only if Z is an instrument and π(U, Y ) is a correct

model, consistently estimated by π̃(Ui, Yi). Hence, we can select an instrument
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by minimizing D over a group of candidate variables. Further discussions and

simulation studies about the instrumental variable and the performance of D are

included in the supplementary material.

In this study, we focused on the situation where only the response is subject

to missingness; for the case with missing observations in both response and covari-

ates, identifiability needs a more thorough discussion. The idea of the proposed

method can be applied to other types of data with a more complex structure,

including longitudinal data and censored survival data. With these types of data,

the model and missing mechanism can be more complicated. The identifiability

of model as well as theoretical analysis and computational implementation would

also be more difficult. These are interesting and important problems that require

further work.

Supplementary Materials

Supplementary material contains some proofs and further numerical studies.
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Appendix

To prove the results of Theorems 2 and 3, we need some notation. Denote

the Euclidean norm of a matrix B by ‖B‖. Let |a| = max1≤i≤q |ai| for any vector

a = (a1, . . . , aq)
τ . Write a = O(bn) if all elements ai’s satisfying ai = O(bn).
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Define a⊗2 = aaτ . We need assumptions and regularity conditions, as in Newey

and McFadden (1994) and Khan and Powell (2001).

(A1) The kernel function K(·) is a probability density function such that

(i) it is bounded and has compact support;

(ii) it is symmetric with µl =
∫
xlK(x)dx, and µ2 <∞;

(iii) K(x) ≥ c for some c > 0 in some closed interval centered at zero.

(A2) The bandwidth h satisfies: h→ 0, nhd →∞, nh2m → 0, and n1/2hd/ log n

→∞ as n→∞.

(A3) The probability density function of X is f(·), which is bounded away from

∞ in the support of X, and the second derivatives of f(x) is continuous and

bounded.

(A4) (i) E{exp(2γ0y)} is finite;

(ii) π(x, y) > c2 > 0 and p(x) = E{π(x, y)|x} 6= 1 almost surely.

(A5) ψ(·,θ) is twice continuously differentiable in the neighborhood of θ0, and

m0(x,β) is twice continuously differentiable in the neighborhood of β0.

(A6) (i) 0 < E|ψ(Y,X,θ0)|2 <∞;

(ii) 0 < E|aτψ′
(Y,X,θ0)|2 <∞ for any constant vector a.

(A7) ψ
′
(·,θ) and ψ(3)(·,θ) are bounded by some integrable function M(x) in

the neighborhood of θ0.

These are assumptions commonly used in the literature on nonparametric

kernel estimation and estimating equations. We sketch the proofs of Thms 2

and 3 and leave the details to the supplementary material. By the definition of

ψ̂(Yi, Xi,θ), we have the decomposition

1

n

n∑
i=1

ψ̂(Yi, Xi,θ) = I1 + I2 + I3,

where I1 = (1/n)
∑n

i=1[δi{ψ(Yi, Xi,θ)−m1(Xi,θ)}], I2 = (1/n)
∑n

i=1{δim1(Xi,

θ) + (1 − δi)m0(Xi,θ)} and I3 = (1/n)
∑n

i=1(1 − δi) {m̂0(Xi,θ)−m0(Xi,θ)};
here m1(Xi,θ) = E{ψ(Yi, Xi,θ)|Xi, δi = 1}. The terms I1 and I2 are sums of

independent random variables. For I3, We have the following,

Lemma 1. Under (A1)–(A7), we have
√
n(I3 − I∗∗3 ) = op(1), where I∗∗3 =

(1/n)
∑n

i=1 δi{1/π(Ui, Yi)− 1}{ψ(Yi, Xi,θ0)−m0(Xi,θ0)}.
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Lemma 2. Under (A1)–(A7), we have (1/
√
n)
∑n

i=1 ψ̂(Yi, Xi,θ0)
D→ N(0, D1(θ0))

and (1/
√
n)
∑n

i=1 ψ̂(Yi, Xi,β0)
D→ N(0, D1(β0)), where D1(θ) = E{ψ(Yi, Xi,

θ)⊗2}+ E[(1/π(Ui, Yi)− 1){ψ(Yi, Xi,θ)−m0(Xi,θ)}⊗2], β0 = (θ0, γ0).

Proof of Theorem 2. If ψn(θ) = (1/n)
∑n

i=1 ψ̂(Yi, Xi,θ), Γn(θ) = ∇θψn(θ),

we have Γτn(θ̂g)W1ψn(θ̂g) = 0. Applying Taylor’s expansion to ψn(θ̂g) at θ0, we

have ψn(θ̂g) = ψn(θ0) + Γn(θ∗)(θ̂g − θ0) + op(‖θ̂g − θ0‖), where θ∗ lies between

θ̂g and θ0. Then

0=Γτn(θ̂g)W1ψn(θ̂g)=Γτn(θ̂g)W1ψn(θ0)+Γτn(θ̂g)W1Γn(θ∗)(θ̂g−θ0)+op(‖θ̂g−θ0‖),

and ‖θ̂g − θ0‖ = Op(n
−1/2), and thus

√
n(θ̂g − θ0) = −{Γτn(θ̂g)W1Γn(θ∗)}−1Γτn(θ̂g)W1

√
nψn(θ0) + op(1) .

Since −{Γτn(θ̂g)W1Γn(θ∗)}−1Γτn(θ̂g)W1 →P −(ΓτW1Γ)−1ΓτW1, where Γ = Γ(θ0)

= E{∂ψ̃(Y,X,θ0)/∂θ}, with Lemma 1 and Slutsky’s theorem, we complete the

proof.

Proof of Theorem 3. The proof is similar to that of Theorem 2, we omit the

details.
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