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Throughout this supplementary material, the paper by Liu, Ma and Jiang (2020), That Prasad-Rao is robust:
Estimation of mean squared prediction error of observed best predictor under potential model misspecifi-
cation, is referred to as LMJ20. All of the notations used below are consistent with those introduced in

LM1J20.

S1 Details in the proof of Theorem 1

The following expression can be derived:
9i(V,yi) — 0; = ri(A) (8 — yi) + e
with 7;(A) = D; /(A + D;). It follows that

9i(, yi) = 9i(e yi) = ri(A)i(B = B.) + {ri(A) — ri(A) }iBe — vi).
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Under assumptions A/, A2, and using (2.10) of LMJ20, we have

E{gi(vs,yi) — 0:3{9:(40, vi) — 9i(¥s i) }]

= 7i(A)E[ri(A) (@8 — yi)7i(B — Be) + {ri(A) — ri(A) } (@i, — i)’
+ri(A)E(eir;) (B — B.) + {ri(A) — ri(A.) YE{ei(zi B, — wi)}

= ri(A)ri(AB{(2iB. — y:)2i} (8 — Bo) + ra(A){ri(A) — ri(A) E(yi — 238.)*
Hri(A) = ri(A) E{ei(2B. — 0; — e:)}

= ri(A){ri(A) = ri(A)} (A + Dy) = {ri(A) — ri(A)}D;

= {ri(A) = ri(A) H{ri(A)(A. + D) — Di}

= 0.

Decomposition (2.11) of LMJ20 then follows.

S2 Proof of Theorem 2

By Taylor series expansion (see notation above assumption A3 in LMJ20), we

have
w0
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= E+GW—Y) +n(—) + %[' - Jizszp1 + Op(m™'7?), (52.1)

where & = 0Q /|y, n = 0°Q/VOY

From (S2.1), we have G(¢)—1)) = —0Q/dy+Op(1); hence, we have a first-step

v — G with G = E(0%Q /o)’

)

expansion:
) —1)=—G ¢+ Op(m™). (S2.2)
Bringing (S2.2) back to (S2.1), we have
0=+ Gl — ) ~nG7E + LG H,G Grcuspn + Oplm ™),

where H, = E(0%Q /0,000’

4. )- We thus obtain a second-step expansion:

§— b = ~GTE+ GG — SO EGT HLG rgazpr + Op(m )

(52.3)
It can be seen that, under the assumptions, there is a constant 6 > 0 such that the
supremum over {t : |[¢) — 1),| < 0} of absolute value any partial derivative, up
to the 4th order, of (); with respect to ¢, 1 < j < m are bounded. Furthermore,
it is seen, by A3, that the second moments of any second-order partial derivative
of Q; at v, with respect to ¢, 1 < j < m are bounded. Thus, together with the
independence assumption (Al of LMJ20), (S2.1) and (S2.2) are justified. By a
similar argument, (S2.3) is justified.

Next, let éi* denote éi with zﬁ replaced by .. Then, we have éi —0; =
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0:» — 0; + 0; — 0;,; thus, by (2.14) of LMJ20, we have

MSPE(6;) = E(0; — 0;)?

where [, and I, are defined in obvious ways.

Let us first consider I,. We first show that the following holds:

99; 1 15) +o(m™), (S2.5)

N n 2

where g} /0Y = 0g; /0|y, . Recall the definition of As above A3 of LMJ20;
also define
2°Q

LSS5 < || O, 00T Clm}

_ 82QJ aQQj
Cs = {1<£nl%p+1 Z [3%3% " - B <3¢ka¢l zp*) = 51m},

where the spectral norm of a matrix, M, is defined as | M|| = \/Amax(M'M)}

Bs = { max  sup

(Amax means largest eigenvalue), and §, ¢, d; are constants to be determined

later. We have

E(f; — 0:)° = E{(6: — 6 Lasrmynes ) + E{(0: — 0i)*Lagusgues ). (S2.6)

Let ¢,y denote generic, positive constants, whose values may be different at

different places. We have, by assumption A4, that P(AS) < csm~?. Also, we



S2. PROOF OF THEOREM 2

have

m

SZ sup

j=1 [¥—«]<é

m

<ed (5 + o),

j=1

2°Q
s OOy’

Q)
psOpOY’

sup

if § is chosen sufficiently small. Write Z; = y7 + |z;|* and (; = Z; — E(Z;).
We have

83
P sup ¢
[9p—1h« <

Qs OO

1 m
>clm> < P(—ZZj>c>
m
1 m
< P(EZCJ‘>C—CQ>
j=1

m (2d

ZCJ'

j=1

< em ¥E

if ¢; is chosen sufficiently large, where ¢, is an upper bound of E(Z;). By

Marcinkiewicz-Zygmund inequality (e.g., Jiang 2010, p. 150), we have

d
m m 1 m
XE ScE<§ 4?) < em'E <—§ !<j|2d> < em?,
m
j=1 j=1 j=1

using Jensen’s inequality for the second-to-last step. It follows that P(B§) =

2d

E

O(m~%). Similarly, it can be shown that P(C§) = O(m~%).
Note that [6; — 6;.| < c{log(m + 1)}(|ys| + |2:]) by the regularization of

