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Abstract: This paper introduces a class of generalized linear models with a Box–

Cox link for the spectrum of a time series. The Box–Cox transformation of the

spectral density is represented as a finite Fourier polynomial. Here, the coefficients

of the polynomial, called generalized cepstral coefficients, provide a complete char-

acterization of the properties of the random process. The link function depends

on a power-transformation parameter, and can be expressed as an exponential

model (logarithmic link), an autoregressive model (inverse link), or a moving av-

erage model (identity link). An advantage of this model class is the possibility of

nesting alternative spectral estimation methods within the same likelihood-based

framework. As a result, selecting a particular parametric spectrum is equivalent to

estimating the transformation parameter. We also show that the generalized cep-

stral coefficients are a one-to-one function of the inverse partial autocorrelations

of the process, which can be used to evaluate the mutual information between the

past and the future of the process.

Key words and phrases: Box–Cox link, generalised linear models, mutual informa-

tion, whittle likelihood.

1. Introduction

Analyses of stationary processes in the frequency domain have a long his-

tory in time series analyses. The spectral density decomposes the total variation

of the process into the contributions of periodic components with different fre-

quencies. It also provides a complete characterization of the serial correlation

structure of the process, and, thus, all information needed for linear predictions

and interpolations.

Several methods are available for estimating the spectrum. One of the most

popular is the Whittle estimation of an autoregressive spectrum, which leads to

the solution of an empirical Yule–Walker set of equations (see, e.g., (Percival

and Walden (1993, Chap. 9))). An alternative class of nonparametric estimates

is obtained by taking the Fourier transform of a smoothed sample autocovari-

ance function: if a truncated or rectangular smoothing kernel is applied to the
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autocovariances, this is equivalent to fitting a finite-order moving-average (MA)

model using the method of moments. A third popular approach is the exponen-

tial model proposed by Bloomfield (1973). This model is derived by truncating

the Fourier series expansion of the log-spectrum. The coefficients of the expan-

sion are known as the cepstral coefficients, which are obtained from the discrete

Fourier transform of the log-spectrum; their collection forms the cepstrum. This

terminology was introduced by Bogert, Healy and Tukey (1963), with cepstral

and cepstrum being anagrams of spectral and spectrum, respectively.

The exponential model is a generalized linear model of observations (a pe-

riodogram), asymptotically distributed as an exponential random variable. The

model adopts a logarithmic link for the mean, which is the spectral density itself.

Refer to Oppenheim and Schafer (2010, Chap. 13), Brillinger (1981) and

Childers, Skinner and Kemerait (1977) for historical reviews of the cepstrum

and its applications in signal processing. Solo (1986) extended the cepstral ap-

proach in order to model bivariate random fields. Local likelihood methods us-

ing a logarithmic link for the spectral estimation were considered by Fan and

Kreutzberger (1998). The exponential model has also played an important role in

regularized estimations of the spectrum (Wahba (1980); Pawitan and O’sullivan

(1994)), where smoothness priors are enforced by reducing higher-order cepstral

coefficients toward zero, as well as being used to estimate time-varying spectra

(Rosen, Stofferand Wood (2009); Rosen, Wood and Stoffer (2012)). The expo-

nential model has also been used for discrimination and clustering of time series,

as in Fokianos and Savvides (2008). Holan, McElroy and Wu (2017) general-

ized the cepstral model to the multivariate case, and Gladish, Wikle and Holan

(2014) modeled time-varying spatial error covariance matrices using a cepstral

parameterization.

Against this background, this study contributes to the current literature by

introducing a class of generalized linear models with a Box–Cox link, accord-

ing to which, a linear model is formulated for the Box–Cox transformation (Box

and Cox (1964)) of the spectral density. The link function depends on a power

transformation parameter can be expressed as an exponential model, which corre-

sponds to the case when the transformation parameter is equal to zero. Another

special case is the inverse link, which can be used to model the inverse spectrum

and, in our setting, is equivalent to an autoregressive estimation of the spec-

trum. A third special case is the identity link, which amounts to fitting an MA

model. The idea of using power or cepstral correlation analyses in time series

analyses dates back to Parzen (1992) and, in the context of speech recognition,
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to Kobayashi and Imai (1984). Here, the goal is to find a scale along which the

transformed spectrum has a representation as a finite trigonometric polynomial

of small order.

The coefficients of the trigonometric polynomial are related to the generalized

autocovariances (Proietti and Luati (2015)), and are termed generalized cepstral

coefficients. A likelihood inference is carried out in the frequency domain. To

enforce the constraints needed to guarantee the positivity of the spectral density,

we propose a reparameterization of the model based on a set of generalized inverse

partial autocorrelations. These autocorrelations enable us to estimate the mutual

information between the past and the future of a random process. We also prove

the consistency and asymptotic properties of the parameter estimators.

As empirical applications, we examine the Southern Oscillation Index time

series and perform a Monte Carlo simulation for a process characterised by a high

dynamic range. These applications illustrate the flexibility of the class of gener-

alized linear spectral models and show that an appropriate spectral estimation

model (exponential, autoregressive, MA, etc.) can be selected in a likelihood-

based framework.

The remainder of the paper is structured as follows. Section 2 introduces the

class of generalized linear cepstral models (GLCMs) and discusses its time-series

properties. Section 3 discusses the estimation based on the maximization of the

Whittle likelihood and derives the asymptotic properties of the corresponding

estimator. The empirical applications are provided in Section 4. Finally, in

Section 5, we conclude the paper and suggest directions for further research.

