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Abstract: We describe an approach for robustifying inference in parametric models
that is attractive for time series models. The key feature is that data from the

postulated models are assumed to be measured with sporadic gross errors. We
show that the tails of the error-contamination model kernel control the influence
function properties (unbounded, bounded, redescending), with heavier tails result-
ing in greater robustness. The method is studied first in location-scale models with

independent and identically distributed data, allowing for greater theoretical de-
velopment. In the application to time series data, we propose a Bayesian approach
and use Markov chain Monte Carlo methods to implement estimation and obtain
outlier diagnostics. Simulation results show that the new robust estimators are

competitive with established robust location-scale estimators, and perform well for
ARMA(p, q) models.
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1. Introduction

Robust estimation for time series (Maronna, Martin, and Yohai (2006, Chap.

8)) is a challenging problem that has generated much interesting research; e.g.,

see Denby and Martin (1979), and Künsch (1984) for autoregressive models, and

Bustos and Yohai (1986), Allende and Heiler (1992), and de Luna and Genton

(2001) for autoregressive, moving-average processes. We develop a general ap-

proach that provides an attractive method of robust inference for time series mod-

els. It combines modern computing methods with the tried-and-true robustifica-

tion strategy of using sporadic gross-error models. Specifically we use simulation-

based likelihood construction and Bayesian Markov chain Monte Carlo methods

(MCMC) to implement a robustification strategy that is readily adapted to time

series models.

Suppose Xn×1 is an outlier-free realization of a sample with assumed density

fX(x;θ). Let Xi be the ith observation of X. We postulate that the observed,

outlier-prone version of X is W, where,

Wi = Xi + Ui, (1.1)
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and where Ui is independent of Xi and has a sporadic, gross-error distribution
depending on tuning parameters η, and also possibly on components of θ. As-
suming that Ui is independent of Xj for i 6= j implies that the model for the
observed-data density is

fW(w;θ,η) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
fX(w − u;θ)fU(u;η,θ) du = E {fX(w − U;θ)} ,

(1.2)
where U = (U1, . . . , Un)T . The key idea is that inference on θ via the log-
likelihood L(θ) = log{fW(w;θ,η)} is robust because the model incorporates
a sporadic, gross-error component. In this sense our method is reminiscent of
Lange, Little and Taylor (1989) for certain additive models, but there are fun-
damental differences between the two methods. Lange, Little and Taylor (1989)
achieve robustness by basing their model for the data on heavy-tailed distribu-
tions (t distributions). The effectiveness of their approach is well-established.
However, their approach loses the connection to a common, simple statistical
model for the majority, non-outlying data, and thus the simple interpretations
that accompany the more common time-series models. An advantage of our
approach is flexibility in the contamination-error modeling due to the use of
simulation-based likelihoods.

In some models both θ and η are identified with observed data, and estima-
tion of both is possible in theory. However, we adopt the strategy of taking η as a
tuning parameter to achieve a desired efficiency at a central model. Nevertheless,
we exhibit the dependence of fW(w;θ,η) on η for clarity as in (1.2), even though
our interest lies in θ.

Apart from the special distribution for Ui, (1.1) is a structural measure-
ment error model (Fuller (1987), Cheng and Van Ness (1999), Gustafson (2004)
and Carroll, Ruppert, Stefanski and Crainiceanu (2006)). In measurement er-
ror models, Gaussian errors are often assumed to model in-control measurement
methods. However, in application to robustness, we use error models that result
in negligible errors much of the time, but produce occasional large outlying val-
ues, i.e., sporadic gross errors. Thus we assume that fX(x;θ) holds except for a
random fraction of the data that are contaminated by additive random errors.