2[1 (above A3 of LMJ20). Thus, by the Cauchy-Schwarz inequality, we have

) no\2 ) 4 1/2 c c c\1/2 -1
E{(6; — 0:2)*Lasumeue: } < [E{(QZ- — 4, H P(ASUBEUCS)Y2 = o(m™Y).
(52.7)

Now let us see what happens on As N Bs N Cs. By Taylor series expansion,
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we have

80

N DY (¥ — ), (S2.8)

0=¢+ G+n+ () — )

wJ 1<s<p+1

where v, lies between 1& and 1),. It can be shown that

0°Q
G-3F (W

> SomE(z12]) 0
=2

0 S1m

where sy, = 370 77

D;). It follows, by assumption A3, that there is a positive constant A such that

G > Aml,;,. Also, by the definition of A;, B, and Cs, it can be seen that

80
0P 0o’

Thus, by an inequality regarding the smallest and largest eigenvalues of matrices

< dem.

Il < (p+1)orm, [(@@ — )

%1] 1<s<p+1

(e.g., Jiang 2010, Exercise 5.27), it can be shown that, by choosing 9, §; suffi-
ciently small, we have A, ({---}) > (A/2)m, where {- - - } denotes the matrix
that 1) — 1, is multiplied by in (S2.8). It follows that {- - - } is invertible, thus
¢ —1h, = —{--- }71&; hence, we have

G-l I = e <5 (). s29)

Now, again by Taylor series expansion, we have

éi - éi* = gi(@gyyi) — gi(Vs, i)
9gi

0w,
= ni+0

d%g;

(@~ ) + 50 - ) oo

(1/} - %)

Y1
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with 7;, §; defined in obvious ways, where 1)|; lies between 7, and 1[1 By (52.9),

we have

il < (/M) (yalVIziD (1l /m). 16l < (e/X*){log(m~+1)} (|y:v]z: ) (€] /m)*,

using the regularization of z/} for the latter inequality. Now write

~ ~

E{(6;—0:.)*La;nmsnes b = B07 Lasnzsnes ) H2E(1i0; Lasnssnes ) HE(0; Lagnssnes)-

(52.10)
By the inequalities above (S2.10), the Cauchy-Schwarz inequality, and the Marcinkiewicz-
Zygmund inequality, it can be shown that the second and third terms on the right

side of (S2.10) are both o(m™!). Thus, we have

E{(éz - éi*)Qlﬂaﬁﬁaﬂea} = E(U?Mm%meé) + O(m_l)- (82-11)

Furthermore, write h; = —0dg; /0y’

s.» and € = A; N Bs N Cs. It follows from

(S2.8) that
= hG T+ G () — ) + (hi/2) G — ) = G+ G + O
with (;, d1;, 09, and [- - - | defined in obvious ways. Thus, we have

E(nile) = E(CG1le} + 2B{¢G (01 + 02:)1e} + E{(61; + 62)°1e}

= E(¢}) — E(¢1ee) + 2B{G(01; + 02:)1e} + E{(61; + 02:)*1e }. (52.12)

Note that, on &, we have |d;1| < [hil- |G |- [nll- [ =] < (¢/Am?)|hl-[nl]-[€].
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using (S2.9). It follows that

E(d’?lle) g )\ (h2H77H |€‘ — )\2 ZE h2 ZUJTS )
7,8,t
(52.13)
where uj, = 0Q; /0|y, and uj.s = 0*Q; /00,005y, — E(0?Q; /01,0, ).
We have
E h? ZUJ'T-S Zu]‘t
i=1 j=1
2 2
< cE h? u?rs—i_ Zujrs : + Zujt
j#i J#
= ¢ E(h?uzzrsult> +E hf ?rs (Z uﬁ)
J#i

E(h2u?)E (Z uﬂs> +E(h)E (Z uﬂs> <Z ujt)
J#i J#i J#i
clm+E (Z ujrs> (Z ujt> ) (52.14)

J#i J#i

IN

By (52.13), (S2.14), and the Cauchy-Schwarz and Marcinkiewicz-Zygmund in-

equalities, it can be shown that E(6%1¢) = O(m™2). Also, we have, on &,

C
(6] < elhil - [ =t < —| il 1€ = 2mzlhilz
t Jj=

Thus, similarly, it can be shown that E(6%) = O(m™?). Furthermore, we have
G| < (¢/m)|h;| - |€]. Thus, similarly, it can be shown that E(¢*) = O(m~"/?),

w=2,4.
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It follows that the fourth term on the right side of (S2.12) is O(m™?); the
third term is O(m~%/2) (by the Cauchy-Schwarz inequality); and the second
term is O{m~(174/2)} [again by the Cauchy-Schwarz inequality, and a bound on
P(&°) obtained earlier]. (S2.5) now follows by combining (S2.6), (S2.7), (S2.11)
and (S2.12).