2. GLCMs for the Spectrum

Let {yt}t∈T be a stationary real-valued stochastic process, T = {0,±1,±2,

. . . }, with mean E(yt) = µ and covariance function γk =
∫ π
−π e

ıωkdF (ω), k =

0,±1,±2, . . . , where F (ω) is the spectral distribution function of the process

and ı is the imaginary unit. We assume that the spectral density function of the

process exists, F (ω) =
∫ ω
−π f(λ)dλ, the process is regular (Doob (1953, p. 564))

(i.e.
∫ π
−π ln f(ω)dω > −∞), and

∫ π
−π f(ω)λdω < ∞ for all λ ∈ R. We let

Γn = {γ|s−t|, s, t = 1, . . . , n} denote the autocovariance matrix of yt of order n (a

Toeplitz matrix). The cepstrum of the process (Bogert, Healy and Tukey (1963))

is defined as the sequence of cepstral coefficients

ck =
1

2π

∫ π

−π
ln[2πf(ω)] cos(ωk)dω, k = 0, 1, . . . , (2.1)
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which characterize the Fourier series ln[2πf(ω)] = c0 + 2
∑∞

j=1 cj cos(ωj). The

Wold representation of {yt}t∈T is written as yt = ψ(B)ξt, where {ξt}t∈T is a

white-noise process with zero mean and finite variance σ2, ξt ∼WN(0, σ2). Here,

2πf(ω) = σ2|ψ(e−ıω)|2, where ψ(z) = 1 + ψ1z + ψ2z
2 + . . . ,

∑∞
j=0 ψ

2
j <∞.

We consider the Box–Cox transform (Box and Cox (1964)) of the spectral-

generating function 2πf(ω), with transformation parameter λ ∈ R, and

g(ω) =

 [2πf(ω)]λ − 1

λ
, λ 6= 0,

ln[2πf(ω)], λ = 0.

We specify the following model for g(ω), under the assumption that it is

represented as a finite trigonometric polynomial:

g(ω) = cλ0 + 2

K∑
k=1

cλk cos(ωk). (2.2)

The representation shown in (2.2) is linear in the coefficients cλk, which are equal

to the inverse Fourier transform of the g(ω) function:

cλk =
1

2π

∫ π

−π
g(ω) cos(ωk)dω, k = 0, 1, . . . ,K.

When λ is equal to zero, we obtain the Bloomfield (1973) exponential model

as a special case. For k = 1, . . .K, the coefficients c0k are equal to the cepstral

coefficients given in (2.1). Henceforth we refer to cλk in (2.2) as the generalized

cepstral coefficient at lag k, and to {cλk, k = 0, 1, . . . ,K} as the generalized

cepstrum.

The spectral model with a Box–Cox link and mean function

f(ω) =


1

2π
[1 + λg(ω)]1/λ , λ 6= 0,

1

2π
exp[g(ω)], λ = 0,

(2.3)

is referred to as a GLCM for the spectrum with transformation parameter λ and

order K, or GLCM(λ, K). Except for the case λ = 0, the coefficients cλk are

subject to restrictions to ensure that f(ω) in (2.3) is positive. These restrictions

are discussed below.

Remark 1. The GLCM assumes that the spectrum can be parsimoniously rep-

resented by a set of finite coefficients, representing the Fourier coefficient of the

Box–Cox transformation of the spectrum. Consider, for simplicity, the GLCM(1,

1) model 2πf(ω) = 1 + c10 + 2c11 cosω. The right-hand side is the spectral den-

sity of the first-order moving average (MA) process yt = ξt + ψξt−1, such that
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1 + c10 = σ2(1 + ψ2) and c11 = ψ1. More generally, the GLCM(1, K) model is

an MA(K) model. Conversely, the GLCM(−1, K) process is an autoregressive

(AR) process of order K. For instance, the spectral density of the GLCM(−1,

1) process is f(ω) = (2π)−1 [1− c−1,0 − c−1,1 cosω]−1, which is also the spectral

density of the AR(1) process yt = φyt−1 + ξt, with 1 − c−1,0 = σ−2(1 + φ2),

c−1,1 = φσ−2.

Remark 2. The dynamic range of the spectrum is defined as

10 log10

(
(maxω f(ω))

(minω f(ω))

)
;

see Percival and Walden (1993, Sec. 6.3). This is related in the limit to the

condition number of the autocovariance matrix Γn as n increases. A process

characterised by a high dynamic range, owing to the presence of spectral peaks,

can be generated from a smooth function, such as g(ω) given in (2.2), after the

transformation (2.3) when the transformation parameter is negative. A short

memory process has a finite dynamic range.

The next subsection shows that for stationary Gaussian processes, {cλk, k =

1, . . . ,K} contain all information necessary to predict and extract the features

of yt.

2.1. Time-series properties

It follows immediately from (2.3) that λ and the corresponding generalized

cepstrum {cλk, k = 1, . . . ,K} uniquely characterize the spectral properties of the

random process {yt}t∈T .

For λ = 0, c00 = lnσ2, from the Szegö–Kolmogorov formula for the prediction

error variance,

σ2 = exp

{
1

2π

∫ π

−π
ln[2πf(ω)]dω

}
.

The coefficients of the Wold representation are obtained using the recursive for-

mula ψj = j−1
∑j

r=1 rc0rψj−r, j = 1, 2, . . . , ψ0 = 1; see, for example, Pourahmadi

(1983).