Although the gross-error model is conceptually simple, the likelihood based
on (1.2) is usually unwieldy. For certain fX(x;θ) the likelihood can be esti-
mated via simple Monte Carlo integration and this also works in principle for all
fX(x;θ), but computation time is generally prohibitive. In such cases a Bayesian
perspective, wherein the contaminating errors are parameters having a sporadic,
gross-error model prior, allows for estimation via MCMC methods. The Bayesian
approach has two additional advantages in that it provides natural outlier diag-
nostics via the posterior distribution of the contaminating errors, and it allows
for inference on θ that incorporates the uncertainty due to outlier estimation.
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Although our interest is robustness for time series models, our method is also

useful for independent data, and we first describe it in Section 2 in the context of

independent data and location-scale models. This has the advantage of enabling

a deeper theoretical treatment. Our study of the robustness properties of the

estimators also sheds light on Gleason’s (1993) finding that the contaminated

normal mixture density is not heavy tailed. The simple Monte Carlo integration

method that works well for independent-data models is less effectual in time

series models because the integration is no longer one-dimensional. However,

Markov chain Monte Carlo (MCMC) methods provide a viable alternative. For

the time series models in Section 3 we start with theoretical influence function

properties, then reformulate the approach from a Bayesian perspective, and apply

MCMC methods for robust estimation and outlier detection. Our new method

is illustrated and compared to other robust methods for time series data via

simulation studies and examples.

2. Independent-Data Models

Our results apply with minor modification to non-identically distributed

data. However, to minimize the notational burden we present only the iden-

tically distributed case.

2.1. Gross-error models

We consider the gross-error model,

Ui = τσZi, (2.1)

where σ is the scale parameter in θ and Zi has cumulative distribution

Gǫ(z) = (1 − ǫ)I(0 ≤ z) + ǫ

∫ z

−∞
g(x) dx, (2.2)

with g(·) a standardized error density, e.g., normal, double exponential, or Cauchy,

chosen to achieve desired robustness properties. When g(·) has a finite variance,

standardization is to mean zero and variance one; for other cases, e.g., Cauchy,

standardization is to median zero, and
∫ 1
−1 g(x)dx = Φ(1) − Φ(−1) ≈ 0.6827,

where Φ(·) is the standard normal distribution. We call g(·) the kernel of the

sporadic, gross-error model (2.2). Here, η = (ǫ, τ), and fUi
(u;η,θ) depends on

θ through σ. This model is appropriate when the model for X contains a scale

parameter. We study only the scale-invariant error model here because of its

relevance to time series models. In the first author’s PhD thesis (Wang (2005)),
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non-scale-invariant error models in which Ui = τZi, relevant for robustifying cer-

tain non-time series models, are studied and shown to possess some interesting

robustness properties.

2.2. Influence function properties

For Wi = Xi + Ui and (2.1) and (2.2), the observed Wi has the density

fWi
(w;θ,η) = (1 − ǫ)fXi

(w;θ) + ǫ

∫ ∞

−∞
fXi

(t;θ)
1

τσ
g

(
w − t

τσ

)
dt. (2.3)

Define the likelihood score function

ψ(w;θ, ǫ, τ) =
∂

∂θ
ln {fWi

(w;θ,η)} . (2.4)

We write ψ(w;θ, ǫ, τ) to emphasize the dependence of the score on the tuning pa-

rameters ǫ and τ . Properties of the influence function are determined by the tail

behavior of the error-model kernel g(·) with greater robustness properties corre-

sponding to heavier-tailed kernels. We now summarize how key robustness prop-

erties of (2.4) are determined by the tails of g(·). Outlines of proofs of the main

results in this section appear in the Appendix. A more complete discussion with

detailed proofs can be found in Wang (2005). With ḟXi
(u;θ) = (∂/∂θ)fXi

(u;θ),

consider the conditions:

(T1) lim|u|→∞ fXi
(u;θ)/g(u/(τσ)) = 0;

(T2) lim|u|→∞ ḟXi
(u;θ)/g(u/(τσ)) = 0;

(T3) lim|u|→∞ g(u+ b)/g(u) = 1;

(T4) limu→∞ g(u+ b)/g(u) = exp(c1b) and limu→−∞ g(u+ b)/g(u) = exp(c2b)

for some constants c1 < 0 and c2 > 0.