Recall the definition of u; below (3.6) of LMJ20. By (2.10) of LMIJ20, it

can be shown that E(u;) = 0 for every 1 < j < m. Therefore, by independence,

we have

Jg;
e (506" 5)
2
J#1

= BE(hG 'u)? + 2B{(h;G 'u;)h; }G'E (Z uj) +E (hiGl Zu]>
i j#i
= O(m™*)+ ) E(hG 'u)’
J#i
= i E(u;G™' R,G u;) 4+ o(m™")
E(d;) +o(m™), (S2.15)

and

Vi
d — 2 Uom om
' K {SOm - (A +D )Slm
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Hereafter, sp,,, k = 0,1,2, etc. are Sg,, k = 0,1, 2, etc.defined above (3.2) of
LMJ20 with 1[1 replaced by .. The last equation in (S2.15) can be derived after

some further computation. Let d; be d; with 1, replaced by 7,@ We show that
E(d; — d;) = o(m™). (S2.16)
To show (S2.16), write, similar to (S2.6),
B(d; — d;) = B{(d; — d;)La,nmsnesnn } + B{(di — di)Lasus,uecume . (S2.17)

By a similar argument as that leading to (S2.7) (using Holder’s inequality instead
of Cauchy-Schwarz inequality), it can be shown that the second term on the
right side of (S2.17) is o(m™!). Furthermore, it can be shown, using similar
arguments as those leading to (S2.15) [involving Taylor expansion, (S2.9), and
Holder’s inequality instead Cauchy-Schwarz inequality], it can be shown that
the first term on the right side of (S2.17) is also o(m™!). (S2.16) thus follows.

Combining (S2.5), (52.15), (S2.16), we have
I, = E(0; — 6;,)* = E(d;) + o(m™"). (S2.18)
Now let us consider ;. Similar to (S2.6), (S2.7), we have

L = B{(0u — 0:)(0; — i) Lasrmsnes  + B{(0 — 0:)(6; — éz*)lAguBgueg}

= I + Lo, (S2.19)
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with 11, [15 defined in obvious ways, and

Tl < [B{G. ~ 0076~ 7)) Pas U B U €2
< [B{(0. - 0)"] v [E{(6; — 0..)"}] Y p(ag uBg L eg)2
= o(m™). (S2.20)

0; — 0 = gi(¢>yi)_gi(w*ayi)
dg;

. 1 -
= ), G-w)g-w)

! 8291’

G|, (0 v+ (5220

where p; denotes the remaining term in the second-order Taylor expansion. It

can be shown, by (52.9) (also see above A3 of LMJ20), that, on £, we have

(6.~ 6] < cliogtm-+ 1Y (I + ] + I (1)

m

Therefore, by Holder’ and Marcinkiewicz-Zygmund inequalities, we have

. e
E{I(@ — 00pil1e} < cflog(m+ 1)} [E{<|yz~|+|:ci|+|ei|>8}}”4{E(E)}
< cflog(m + 1)} 'm=3/2

= o(m™).
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Therefore, combining with (S2.21), we have

_ dgi| -
Ly = EQ(0u—0;) 20| (=)l }
11 { ad] . &
1 ~ ~ , 02y ~ _
= w4 =2+ o(m™Y) (92.22)

with wy, wy defined in obvious ways. Let us first consider ws. By (S2.8), we

have

R Sl (R OB} [CES) (s2.29

By the definition of By, and (S2.9), it can be shown that

C

67t (e 501) G-

<

(Il +1€Dlel

m2

on €. It can then be shown that

~ 2.
Wy = E {(61* — 01-)5/(;_1 % " G_lglg} + 0(m—1)
- E {(9}* —0,)¢G! 3225@ . G—lg} +o(m™1). (S2.24)

Write P, = 92g;/000Y’ |, (0 — 0;). Tt is easy to see that E(u;G™' PG uy) =

0, if j # k. Furthermore, by (2.10) of LMJ20, it can be shown that, for j # i, we

have E(u;G~'P,G""u;) = E{tr(G' PG~ 'uu})} = tr{G'E(P) G~ E(u,u})}
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= 0, hence
. 0%¢; n
E{ (0 —0,)¢'G™! : Gt = E(W.G PG u
{( G 3w ) 6} ; (W k)

= O(m™?). (S2.25)

Combining (S2.24), (S2.25), we have wy = o(m™1).
Now consider w;. Write M, = 83Q/8¢88¢8¢’|¢[s], M, = M, with ¢
replaced by v, and Hy = E(Mj,). Going back to (S2.23), it is seen, by Taylor

series expansion, that

[ 1 — )
= [(@ - ¢*)/MS(1$ - ¢*)]1§8Sp+1 = [(lﬁ - ¢*)MS*(¢ - ¢*)]1§8§p+1 + p1
= [( — V) Hs () — ) 1<scpir + (0 — ) (Myw — H) (W) — Pu)|i<s<prr + o1

= [(@ZJ - @Z’*)Hs(@& - lp*)]lSSSp—H + p2 + p1,

where pq, po satisfy that, on € [see (S2.9)],

1] < eflog(m + 1)) {Z@; P 1)} (@) ,

- m
Jj=1

€N
ool < M, — H,| ( .

m
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Next, by (S2.23), it can be shown that, on &,

~

(b= ) H(0=t0.) = (€'G7 = YH (=G "6~ -) = € G H,G et pa,

where p3; (1 < s < p+ 1) satisfies

sl < C{%Z@? ol 1>} (1+ I ey (1)

=1
Similarly, on & we have G~ 'n(¢—1,) = G In(—G 1 —---) = =G G+
p4 With

loal < = (Iel + ImlDig] - I

Combining (S2.23), and the above results, we obtained a more detailed expan-
sion:

~

1
-1, = -G H+GInGTE - §G71(£/G71H3G71€>1§s§p+1

1
—§G_1(P1 + p2 + p3) — pa, (52.26)

where ps = (p3)1<s<ps1. Write ¢ = (0, — 6;)(9g:/0'|.). Tt can then be
shown that
1
wy = —E |:q2' {G_1§ - G_IT]G_lf + §G_1(§/G_1H5G_1§)1§s§p+l} 15} + o(m_l)

1
= B0 { G GO 6 G G ey ] ol ™),

Furthermore, we have E(¢,G~'¢) = > 7" E(¢:G~'u;) = E(¢:G'u;). Next,
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write V; = 02Q); /00|, . By similar arguments as in (S2.25), we have

E (qu1 7Q

ooy

Glf) = E E(¢:G'V,G )
P 4, k=1
= E(¢G'V,G'u) = O(m™?).

Finally, let F; denote the sth column of G~'. Then, we have

p+1

GG (G HG O 1cacprr = Y aiFEGTH,GTE
s=1

p+1 m
= Z Z tiSu;G_lHSG_luk, hence
s=1 j,k=1
p+l m
E{qG (G HG Orcocpin} = Y > BlaFau,G™ H, G uy,)
s=1 j5,k=1
p+1
= E(gFuG ' HG "'w) = E{qG" (ujG T H.G " ui)1<icpn } = O(m™?).
j=1
Therefore, combining the above results, we have w; = —E(¢;G'u;) + o(m™1).

Combining the results of (S2.19), (S2.20), (S2.22), and those regarding w; and

w9, we conclude that

I = E{(6i—0,)(6; —0:)}

= —E(g:) +o(m™), (52.27)

with g; defined in an obvious way (recall sy,, 1S $1,, with zﬂ replaced by v,). The

second to last expression on the right side of (S2.27) can be derived with some
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algebra.

It can be seen that E(g;) is zero when there is no model misspecification;
otherwise, this term may not vanish. In fact, by (3.4) of LMJ20, it is seen that
E(g;) is associated with the kurtosis of §;, defined below (2.1) of LMJ20. Di-
rectly applying the observed information idea to E(g;) would suggest removal
of the E and replacement of 1, by 1@ in g;. This would produce a term involving
a single observation, y;, which has large variation; in fact, this was an approach
used by Jiang et al. (2011), which we intend to avoid. Instead, we apply identity
(3.5) of LMJ20 to replace E(g;) by a term that involves all of the observations,
that is, E(a;), where q; is a; defined above (3.2) of LMJ20 with 2/3 replaced by
(o

Furthermore, by similar arguments as those leading to (S2.16), it can be

shown that E(a; — a;) = o(m™1). It follows that
I, = —E(a;) + o(m™). (S2.28)

Finally, let us deal with the leading term on the right side of (S2.4). Write

A, D; D2

A =g P a T (52:29)

Recall & = As N Bs N Cs and, by earlier results, P(£¢) = O(m~?). Thus, we

have

E(Aim):E(Afm)+dm4y (52.30)
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Using an elementary expansion (see Jiang 2010, p. 103), we have

11 A— A, N (A—A,)? (A—A)?
A+D; A+Di (Ac+Di)?  (Ac+Di)* (A, +D)*A+ D))
Applying (S2.9), it can be shown that
A 3 3
E (A A*)A 18 S cE (@) — O(m_l).
Therefore, we have
1 P E{(A— A1 E{(A— A,)%1
B() - PO U B AR
1 B{A-A)l) EB{A-A)1)
Furthermore, by (S2.26), we have
R 1
A=A, = —We+NnGTe = SH(EGTHG icscpn

1
—§h’(p1 + p2 + p3) — (0" 1)pa,

where i’ = (0/ 1)G! = (0" hyy) with G™' = diag(Hyy, haz). By earlier argu-

ments, we have E{//(p1 +p2+p3)le} = o(m™ ), E{(0/ 1)psle} = o(m™'). Al-

so, wehave E(&) = 0, VE(nG~¢1ec) = o(m™ 1), WE{('G ' H,G7'€) 1<cscprilec} =
o(m™"). Tt follows that E{ (A—A,)1¢} = WE(nG~'€)—(1/2) W [E(&'G " H,G™ )| 1<s<prt

+o(m™1). Next, by (A.23) and the inequality below it, it can be shown that

E((A— A)%e} = B(EANE) + o(m™).
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Combining the above results, we conclude that

E{ci(A)} = D {1 - DiE (AiDi)}

D, D,
= D;{1— ’ d "E(nG1
{ A +D, A+ Dy EGe)

D; ) Pg of e _
—mh [E(¢'G'H,G7'¢)]
D;

—mE(ﬁ'hh’ﬁ) + o(ml)}

1<s<p+1

= ey {h/E“’]Glg) - [BEe me )

1<s<p+1

~ Eﬁ'ﬁhél} + o(m-D). (52.31)