For λ 6= 0, the generalized cepstral coefficients cλk are related to the gener-

alized autocovariance function, introduced by Proietti and Luati (2015),

γλk =
1

2π

∫ π

−π
[2πf(ω)]λ cos(ωk)dω (2.4)

by the following relationships:

cλ0 =
1

λ
(γλ0 − 1), cλk =

1

λ
γλk, k 6= 0. (2.5)
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Remark 3. For λ = 1, c1k = γk, k > 0, the autocovariance function of the

process is obtained. In the case λ = −1 and k 6= 0, c−1,k = −γik, where γik
is the inverse autocovariance of yt (Cleveland (1972)). The intercept cλ0 for

λ = −1, 0, 1, is related to important characteristics of the stochastic process,

because 1/(1 − c−1,0) is the interpolation error variance, exp(c0,0) = σ2 is the

prediction error variance, and c1,0 + 1 = γ0 is the unconditional variance of yt.
The coefficients of the Wold and autoregressive representations of the pro-

cess can be obtained using a spectral factorization that arises naturally after a

reparameterization of the generalized cepstral coefficients. In fact, [2πf(ω)]λ =

1 +λgλ(ω) = γλ0 + 2
∑K

k=1 γλk cos(ωk), such that, by the representation theorem

of Fejér and Riesz for non-negative trigonometric polynomials (Grenander and

Szegö (1958, p. 20–21)), we can write

[2πf(ω)]λ = σ2
λb(e

−ıω)b(eıω), b(e−ıω) = 1 + b1e
−ıω + · · ·+ bKe

−ıωK . (2.6)

According to (2.6), when λ 6= 0, the generalized cepstral coefficients are obtained

as

cλ0 =
1

λ

[
σ2
λ(1 + b21 + · · ·+ b2K)− 1

]
, cλk =

1

λ
σ2
λ

K∑
j=k

bjbj−k. (2.7)

Moreover, σ
2/λ
λ is the prediction error variance of the process, given as

1

2π

∫ π

−π
ln (2πf(ω)) dω =

1

λ
lnσ2

λ.

The coefficients bk can be uniquely determined by imposing the condition

that the roots of the polynomial b(z) = 1 + b1z + · · · + bKz
K lie outside the

unit circle, which, in turn, can be enforced by adopting the reparameterization

of Barndorff-Nielsen and Schou (1973) and Monahan (1984). Given K coeffi-

cients ςk, where |ςk| < 1, for k = 1, . . . ,K, which in the present setting, can

be interpreted as generalized partial inverse autocorrelations (Bhansali (1983)),

the coefficients of the polynomial b(z) are obtained from the last iteration of the

Durbin–Levinson recursion

b
(k)
k = ςk,

b
(k)
j = b

(k−1)
j + ςkb

(k−1)
k−j , j = 1, . . . , k − 1, (2.8)

for k = 1, . . . ,K, positing bj = b
(K)
j .

The rationale of (2.8) is as follows: let y∗t = b(B)ξ∗t , ξ
∗
t ∼ WN(0, σ2

λ), such

that the right-hand side of (2.6) represents the spectral density of y∗t . The inverse

process is b(B)xt = ξ∗t . The Durbin–Levinson algorithm maps the first K autoco-
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variances of xt onto the partial autocorrelations of the inverse process and obtains

the coefficients bj after K iterations. Equations (2.8) use the same recursions,

starting with the partial autocorrelations as inputs, such that the coefficients ςk,

for k = 1, . . . ,K, are mapped onto the coefficients bj , for j = 1, . . . ,K. This

parameterization ensures that b(z) 6= 0 ⇐⇒ |z| ≤ 1. The role of the coefficients

ςk is discussed further in subsection 2.2.

The coefficients of the Wold representation are obtained recursively, as fol-

lows (Gould (1974))

ψj = j−1
j∑
r=1

(
r
λ+ 1

λ
− j
)
brψj−r, j > 0, ψ0 = 1.

The coefficients of the infinite AR representation are derived similarly. In sum-

mary, all information needed for the prediction is available from K + 1 bits of

information.

Remark 4. Fractionally integrated processes (Giraitis, Koul and Surgailis (2012))

arise as limiting cases. Consider, for instance, the case b(z) = 1 − z, such that

[2πf(ω)]λ = σ2
λ|1− e−ıω|2 is the spectrum of a first-order noninvertible MA pro-

cess. If λ = −d−1, d ∈ (0, 0.5), then a fractionally integrated process arises, the

spectral density of which is unbounded at the origin: f(ω) = σ2

2π |2 sin(ω/2)|−2d.

More generally, if λ < −2 and b(z) can be factorized as b(z) = (1− z)b∗(z), with

b∗(z) = 1 + b∗1z + · · · + b∗K−1z
K−1, for b∗(z) 6= 0 ⇐⇒ |z| ≤ 1, the process is

fractionally integrated of order d = −λ−1. When b(z) = 1 − 2 cosωcz + z2 and

λ = −2d−1, ωc ∈ (0, π), the process is a Gegenbauer process; see Hosking (1981)

and Gray, Zhang and Woodward (1989).

2.2. The mutual information between past and future

The following theorem expresses the strong Szegö theorem (see theorem. 6

in Bingham (2012) and the references therein) in terms of the generalized partial

inverse autocorrelations introduced in (2.8).

Theorem 1. Let {yt}t∈T be a purely nondeterministic Gaussian process with

cepstral coefficients cj, j = 1, . . . ,∞, and generalized cepstral coefficients cλk,

k = 1, . . . ,K. Then, for λ 6= 0,

∞∑
j=1

jc2
j =

1

λ2

K∑
k=1

k ln(1− ς2
k), (2.9)

where ςλk are the generalized partial inverse autocorrelations of the process and

are related to the generalized cepstral coefficients by equations (2.7) and (2.8).
The term

∑
jc2
j has several important uses. The mutual information between
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the past and the future of a Gaussian process is defined as

Ip−f =
1

2

∞∑
j=1

jc2
j . (2.10)

Here, Ip−f measures the reduction in uncertainty about the future Ft, the sigma-

algebra generated by {yt+j , j = 1, 2, . . . , }, when the past Pt, the sigma-algebra

generated by {yt−j , j = 0, 1, 2, . . . }, is known (Ibragimov and Rozanov (2012); Li