(T1) and (T2) can be satisfied by choosing g(·) to have sufficiently heavy tails,

i.e., heavier than those of fXi
(·;θ) and ḟXi

(·;θ). (T3) holds when g(·) has

polynomial-like tails, Cauchy densities, for example. (T4) is satisfied when g(·)

has exponential-like tails as in Laplace or logistic densities. Normal densities

g(·) do not satisfy (T3) or (T4), nor generally (T1) or (T2) unless fXi
(·;θ) has

lighter-than-normal tails. The results below are derived under the assumptions

that differentiation with respect to θ, integration, and limits can be interchanged

in (2.3).

The qualitative robustness properties for the gross-error model (2.1) are

specific to the underlying model. We illustrate this assuming a location-scale,

true-data model with parameters µ and σ. All the influence function prop-

erties for the location parameter µ hold for other parameters in the model
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except for the scale parameter σ. The µ-component of the score function is

ψµ(w;θ, ǫ, τ) = (∂/∂µ) ln {fWi
(w;θ,η)}, and the σ-component of the score func-

tion is ψσ(w;θ, ǫ, τ) = (∂/∂σ) ln {fWi
(w;θ,η)}.

Polynomial-like tails. If g(·) satisfies (T1), (T2) and (T3), then

lim
|w|→∞

ψµ(w;θ, ǫ, τ) = 0, and lim
|w|→∞

ψσ(w;θ, ǫ, τ) =
p− 1

σ
,

where p is the tail power, i.e., g(u) ∼ u−p; for Cauchy densities, p = 2.

Exponential-like tails. If g(·) satisfies (T1), (T2) and (T4), then

lim
w→∞

ψµ(w;θ, ǫ, τ) =
∂

∂µ
ln{mf (−

c1
τ

;θ)},

lim
w→−∞

ψµ(w;θ, ǫ, τ) =
∂

∂µ
ln{mf (−

c2
τ

;θ)},

where mf (·;θ) is the moment generating function of fXi
(·;θ), assumed to exist

for all real values of its argument. The score function for the location parameter

is generally bounded, and lim|w|→∞ψσ(w;θ, ǫ, τ) = ∞.

Gaussian tails. When g(·) is standard normal, neither (T3) nor (T4) holds and

the tail behavior of the score function depends on the underlying model. For ex-

ample, when the underlying true-data model in (2.3) is a Gaussian location-scale

model with θ = (µ, σ), and g(·) in (2.3) is standard normal, the score functions

for both location parameter and scale parameter are unbounded. Thus the nor-

mal contamination model does not result in qualitatively robust estimators. This

finding is consistent with the results in Gleason (1993), who argued that the

contaminated normal is not truly heavy tailed.

2.3. Location-scale models

Location-scale models and generalizations to regression, have been test beds

for robustness studies since the Princeton Robustness Year (Gross and Tukey

(1973)). We consider location-scale models to gain insight into tuning parameter

selection and to study the influence function properties as a prelude to the time

series models of Section 3. The central, contamination-free model has fXi
(x,θ) =

σ−1φ{(x− µ)/σ}, where θ = (µ, σ) and φ(·) is the standard normal density.

Our strategy is to tune the robust methods to achieve consistency and spec-

ified efficiency at the non-contaminated normal model. For given ǫ and τ , let

ψ(w;µ, σ, ǫ, τ) denote the 2 × 1 contaminated model score function. The equa-

tions in (µ, σ),
∫ ∞

−∞
ψ(x;µ, σ, ǫ, τ)

1

σ0
φ
{x− µ0

σ0

}
dx = (0, 0)T ,
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Table 1. Tuning parameters (ǫ, τ), realized target efficiencies (µEFF, σEFF),

scaling factors (c), and finite-sample, Monte Carlo-estimated likelihood effi-

ciencies (µ̂EFF, σ̂EFF) for normal, Laplace, and Cauchy contamination mod-
els. Standard errors for Monte Carlo efficiency ranged from 0.004 to 0.018,

averaging approximately 0.01.