Furthermore, it is easy to see, by (2.10) of LMJ20, that E(nG~'¢) = 37" | E(V;G~ '),

where V; is defined below (S2.26). Further derivations show that

RE(V,G 'u;) = —4s B D—?x’H x;(y; — 2 B,)*
J J - Im (A*+Dj)5j 1125\Y; jM*

) D;l (yj - .13;5*)4 .
~35imt { (4. + D) { (A, + D,)? 1}]

[note G—! = diag(Hy, hao)]. It then follows that we have the expression

(52.32)

h/E(T/G_lf) — —E ( 2ulm + 3‘/1m) ’

2
SomS1im Slm

using identity (3.3) of LMJ20. Similarly, we have

[E('GHG ' Olicosprr = Y BWG HaG ) 1<aspin

j=1

Thus, we have I'[E('G H,GE)i<scpin = 31y hooB(W;G Hpn G ayy).
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Also, the following expression can be derived:

PQ
Hper = E (6A6¢6W

) SimE(z2y) 0
P

0 332m

Therefore, the following expression can then be derived:

WG .G ey = -2 { 2 43 (202 ) L (s233)

Som Sim
Similarly, it can be shown that

E(EhHE) =B <@) . (S2.34)

Slm

Combining (S2.31)—(S2.34), we have

E{ci(A)}

2U1m 3 Uom, Vom
‘ ( ) |:rl {Somslm " S?m <$1 ' ”2 ’ ) ng " (A* + Dl)‘g%m

+o(m™)
= ci(A) —E(hy) +o(m™), (S2.35)
with h; defined in an obvious way, where g, Vi are tg,, Vkm defined above

(3.2) of LMJ20, respectively, with z/} replaced by .. Then, as argued before, it

can be shown that

E(h; — h;) = o(m™"), (52.36)

where h; is h; with 1, replaced by 1/3
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Combining (S2.4), (S2.18), (52.28), (52.35), and (S2.36), we conclude that
MSPE(6;) = E{c;(A) + h: — 2a; + di} + o(m™") = E{MSPE(6;)} + o(m ™),

where cii + izi = I;i, which has the expression given above (3.2) of LMJ20.

S3 Computational details, additional tables and figure

First, we present computational details of the simulation study in algorithmic
form.

Input: m € {20,40,80, 160,320,640}, K = 10000, and Model ID €
{(I),(II),(II1)}. Step 1. Set D; = (i—1)/(m—1)+05,i=1,2,--- ;m—1,
then fix them throughout the simulations.

Step 2. Foreach k =1,2,--- , K, run:

(i) Generate the random samples {z", 4/} from Model ID. (We have put
the R codes of these three different models in files entitled Example_1.R,

Example_2.R and Example_3.R in the supplement, respectively.)

(ii) Store {91@ ., where 95’“) = y; — ¢;. Note that {9§k) 7, are used only in

approximating the true MSPE.

(i11)) Compute the MPR, PR, Naive, and JNR estimates based on the data set

{2y, Dy, Store them in {05 pp 17y, {00500 {0, ), and

% i=1°

{ég?NR}?ll, respectively.
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(iv) Store PONE(y, = #{i : 0"z < 0}/m and PONEY), = #{i : 6\, <

0}/m, where #(A) denotes the cardinal number of a set A.

Step 3. Average the MPR, PR, Naive, and JNR estimates over these /X = 10000

computations. That is, compute

K K
1 Ak BT 1 n(k
PR; = K Z ei(,P)Rv MPR; = K Z 92(71\)“33’
k=1 k=1
_ 1« oIy
Naij = =3 0% TNRi=— >0,
k=1 k=1

Also compute the approximate true MSPE values by

K
1 (k)y2
Truei:E;(Qi ), i=1,2,---,m.

Step 4. Compute the RBs of each estimator, i.g., PR, by

B PR; — True;

RB;
True;

Z:1727"' , M,

and store the corresponding mean and Sd of {RB;}" ;.

Output: The mean and Sd of {100 x RB;}",, as well as {100 x |RB;|}7,,
of four estimators, and the means of {PoNE}), }5 and {PoNE{) 1 X

Next, we present additional tables for the simulation study and real-data
analysis.

Table Al presents the standard deviations (s.d.) of the %RB and %|RB|

corresponding to Table 1 of LMJ20.



Xiaohui Liu, Haigiang Ma and Jiming Jiang

Table A.1: Comparison of MSPE Estimators in Term of s.d. of %RB and

Example n MPR PR Naive JNR

%RB  %|RB| %RB  %|RB| %RB %|RB| %RB  %|RB]

) 20 0.0257 0.0228 0.0255 0.0223 0.1699 0.1699  0.0548  0.0507
40  0.0152 0.0080 0.0149 0.0073 0.1050 0.1050 0.0198 0.0116

80  0.0146 0.0095 0.0148 0.0096 0.0647 0.0647 0.0226 0.0135

160 0.0140 0.0082 0.0140 0.0082 0.0368 0.0366 0.0207  0.0129

320 0.0138 0.0081 0.0138 0.0081 0.0257 0.0238 0.0209 0.0129

640  0.0145 0.0089 0.0145 0.0089 0.0231 0.0177 0.0219 0.0138

I 20 0.0141 0.0073 0.0139 0.0139 0.1368 0.1368 0.0161 0.0114

% |RB | 40 0.0139 0.0089 0.0137 0.0078 0.0805 0.0805 0.0195 0.0124
80  0.0148 0.0093 0.0148 0.0095 0.0444 0.0444 0.0181 0.0111