(2006)). If {yt}t∈T is defined on the probability space (Ω,I, P ), I = Pt ∪Ft, the

amount of information about {ys}s>t contained in the past {ys}s≤t is

Ip−f = sup
∑

P (Ai ∩Bj) ln
P (Ai ∩Bj)
P (Ai)P (Bj)

. (2.11)

Here, the supremum is taken over all possible finite partitions of Ω in the nonin-

tersecting events (Ai)i=1,...,n, (Bj)j=1,...,m, such that Ai ∈ Pt for all i = 1, . . . , n

and Bj ∈ Ft for all j = 1, . . . ,m. This is a mutual measure because the expression

is symmetric about the past and future events. Heuristically, expression (2.11)

measures the maximum expected deviation of the joint distribution of past and

future events from the product of their marginal distributions. The equivalence

between (2.11) and (2.10) is shown in Ibragimov and Rozanov (2012, Chap. 4).

Here, Ip−f = 0 for a Gaussian white noise process, and Ip−f < ∞ for an

absolutely regular process (Ibragimov and Rozanov (2012, Chap. 4)). Theorem

1 also shows that Ip−f is infinite if |ςk| = 1, for some k, which occurs in the

case of fractionally integrated processes (see Remark 4). Finally, according to

the strong Szegö limit theorem (Bingham (2012, p. 305)),
∑
jc2
j is the limit

of
[
ln |Γn| − n lnσ2

]
as n → ∞. This can be used to approximate the log-

determinant term of the Gaussian likelihood of the sample time series {yt, t =

1, . . . , n}. Note that the evaluation of
∑∞

j=1 c
2
j is not trivial, because it entails

the sum of infinite terms, except for the class of generalized cepstral models. In

the latter case, Theorem 1 states that the sum can be computed from the K

inverse partial autocorrelation coefficients, as in (2.9).

3. Whittle Likelihood Estimation

The main tool used to estimate the spectral density function and its func-

tionals is the periodogram. Let {yt, t = 1, 2, . . . , n} denote a time series, which

is assumed to be a sample realization from a stationary short-memory Gaussian

process, characterized by an autocovariance sequence satisfying
∑∞

k=1 kγ
2
k <∞.

In addition, let ωj = (2πj)/n, for j = 1, . . . , [n/2], denote the Fourier frequencies,

where [·] denotes the integer part of the argument. The periodogram, or sample
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spectrum, is defined as

I(ωj) =
1

2πn

∣∣∣∣∣
n∑
t=1

(yt − ȳ)e−ıωjt

∣∣∣∣∣
2

,

where ȳ = n−1
∑n

t=1 yt. In large samples (Brockwell and Davis (1991, Chap. 10))

I(ωj)

f(ωj)
∼ IID

1

2
χ2

2, ωj =
2πj

n
, j = 1, . . . ,

[
(n− 1)

2

]
, (3.1)

whereas (I(ωj))/(f(ωj)) ∼ χ2
1, when ωj = 0, π, where χ2

m denotes a chi-square

random variable with m degrees of freedom, and, as a particular case, 1/2χ2
2 is

an exponential random variable with unit mean.

The above distributional results are the basis for the approximate or Whittle

maximum likelihood inference for the generalized cepstral model: writing f(ω)

as in (2.3), and denoting as θλ = [cλ0, cλ1, . . . , cλK ]′ the vector containing the

generalized cepstral coefficients, where θλ ∈ Θ ⊂ RK+1, the log-likelihood of

{I(ωj), for j = 1, . . . , N = [(n− 1)/2]}, is:

`(λ, θ) = −
N∑
j=1

[
ln f(ωj) +

I(ωj)

f(ωj)

]
. (3.2)

Letting z(ω) = [1, 2 cos(ω), 2 cos(2ω), . . . , 2 cos(Kω)]′ and writing g(ωj) = z(ωj)
′θ,

(3.2) can be expressed as `(λ, θ) = −
∑N

j=1 `j(λ, θ), where, for 1 + λz(ωj)
′θ > 0,

`j(λ, θ) =


1

λ
ln (1 + λz(ωj)

′θ) +
2πI(ωj)

(1 + λz(ωj)′θ)
1/λ

, λ 6= 0,

z(ωj)
′θ +

2πI(ωj)

exp (z(ωj)′θ)
, λ = 0.

Note that we have excluded the frequencies ω = 0, π from the analysis; the latter

may be included with little effort, and their effect on the inferences is negligible

in large samples.

The profile likelihood of the model as λ varies can be used to select the

spectral model for yt. A similar idea is used by Koenker and Yoon (2009) to

select an appropriate link function for binomial data. Let `max(λ) denote the

partially maximized (or profile) Whittle likelihood `max(λ) = maxθλ∈Θ `(λ, θ), or

equivalently, `max(λ) = `(λ, θ̃λ), where θ̃λ = argmaxθ∈Θ`(λ, θ). The maximum

likelihood estimate (MLE) of the transformation parameter is obtained as the

value of λ that maximizes the profile Whittle likelihood.

The truncation parameter, K, is chosen as the value that minimizes an

information criterion, such as the Akaike Information Criterion (AIC) or the
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Bayesian Information Criterion (BIC), given, respectively, by:

AIC(K,λ) = −2`(λ, θ̃λ) + 2K, BIC(K,λ) = −2`(λ, θ̃λ) + ln(N)K. (3.3)

3.1. Reparameterization

The main difficulty with an MLE of the GLCM in the case λ 6= 0 is enforcing

the condition 1 + λz(ωj)
′θ > 0. This problem is well known in the literature

on generalized linear models for gamma-distributed observations, for which the

canonical link is the inverse link (McCullagh and Nelder (1989)).