Normal Laplace Cauchy

85% 90% 95% 85% 90% 95% 85% 90% 95%

ǫ 0.484 0.486 0.500 0.887 0.991 0.991 0.769 0.710 0.406

τ 1.937 1.689 1.386 2.148 1.825 1.145 0.652 0.407 0.295
µEFF 0.85 0.90 0.95 0.85 0.91 0.96 0.93 0.96 0.99

µ̂EFF 0.87 0.91 0.94 0.88 0.90 0.97 0.93 0.96 0.99

σEFF 0.85 0.90 0.95 0.85 0.89 0.94 0.81 0.88 0.94

σ̂EFF 0.86 0.92 0.95 0.81 0.87 0.94 0.81 0.88 0.93
c 0.630 0.672 0.728 0.487 0.514 0.677 0.798 0.872 0.941

have solution µ = µ0, σ = c(ǫ, τ)σ0. For consistency at the N(µ, σ2) model, scale

estimates derived from the invariant error model likelihood are divided by c(ǫ, τ).

The correction factor does not depend on unknown parameters and need only be

calculated once for a given (ǫ, τ).

Using numerical integration to evaluate the relevant likelihoods and asymp-

totic covariance matrices, we determined the correction factor c(ǫ, τ) for N(µ, σ2)

data with µ = 0 and σ = 1, and determined the asymptotic variances of the

consistent estimators. We then determined pairs (ǫ, τ) that result in known

asymptotic efficiencies for both µ and σ. It is not possible to achieve specified

target efficiencies (e.g., 85%, 90% and 95%) for both µ and σ exactly, and so ǫ

and τ were chosen to make the efficiencies as close to the target efficiencies as

possible using a least-squares criterion. We call the efficiencies minimizing the

least squares objective functions the realized target efficiencies. They are denoted

as µEFF and σEFF in Table 1. The least-squares objective functions were relatively

flat in many cases. Consequently the computed values of ǫ and τ are not precisely

determined, but the computed values result in efficiencies close to the optimal.

The realized target efficiencies (µEFF, σEFF), the corresponding tuning parameters

(ǫ, τ), and the correction factor, c(ǫ, τ), for specified target efficiencies 85%, 90%

and 95%, appear in Table 1.

The large contamination proportions, ǫ, and scales, τ , in Table 1 were unex-

pected. When the contaminating component is unimodal and symmetric around

zero, scale mixtures do not produce a high proportion of outliers unless the heavy-

tailed component dominates the mixture. So in order for estimators derived from

such models to have efficiencies significantly less than 100%, the heavy-tailed

component must be substantial.
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Figure 1. ψ(w;µ, σ) for the invariant case when τ and ǫ are chosen to achieve the
efficiency 95%.

The numerical evaluation of the tuning parameters worked with the exact

(i.e., no Monte Carlo integration) observed-data model distribution (1.2), and

is asymptotic in nature. We assessed the computed tuning parameters via a

simulation study designed to estimate actual efficiencies when the likelihood was

estimated via Monte Carlo integration with finite sample size, thus incorporating

the added variability due to Monte Carlo averaging and finite sample sizes. In

the simulation study 2,500 N(0, 1) data sets of size n = 200 were generated

and analyzed using the Monte Carlo likelihood with Monte Carlo size equal to

800. Table 1 displays Monte Carlo-estimated efficiencies (µ̂EFF, σ̂EFF) for three

contamination models (normal, Laplace, Cauchy). The agreement between the

Monte Carlo-estimated (µ̂EFF, σ̂EFF) and theoretical, realized target (µEFF, σEFF)

efficiencies is very good.

2.4. Location-scale score function characteristics

Location and scale score functions, ψ(w;µ, σ, ǫ, τ), from the three contam-

ination models are plotted in Figure 1 when τ and ǫ are from Table 1 for 95%
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efficiency. The baseline model is N(µ, σ2) with µ = 0, σ2 = 1. The theo-
retical properties of the score functions are readily observed from the graphs.

The noteworthy features are the unboundedness of the score functions for the
normal (location and scale) and Laplace (scale) contamination models, and the

non-redescending of the Cauchy (scale).