160  0.0141 0.0082 0.0142 0.0082 0.0278 0.0263 0.0159  0.0097

320 0.0149 0.0092 0.0149 0.0092 0.0209 0.0178 0.0185 0.0115

640  0.0143 0.0085 0.0143 0.0085 0.0181 0.0127 0.0173 0.0105

(IID) 20 0.0198 0.0103 0.0205 0.0154 0.1460 0.1460 0.0219  0.0125

40  0.0152 0.0094 0.0151 0.0089 0.0899 0.0899 0.0177 0.0114

80  0.0144 0.0080 0.0143 0.0077 0.0516 0.0516 0.0178 0.0106

160  0.0150 0.0091 0.0150 0.0090 0.0317 0.0313 0.0189 0.0109

320 0.0139 0.0085 0.0139 0.0085 0.0222 0.0189 0.0187 0.0116

640 0.0140 0.0084 0.0140 0.0084 0.0191 0.0138 0.0177 0.0111

Table A.2 present the raw data and analysis results for Subsection 5.1 of

LMJ20. It is divided into Part I and Part II due to its length.
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Table A.2: Raw Data, OBP, and MSPE Estimates for Poverty Ratio; Part I

Index  State Yi T14 Za; z3;  VDi OBP  MPR PR INR

1 Alabama 18332 22721 12329 0.711 3541 19231 4155 3820 —5.791
2 Alaska 7.859 12161 11974  —0.893  3.140 9460 3907 3.676 —1.684
3 Arizona 12906  19.634 17811  —0.477 2.892 15869 3.718  3.557 6.646
4 Arkansas 15.069 24438  13.553 0.959 3596 20025 4.184 3.836  19.632
5 California 19.368 20254 15887 —0.973 1390 18408  1.866  1.851 1.314
6 Colorado 11312 13292 11.893  —0.804 2707 10996 3.558  3.449  —2.799
7 Connecticut 9.716 10520  9.227 2.010 3.148 9209 3913 3.680 —3.326
8 Delaware 17.037 14772 10572 —0.399 3741 12952 4256  3.875 8.793
9 District of Columbia 22947 25760  24.245 3.043 5273 23396 4703  4.101 5.819
10 Florida 16.639 21304  13.240 0.082  1.835 17453 2556  2.591 0.387
11 Geogia 18330  19.717  14.361 0.357 3375 17.153 4061 3767  —4.959
12 Hawaii 9.526 15892 12729  —2.037 3708  12.307 4.240  3.866 1.152
13 Idaho 17.116  17.367 10071  —1.528  3.169 14710 3.927  3.688 1.456
14 Illinois 13.002  15.163  11.677 0.222 1781  12.865 2480 2513  —0.213
15 Indiana 6.873 14130  8.923 0.337  2.808 10492 3.648 3511  10.695
16 Iowa 5708 11983  8.580 0.368 2720 8756  3.569  3.457 7.144
17 Kansas 16.804 13208  9.981 0.147  3.024 12258 3.822 3.624  17.388
18 Kentucky 14534 20863 12917 0.359 3284 17.129  4.004 3.734 1.344
19 Louisiana 25.852 25158  15.136 0.112 3901 22.183 4327 3912 5.988
20 Maine 17.560  14.774 8453  —1.457 3339 12.874 4.038 3754  17.967
21 Maryland 7.337 12413 11023 —0.663 3.095  9.505 3.875  3.657 0.488
22 Massachusetts 19.729 10730 11.021 1.657 2267 12.840 3.104  3.101  49.490
23 Michigan 12.144 15254 11221 0.632 1970 12.597 2739 2772 —0.407
24 Minnesota 8.966  10.105  7.918 0.271 2613 8391 3470 3387 —2.068
25 Mississippi 22.564 26027 14711 —1.435 3937 21954 4342 3920 —6.072
26 Missouri 18.594  17.068 10371  —0.330 3430 14973  4.093  3.785 7.090
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Table A.2: Raw Data, OBP, and MSPE Estimates for Poverty Ratio; Part II