The most appropriate solution that ensures the positive definiteness and

the regularity of the spectral density is to reparameterize the generalized cep-

stral coefficients as shown in (2.7). For k = 1, . . . ,K, the parameters bk are

expressed as a function of the the generalized inverse partial autocorrelations

|ςk| < 1. In practice, we estimate K unconstrained real parameters, ϑk, that

are mapped onto the interval (−1, 1) by the Fisher inverse transformations ςk =

(exp(2ϑk)− 1)/(exp(2ϑk) + 1), for j = 1, . . . ,K. Furthermore, we set ϑ0 =

ln(σ2
λ).

3.2. Asymptotic properties

In this section, we prove the consistency and asymptotic normality of the

Whittle MLE of the vector θ, which we denote as θ̃, and the transformation pa-

rameter λ. In practice, the transformation parameter is estimated by maximizing

the profile likelihood `max(λ). We denote as (λ0, θ′0)′ the true parameter value

of (λ, θ′)′.

When λ0 6= 0, [2πf(ω)]λ = 1 + λg(ω) and g(ω) = z(ω)′θ. The asymptotic

theory for the Whittle MLE of θλ is based on the following assumptions.

A1. {yt}t∈T is a stationary Gaussian process and ∃ m > 0, such that 1+λg(ω) ≥
m, ∀ω ∈ [−π, π].

A2. λ0 ∈ Λ ⊂ R and θ0 ∈ Θ ⊂ RK+1 are the true parameter values, (λ0, θ
′
0)′ =

argmaxλ,θE{N−1`(λ, θ)}, and Λ×Θ is a closed subset of the K+2 Euclidean

space, containing all points (λ, θ′)′ for which λz(ω)′θ > −1, ∀ω ∈ [−π, π].

A3. {yt}t∈T is an absolutely regular process, that is, its cepstral coefficients

satisfy
∑∞

j=1 jc
2
j <∞.

Theorem 2. Under conditions A1–A3,

λ̃→p λ0, θ̃ →p θ,
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and
√
n

(
λ̃− λ0

θ̃ − θ0

)
→d N (0, V (λ0, θ0)) ,

with

[V (λ, θ)]−1 =

(
V (λ) V (λ,θ)

V (θ,λ) V (θ)

)
,

where

V (λ) =
1

4π

∫ π

−π

1

[2πf(ω)]2λ
[z(ω)′θ]4[m(ω)]2dω,

V (λ,θ) =
1

4π

∫ π

−π

1

[2πf(ω)]2λ
[z(ω)′θ]2[m(ω)]z(ω)dω, V (θ,λ) = V (λ,θ)′ ,

V (θ) =
1

4π

∫ π

−π

1

[2πf(ω)]2λ
z(ω)z(ω)′dω,

and

m(ω) =
λz(ω)′θ − (1 + λz(ω)′θ) ln(1 + λz(ω)′θ)

[λz(ω)′θ]2
.

In the exponential case, when λ0 = 0, A1 and A2 are not needed, the finite-

ness of
∑K

j=1 jc
2
j implies

∑∞
j=1 jγ

2
j , and the remaining conditions of Theorems

II.2.1 and II.2.2 in Dzhaparidze (1986) are fulfilled. Hence, under assumption

A2, the Whittle estimates of the transformation parameter and the cepstral co-

efficients are consistent, and the matrix [V (0, θ)]−1 has elements

V (λ) =
1

16π

∫ π

−π
[z(ω)′θ]4dω, V (θ) =

1

4π

∫ π

−π
z(ω)z(ω)′dω,

V (λ,θ) = − 1

8π

∫ π

−π
[z(ω)′θ]2z(ω)dω.

These expressions are obtained by taking the limit for λ→ 0 of V −1(λ, θ).

Remark 5. The restrictions on the parameter space Λ×Θ arise from A1, because

the set of (λ, θ′)′, for which 1 + λg(ω) > 0, ∀ω ∈ [−π, π], is the set of points for

which z(ω)′θ > −λ−1 when λ > 0, whereas, for λ < 0, z(ω)′θ < −λ−1. Hence,

as |λ| increases, the positivity condition becomes more stringent for the set of

admissible θ. A1 also rules out the long-memory case; recall from Remark 4 that

a fractionally integrated process arises when λ = −d−1, for 0 < d < 0.5, and

1 + λg(ω) = 0 for ω = 0.

Remark 6. The function that maps the partial autocorrelation coefficients to

the model parameters is one-to-one and smooth (see Barndorff-Nielsen and Schou

(1973, Thm. 2)), such that the asymptotic properties of the Whittle estimator
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continue to hold.

4. Empirical Examples

Here, we apply the proposed generalizations to time series that have been

analyzed extensively in the literature and that provide useful test beds for the

class of generalized linear spectral models. In the applications, we use the ta-

pered periodogram I(ωj) = 1/(2πn)
∣∣∑n

t=1 ht(yt − ȳ)e−ıωjt
∣∣2 , where ht ≥ 0, t =

1, . . . , n, and
∑n

t=1 h
2
t = 1. We use a taper formed for zero-order discrete prolate

spheroidal sequences (DPSS), obtained as the eigenvector corresponding to the

largest eigenvalue of the matrix A(ν), with elements

aij(ν) =


sin(2πν(i− j))

π(i− j)
, for i 6= j,

2ν, for i = j,

for i, j = 1, . . . , n. The matrix depends on the bandwidth parameter ν, which

is often set equal to ν = 2/n. Refer to Percival and Walden (1993, Sec. 3.9 and

Chap. 7) for further details. Brillinger (1981, Thm. 5.2.7) showed that for the

tapered periodogram, the same distributional result as that given in (3.1) holds.

In the following we refer to the GLCM with transformation parameter λ and

order K as GLCM(λ,K).

4.1. Southern oscillation index

The Southern Oscillation Index (SOI) measures the difference in surface

air pressure between Tahiti and Darwin, and is an important indicator of the

strength of El Niño and La Niña events. Here, values below -8 indicate an El Niño

event, and positive values above 8 indicate a La Niña event. The index reflects the

cyclic warming (negative SOI) and cooling (positive SOI) of the eastern and cen-

tral Pacific, which affect the sea-level pressure at the two locations. The monthly

series from January 1876 to December 2013 is plotted in Figure 1, along with

the autocorrelation function. The series exhibits periodic behavior: often, the El

Niño and La Niña episodes alternate, giving the SOI a cyclical feature with an

irregular period of about 3–7 years (see, e.g., http://earthobservatory.nasa.gov).

We investigate the GLCM(λ,K) representation that provides the best fit to

the sample spectrum of the time series. This depends on two crucial parameters:

the truncation parameter K, and the power parameter λ. These can be selected

according to the information criteria given in (3.3). Estimating the GLCM(λ,K)

on a grid of values for λ in the range [−2.50, 1.00], with step 0.01, and for

http://earthobservatory.nasa.gov/Features/WorldOfChange/enso.php
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Figure 1. Southern Oscillation Index. Time series and sample autocorrelation function.
In the first plot, the horizontal lines are drawn at ±8.

K ranging from 0 to 10, and computing the AIC and BIC criteria, leads to

selecting K = 7 and λ̃ = −2.28. Figure 2 displays the prediction error variance

and the profile Whittle likelihood of the GLCM(λ, 7) models as a function of λ,

which also shows that the optimal value of the power-transformation parameter

is λ̃ = −2.28. The third plot displays the corresponding estimates of Ip−f , which

peaks at around λ = −2. The plot illustrates that the pair (λ,K) that minimizes

the AIC does not necessarily maximize Ip−f .

An approximate (1−α)% confidence interval for λ can be constructed using

the asymptotic distribution of the likelihood ratio test (see Pawitan (2013, Sec.

9.11)), for the set of values{
λ : `max(λ) ≥ `max(λ̃)− 1

2
q1−α

}
,

where q1−α is the (1 − α)-quantile of the χ2
1 distribution. For α = 0.05, q0.95 =

3.84.

The estimated spectrum is f̃(ω) = (1/2π)
[
σ̃2
λb̃(e

−ıω)b̃(eıω)
]−1/2.278

, with

σ̃2
λ = 2161.74 and

b̃(e−ıω) = 1− 1.02e−ıω − 0.03e−ı2ω − 0.05e−ı3ω

− 0.08e−ı4ω + 0.04e−ı5ω − 0.02e−ı6ω + 0.23e−ı7ω.

From the second panel of Figure 2, it is evident that the likelihood ratio test of
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λ λλ

Figure 2. Southern Oscillation Index. Whittle likelihood, prediction error variance, and
mutual Information as a function of λ for GLMS(λ,K) models with K = 7.

λ = −2 for a GLCM(λ,K) model with K = 7 is not statistically significant. As a

result, the estimated spectrum does not differ that using an autoregressive model

of order 14, such that the autoregressive polynomial is the square of a polynomial

of order 7. This polynomial has three pairs of complex conjugate roots and a

real root.

Figure 3 plots the periodogram of the SOI series and superimposes the spec-

tral densities fitted by the GLCM(λ,K) model with K = 7, λ set equal to 1, 0,−1,

and λ̃ = −2.28. The case when λ is equal to one corresponds to fitting an MA(7)

model to the series, whereas the case λ = 0 corresponds to fitting Bloomfield’s

exponential model of order K = 7; λ = −1 corresponds to fitting an AR(7). Note

that in none of these cases does a spectral peak arise at a frequency other than

zero. In contrast, The spectrum fitted by the maximum likelihood has a clear

mode at a frequency corresponding to a period of about four years.

4.2. Simulated AR(4) process

This example estimates the power spectrum of the AR(4) stochastic process

yt = 2.7607yt−1−3.8106yt−2+2.6535yt−3−0.9238yt−4+ξt, ξt ∼ NID(0, 1). (4.1)

The interest here lies in the bimododal nature of the spectral density to be

estimated, featuring two peaks located very close together in the frequency range.
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Figure 3. Southern Oscillation Index. Comparison of the spectral density estimates
arising from different GLCM(λ,K) models with K = 7.

In fact, the AR polynomial features two pairs of complex conjugate roots with

modulus 1.01 and 1.02 and phases 0.69 and 0.88, respectively. The closeness of

the two modes renders the estimation of the spectrum rather problematic. Thus,

this process constitutes a test case for spectral estimation methods; see Percival

and Walden (1993).

A sample time series of length n = 1,024 from the above AR(4) process is

obtained from Percival and Walden (1993). A detailed analysis is presented here

for illustrative purposes.

The specifications of the class GLCM(λ,K) selected by the AIC and BIC

differ slightly. While the latter selects the true generating model, that is λ = −1

and K = 4, the AIC selects λ = −1 and K = 6. However, the likelihood ratio

test of the null that K = 4 is only 4.8.

The estimated coefficients of the GLCM(−1, 4) model and their estimation

standard errors are given as follows:

b̃k std. err. true value

−2.7490 0.0007 −2.7607

3.7901 0.0016 3.8106

−2.6353 0.0007 −2.6535

0.9201 0.0025 0.9238

The comparison with the true autoregressive coefficients (reported in the last

column) highlights that the coefficient estimates are remarkably accurate. Figure
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ln[2πI(ωj)]−ψ(1) 
GLCM(-1,4) 
EXP(5)  

π ω −ψ

Figure 4. Periodogram and log-spectra estimated using the GLCM(−1, 4), selected by
the BIC, and the exponential model with K = 5, EXP(5).