Index  State Yi T14 Za; z3;  VDi OBP  MPR PR INR
27 Montana 18.702  20.867 9.800 0.267  3.635 17737 4204 3847 —5.862
28 Nebraska 9.959  13.507 7526 —0.744 2610 10561 3466 3384  —2.139
29 Nevada 14.254 14505 14.382  —0.989 2748 12,616  3.595 3.475 0.169
30 New Hampshire 6.889 8.322 5417  —0.300  2.559 6.482 3416 3348 —1.767
31 New Jersey 10.844 11966  10.269 0.822 1.997 10379 2774 2805 —0.402
32 New Mexico 30.031  27.904  13.267 1.351 3423 25205 4.089 3782 21.039
33 New York 20.513  18.890  16.535 1.929 1.593  18.664 2201 2216 3.750
34 North Carolina 18.524  18.109  12.522 0.503 2425 16382 3278  3.243 2.817
35 North Dakota 14.846  14.278 7.741 1.703  3.038 12.734  3.833  3.631 0.989
36 Ohio 14.071 14.710 8.251 0.123 1.876 12953  2.613  2.648 0.938
37 Oklahoma 14440 22911 14.050 —0.247 3760  18.651  4.265  3.879 10.536
38 Oregon 12.613 16377 13473  —3.050  3.093 12947 3.874 3.656 —2.745
39 Pennsylvania 11.507 14.905 9.070 0.534 1.796 12.018  2.502  2.535 0.047
40 Rhode Island 14.148  13.930  13.698 0.515 3454 12310 4.107 3793 —2.524
41 South Carolina 15.620  20.397 12916 1.714  3.887 17414 4321 3909 —5.017
42 South Dakota 6.778  16.443 8.158 2.114  3.810 12986 4287 3.891 35.071
43 Tennessee 16.468 19.710  10.882  —0.876 3.306 16345 4018 3742 —5.680
44 Texas 19.968  23.311 13.450  —0.873 1.684  19.768  2.338  2.364 0.051
45 Utah 6.171 12421 10474 —2.212 2675 8.718  3.529  3.429 4.548
46 Vermont 9.623  13.314 7720 —2.027 3240 10.164 3975 3717 —4.372
47 Virginia 9.521 14399 11296 —0.009 3.035 11450 3.831 3.630 —0.576
48 Washington 8368  13.637 11.135 —1.273  3.063 10422 3852 3.642 0.070
49 West Virginia 21.021 23316 13.393  —0.386  3.719 19922 4245 3869 —6.334
50 Wisconsin 6.722  11.660 7.395 1.632 2949 9.104 3765  3.588 3.120
51 Wyoming 11314 16.047 7.311 —0.494 2933 12,626  3.751 3579  —1.820

Table A.3 present the raw data and analysis results for Subsection 5.2 of

LMJ20. It is divided into Part I and Part II due to its length.

Table A.3: Data, OBP, and MSPE Estimates for Incubation Period of Covid-19;
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Age group Indx Province Yi x; I; VD; OBP MPR PR JNR

#1 1 Anhui 1.638  18.462 0 019 1759 0.038  0.037 0.024
4 GuangDong 2.070  12.794 0 0123 2072 0.016 0.016 0.009
5 Guangxi 2.173 15.200 0 0321 2077 0.069 0.061 —0.010
6 Guizhou 2.303  20.000 0 0718 1959  0.110 0079 —0.216
7 Hainan 1.426  12.250 0 0359 1879 0.077 0.066 0.181
8 Hebei 2.708  23.000 0 0718 1.959  0.110  0.079 0.249
9 Henan 1.718  16.077 0 0199 1.828 0.038 0.037 0.022
11 Hunan 2.629 14.000 0 0415 2202 0.086 0.071 0.137
13 Jiangsu 1.609  20.000 0 0718 1885 0.110 0079 —0.270
14 Jiangxi 1.099  23.000 0 0718 1.787  0.110  0.079 0.139
16 Neimeng 0.693  22.000 1 0.718  0.538  0.110  0.079 0.037
18 Qinghai 2.485 10.000 0 0718 2194 0110 0079 —0.155
19 Shandong 1.861 17.000 0 0293 1929 0.063 0.057 —0.006
21 Shanxi2 0.948  16.333 0 0239 1452 0.050 0.047 0.270
22 Sichuang 1.944 16.812 0 0180 1957 0.033  0.032 0.011

Part I

25 Yunan 1.778  10.000 0 0508 208 0.097 0075 —0.009
26 Zhejiang 1.968 15241 0  0.165 1.983  0.028  0.027 0.011
27 Chongging 2.322 2.792 0 0508 239 0.097 0075 —0.015

#2 1 Anhui 1.675  40.964 0 0079 1.686 0.007  0.007 0.005
2 Peking 0.693  42.000 0 0718 1.684  0.110  0.079 0.695
3 Gansu 1.800  32.000 0 0321 1.790  0.069  0.061 —0.020
4 GuangDong 1.681  38.986 0 0059 1.686 0.004  0.004 0.003
5 Guangxi 1.918  37.292 0 0147 1.882 0.023  0.022 0.012
6 Guizhou 2773 27.000 0 0718 1921 0.110 0.079 0.425
7 Hainan 1.571  38.500 0 0147 1.626  0.023  0.022 0.014
8 Hebei 1.673  39.417 0 0207 1720 0.041  0.039 0.011
9 Henan 1.830  40.444 0 0.060 1.828  0.004  0.004 0.003

10 Heilongjiang 1.792  32.000 0 0718 1.785  0.110  0.079 —0.324
11 Hunan 1.793 41419 0  0.084 1.794  0.007  0.007 0.006
12 Jilin 1.657  40.333 0 0415 1.756  0.086  0.071 —0.054

13 Jiangsu 1.911 39.842 0 0117 1.889  0.015  0.015 0.009
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Table A.3: Data, OBP, and MSPE Estimates for Incubation Period of Covid-19;