4 displays the centered periodogram and compares the log-spectra fitted by the

selected GLCM(−1, 4) model and the exponential model with K = 5, which

emerges if the Box–Cox transformation parameter is set equal to zero. The latter

fit is clearly suboptimal, because it fails to capture the two spectral modes.

In order to evaluate whether the above results are generalizable, we conduct

a Monte Carlo experiment in which 5,000 replications of length n = 1,024 are

generated independently according to the AR(4) Gaussian process (4.1). For

each replication, we estimate a sequence of GLCM(λ,K) models, with λ taking

values on a grid from −1.75 to 1, with step 0.05, and for K ranging from 0 to

8. This range of values covers the subset of interest of the parameter space and

that in which the maximization of the likelihood by a numerical quasi-Newton

algorithm is successful. Model selection is carried out using the AIC and BIC.

We record the MLEs of the parameters, σ̃2
λ and b̃k, for k = 1, . . . ,K, as well as

the estimated spectral density.

The main results are presented in Table 1, which reports the summary statis-

tics of the distribution of the MLEs of the GLCM (λ,K) models separately for

the two cases when the model selection is carried out using the AIC and the BIC.

The summary statistics are the median, mean, standard deviation (St. dev.), and

root mean square estimation error (RMSE). The main findings are summarized

as follows. Model selection by the BIC yields more accurate estimates of the

parameters and the order of the model. The RMSE is systematically smaller,
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Table 1. Summary statistics of the Monte Carlo distribution of the MLEs of the pa-
rameters of the GLCM(λ,K) model, based on 5,000 replications from the AR(4) model
(4.1).

AIC BIC True
Parameter Median Mean St. dev. RMSE Median Mean St. dev. RMSE values

λ̃ −1.0000 −1.0242 0.0903 0.0242 −1.0000 −1.0016 0.0305 0.0016 −1

K̃ 5.0000 5.5968 1.5177 1.5968 4.0000 4.3072 0.6752 0.3072 4

b̃1 −2.7581 −2.8169 0.2783 0.0562 −2.7554 −2.7579 0.0888 0.0028 −2.7607

b̃2 3.8026 4.0037 0.7305 0.1931 3.7974 3.8071 0.2496 0.0035 3.8106

b̃3 −2.6486 −2.9514 1.0288 0.2979 −2.6388 −2.6576 0.3447 0.0041 −2.6535

b̃4 0.9224 1.1586 0.7674 0.2348 0.9176 0.9337 0.2547 0.0099 0.9238

b̃5 0.0000 −0.0847 0.3370 0.0847 0.0000 −0.0060 0.1228 0.0060 0

b̃6 0.0000 −0.0015 0.1979 0.0015 0.0000 −0.0008 0.0770 0.0008 0

b̃7 0.0000 0.0034 0.1089 0.0034 0.0000 0.0010 0.0361 0.0010 0

b̃8 0.0000 0.0048 0.0391 0.0048 0.0000 0.0002 0.0089 0.0002 0
σ̃λ 1.0161 1.5414 1.5363 0.5414 1.0044 1.0535 0.5061 0.0535 1

and both the variance and the bias of the estimator are smaller. The distribution

of the selection frequency for the order of the GLCM(λ, K) is given as follows:

K 0 1 2 3 4 5 6 7 8

AIC 0.00 0.00 0.00 0.00 0.36 0.17 0.14 0.16 0.17

BIC 0.00 0.00 0.00 0.00 0.78 0.16 0.04 0.02 0.01

Finally, the standard error in the estimation of the log-spectrum is computed by

averaging across the simulations 1

N

N∑
j=1

(
ln f̃(ωj)− ln f(ωj)

)2

1/2

,

where f̃(ωj) is the fitted spectral density. These errors are 0.1788 and 0.1520,

respectively, when the model is selected by the AIC and BIC. Therefore, the AIC

results in an efficiency loss of about 18% when estimating the log-spectrum of

the series.

The overall conclusion is that, despite the differences due to the selection

criterion, the GLCM(λ, K) is an effective spectral estimation method, yielding

an autoregressive spectral estimate (λ = −1) or a neighboring estimate in all

cases.

5. Conclusions

We have proposed a general frequency domain-estimation framework that

nests the exponential model for the spectrum as a special case and allows for any

power transformation of the spectrum to be modeled. As a result, alternative
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spectral fits can be encompassed.

The methods are potentially not robust to outliers; however, a robust pe-

riodogram can be used as the basis for inferences. Robustness may occur in

the frequency domain, as in McCloskey and Hill (2017), or by applying a data-

cleaning algorithm in the time domain, supported by a robust Kalman filter, as

in Masreliez and Martin (1977) and Martin and Thomson (1982).

In future research, we would like to apply the GLCM to model the time-

varying spectrum of a locally stationary processes (Dahlhaus (2012)) by allowing

the cepstral coefficients to vary over time, for example, with autoregressive dy-

namics. Finally, a multivariate extension, namely the matrix-logarithmic spectral

model for the spectrum of a vector time series, can be investigated, along the lines

of the model formulated by Chiu, Leonard and Tsui (1996) for covariance struc-

tures. A further alternative is the vector exponential model considered recently

by Holan, McElroy and Wu (2017).
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Appendix

A. Proof of Theorem 1

The coefficients {ςk, k = 1, . . . ,K} are the partial autocorrelations of the

process b(B)xt = ξt, ξt ∼ WN(0, σ2
λ) (see Bhansali (1983)), whose spectrum

fx(ω) is proportional to [f(ω)]−λ. We denote the cepstrum of the process xt by

{κj , j = 0, 1, . . . },

κj =
1

2π

∫ π

−π
ln[2πfx(ω)] cos(ωj)dω.
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According to the strong Szegö theorem, see (Bingham (2012, Thm. 6)), applied

to the process xt,
K∏
k=1

(1− ς2
k)−k = exp

 ∞∑
j=1

jκ2
j

 .