Part 11
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Age group Indx  Province Yi T; I; VD; OBP MPR PR JNR
14 Jiangxi 1792 37.000 0 0718 1780 0.110 0.079 —0.314
15 Liaoning 1.806 35214 0 0192 1796 0.036 0.035 0.010
16 Neimeng 0.936  37.000 1 0321  0.609  0.069  0.061 0.115
17 Ningxia 0.645  30.667 0 0293 1.313  0.063  0.057 0.464
18 Qinghai 2129 37.167 0 0293 1925 0063  0.057 0.035
19 Shandong 1.800  39.737 0 0082 1799 0.007  0.007 0.005
20 Shanxil 2226  37.125 0 025 1997 0.054 0.050 0.057
21 Shanxi2 1.342  40.567 0 0.093 1.397  0.009  0.009 0.010
22 Sichuang 1.982  39.535 0 0077 1965 0.006 0.006 0.005
23 Tianjin 1.679  39.824 0 0174 1715 0.031  0.030 0.012
24 Xinjiang 0.000  49.500 1 0.508 0426  0.097 0.075 0.190
25 Yunan 1918 34.333 0 0415 1.815  0.086  0.071 —0.053
26 Zhejiang 1.551 39815 0 0055 1.562 0.003  0.003 0.003
27 Chongging 1.861  42.111 0 0138 1.847 0.021  0.020 0.010

#3 1 Anhui 1.772 62.833 0 0.147 1.887  0.023  0.022 0.024
3 Gansu 2.639  57.000 0 0718 2113 0110 0.079 0.006
4 GuangDong 1.643  63.079 0 0082 1701  0.007  0.007 0.009
5 Guangxi 1397  62.375 0 0254 1.809 0.054 0.050 0.177
7 Hainan 1.875  64.714 0 0192 2027 0036  0.035 0.033
8 Hebei 1.987  64.417 0 0207 2103 0041 0.039 0.022
9 Henan 1715 63.519 0 0138 1.840 0.021  0.020 0.026
11 Hunan 2.169  64.737 0 0165 2203 0028  0.027 0.012
13 Jiangsu 2.073  63.692 0 0199 2141 0038  0.037 0.014
14 Jiangxi 3.045  64.000 0 0718 2340 0.110 0.079 0.316
15 Liaoning 2773 65.000 0 0718 2342 0110 0.079 —0.010
19 Shandong 2280 65273 0 0217 2288 0.043  0.041 0.008
20 Shanxil 2.663  76.000 0 0293 2710 0063  0.057 0.012
21 Shanxi2 1.551  66.400 0 0185 1.834  0.034  0.033 0.092
22 Sichuang 1.895  65.000 0 0185 2037 0.034 0.033 0.031
23 Tianjin 2230  62.889 0 0239 2225 0050 0.047 0.005
25 Yunan 1.878  66.667 0 0415 2225 0086 0.071 0.069
26 Zhejiang 1.928  64.018 0 0095 1970 0.010 0.010 0.009

27 Chongging 1.872  69.083 0 0207 2106 0.041 0.039 0.065
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Figure A.2: Boxplots of MSPE estimates
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S4 Small area income and poverty estimation

The Small Area Income and Poverty Estimation (SAIPE) provides estimates of
poverty measures for various age groups at the state and county levels of the
United States. One measure of particular interest is poverty ratio for school-
age children from 5 to 17-year old, used by the U.S. Department of Education
to implement its No Child Left Behind program. Following Datta & Mandal
(2015), we consider the state level data based on the 1999 Current Population
Survey (CPS). The direct estimate y; for the th state is computed from the CPS.
The estimate is usually subject to large sampling error due to the small sample
size. Three covariates are used to capture at least part of the variation, namely,
27 represents the Internal Revenue Service (IRS) data measuring poverty ratio
based on the number of child exemptions; x5 is the IRS non-filer rate; and x3 is
the residual obtained by fitting a model for the 1989 Census poverty data on x4,
To. Let x1;, T9;, x3; denote the observed values of x1, x5, 3, respectively, for the
tth state. The sampling variances, D;, are available from the data. See Table A.2
for detail.

Figure A.4 provides the scatter plots of the direct estimate y’s versus the
covariates. The dash lines correspond to smoothing spline; solid lines to simple
linear regression; a quadratic curve is also fitted versus zo. It is seen that the

marginal relationships between y and x; and x3 are roughly linear, while there
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might be some nonlinearity in the relationship between y and z,. Instead of
trying to model the nonlinear relationship, a practitioner may prefer to keep the

model relatively simple, such as the following type of Fay-Herriot model:

Yi = Bo + Bix1i + Bawa; + Baxsi +vi+e;, 1=1,2,--- 51 (S4.1)

On the other hand, due to the potential nonlinearity, the assumed model, (S4.1),
may subject to misspecification of the mean function. It is therefore natural to
consider OBP , which is more robust to model misspecification than EBLUP.

The BPE of the model parameters are BO = —1.114, Bl = 0.860, Bg =
0.066, Bg, = (0.266, and A = 2.658. We then obtain the OBPs and their corre-
sponding MSPE estimates using the MPR, PR and JNR methods for the 51 U.S.
states. The results are reported in Table A.2, along with the original data. It is
observed that, for the JINR MSPE estimates, 21 out of 51, or about 41%, of the
values are negative. On the other hand, all of the MPR and PR estimates are
positive.

Figure A.5 shows boxplots of the MSPE estimates. Figure A.6 plots the
OBP vs the state index with the square root of the corresponding MSPE estimate
(plus/minus) used as a margin of error. Note that many of these margins of error

are not available for JNR due to the negative MSPE estimates.
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