For j > 0, the cepstral coefficients of xt are related to those of yt by κj = −λcj ,
such that

1

λ2

K∑
k=1

k ln(1− ς2
k) =

∞∑
j=1

jc2
j .

B. Proof of Theorem 2

Under the stated assumptions, Theorems II.2.1 (consistency) and II.2.2 of

Dzhaparidze (1986, Chap. II, pp. 105 and 109, respectively) hold, as we demon-

strate below.

Condition A1 ensures that 1 + λg(ω) = γλ0 + 2
∑K

k=1 γλk cos(ωk) is positive.

In fact, 1 + λg(ω) is a proper spectral density and, under A1, the generalized

autocovariances {γλk} form a positive definite sequence. In addition, because

g(ω) = z(ω)′θ, 1 + λg(ω) is a smooth and symmetric function of ω ∈ [−π, π].

Assumption A2 states that the true parameter vector is interior to the parameter

space. Note that our model is identified, that is (λ1, θ
′
1)′ 6= (λ2, θ

′
2)′ → f1(ω) 6=

f2(ω) for almost all ω and (λ1, θ
′
1), for (λ2, θ

′
2) ∈ Λ × Θ, where fr(ω) denotes

[1 + λz(ω)′θr]
1/λr/(2π), r = 0, 1.

Assumption A3 implies that the autocovariances of yt satisfy the condition∑∞
k=1 kγ

2
k < ∞; see Li (2006, Theorem 1). The summability condition on the

squared autocovariances, along with f(ω) > 0, by Corollary I.3.1 in Dzhaparidze

(1986, p. 66) guarantees that the principal part of the Gaussian log-likelihood

can be approximated by the Whittle likelihood.

The derivatives of the inverse of the spectral density are, respectively,

∂

∂λ
f(ω)−1 = − 1

f(ω)

1

1 + λz(ω)′θ
[z(ω)′θ]2m(ω),

∂

∂θ
f(ω)−1 = − 1

f(ω)

1

1 + λz(ω)′θ
z(ω).

Under the stated assumptions, 1 + λz(ω)′θ > 0 and

lim
λ→0

(
∂/(∂λ)f(ω)−1

∂/(∂θ)f(ω)−1

)
= − 1

f(ω)

(
−[z(ω)′θ]2/2

z(ω)

)
, f(ω) = exp

z(ω)′θ

(2π)
.

Hence, the derivatives exist and are continuous in (λ, θ). Hence, by Theorem
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II.2.1 in Dzhaparidze (1986, p. 105), λ̃→p λ0 and θ̃ →p θ0.

Furthermore, the spectral density f(ω) is a twice-differentiable function of λ

and θ, and the second derivatives are

∂2f(ω)

∂λ2
= f(ω)

[z(ω)′θ]3

[1 + λz(ω)′θ]2

{
z(ω)′θ[m(ω)]2 − 1 + 2[1 + λz(ω)′θ]m(ω)

λz(ω)′θ

}
,

∂2f(ω)

∂λ∂θ
= f(ω)

z(ω)′θ

[1 + λz(ω)′θ]2
[
z(ω)′θm(ω)− 1

]
z(ω),

∂2f(ω)

∂θ∂θ′
=

f(ω)

[1 + λz(ω)′θ]2
(1− λ)z(ω)z(ω)′.

Under the stated assumptions, 1 + λz(ω)′θ > 0, the second partial derivatives

are continuous in ω. Furthermore,

lim
λ→0

∂2f(ω)

∂λ2
= f(ω)[z(ω)′θ]3

[
1

4
z(ω)′θ +

2

3

]
,

lim
λ→0

∂2f(ω)

∂λ∂θ
= −f(ω)[z(ω)′θ]

[
1

2
z(ω)′θ + 1

]
z(ω),

lim
λ→0

∂2f(ω)

∂θ∂θ′
= f(ω)z(ω)z(ω)′,

where f(ω) = exp(z(ω)′θ)/(2π).

Letting δ = (λ, θ′)′, the score vector and the Hessian matrix associated with

the Whittle likelihood in (3.2) are, respectively,

S(δ) =

N∑
j=1

(
I(ωj)

f(ωj)
− 1

)
∂ ln f(ω)

∂δ
,

H(δ) = −
N∑
j=1

(
I(ωj)

f(ωj)
− 1

)
∂2 ln f(ω)

∂δ∂δ′
−

N∑
j=1

I(ωj)

f(ωj)

∂ ln f(ω)

∂δ

∂ ln f(ω)

∂δ′
.

Hence, the information matrix I(α) = E[−H(α)] is such that

1

N
I(δ)→p

1

4π

∫ π

−π

∂ ln f(ω)

∂δ

∂ ln f(ω)

∂δ′
dω,

where

∂ ln f(ω)

∂δ
=

(
(∂ ln f(ω))/∂λ

(∂ ln f(ω))/∂θ

)
=

1

1 + λz(ω)′θ

(
[z(ω)′θ]2m(ω)

z(ω)

)
.

Thus, by Theorem II.2.2 in (Dzhaparidze (1986, p. 109)), λ̃ and θ̃ are asymp-

totically normal, as stated in the theorem with the asymptotic covariance matrix
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V (λ0, θ0), where

V (λ, θ) =

[
1

4π

∫ π

−π

∂ ln f(ω)

∂δ

∂ ln f(ω)

∂δ′
dω

]−1

.
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