3. Time Series Models

We now consider time series models for which the true-data density fX(x;θ)
is multivariate normal. In Section 3.1 it is shown that the exact (i.e., no Monte
Carlo averaging) robust estimating equations for the time series data models

possess the same qualitative robustness properties (redescending, bounded, un-
bounded) as the corresponding robust estimating equations for the independent

and identically distributed (i.i.d.) location-scale models. That is, qualitatively
our robustification strategy works the same for time series models as it does

for simpler i.i.d. location-scale models, in theory. However, the simple Monte
Carlo likelihood estimator is not viable for time series models and thus another
approach is required. The primary focus of this section is on a Bayesian formu-

lation of the sporadic, gross-error approach to robustification.

3.1. Theoretical robustness

The theoretical robustness results derived for independent and identically
distributed data in Section 2.2 can be directly extended to the case where X1, . . .,

Xn are correlated. The likelihood score function becomes

ψ(w;θ, ǫ, τ) =
∂

∂θ
ln {fW(w;θ,η)} . (3.1)

Throughout the section we assume that limits, differentiation, and integration

are interchangeable.

Polynomial-like tails. If fX(x;θ) is multivariate normal and g(·) satisfies (T3),

then
lim

min |ui|→∞
ψθ(σ)

(u;θ, ǫ, τ) = 0,

where θ(σ) denotes all parameters except σ. The σ component of the score
function is different from others due to the fact that the density of the added

errors τσZ1, . . . , τσZn depends on σ. In the Appendix, we show that

lim
min |ui|→∞

ψσ(u;θ, ǫ, τ) =
n(p− 1)

σ
, (3.2)

where g(u) ∼ u−p. So the Cauchy error contamination model (p = 2) yields
a redescending score function except for scale estimation, which is bounded by

n/σ.
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Exponential-like tails. Now assume that g(u) satisfies assumption (T4) in
Section 2.2. Set N1 to be any subset of N = {1, . . . , n}, and let N2 be the set

difference N −N1. Then

lim
uk → ∞, k ∈ N1

uj → −∞, j ∈ N2

∫
· · ·

∫
f(s;θ)

n∏

i=1

{
g((ui − si)/(τσ))

g(ui/(τσ))
dsi

}

=

∫
· · ·

∫
f(s;θ)

∏

k∈N1

lim
uk→∞

g((uk−sk)/(τσ))

g(uk/(τσ))

∏

j∈N2

lim
uj→−∞

g((uj−sj)/(τσ))

g(uj/(τσ))
ds

=

∫
f(s;θ) exp



−
c1
τσ

∑

k∈N1

sk −
c2
τσ

∑

j∈N2

sj



 ds. (3.3)

It follows that

lim
uk → ∞, k ∈ N1

uj → −∞, j ∈ N2

ψθ(σ)
(u;θ, ǫ, τ) =

∂

∂θ(σ)
ln{mf (v;θ)},

where vk = −c1/(τσ) for k ∈ N1, vj = −c2/(τσ) for j ∈ N2, and mf (·,θ) is
the moment generating function of f(·,θ), assumed to exist. So the error con-

tamination model with exponential-like tails results in a bounded score function
except for σ. In Section 2.2 we showed that for the invariant error model with
exponential-like tails, the score function for σ is unbounded in the case of inde-

pendent and identically distributed data. The proof in the Appendix shows that
it is unbounded in the case of correlated data as well.

Gaussian tails. When fX(x;θ) is multivariate normal and g(·) is normal, the
score functions for both location and scale parameters are unbounded.

3.2. Bayesian inference for robust models

The key idea in the Bayesian implementation of the robust error contamina-
tion model is to treat the errors Z1, . . . , Zn as unknown parameters together with
θ, and to formulate prior distributions for them. A natural choice of the prior

for Z1, . . . , Zn is the sporadic, gross-error model Gǫ in (2.2). Let p(θ) denote the
prior density for θ. The posterior density of θ, Z1, . . . , Zn is

π(θ, z|w) =
f(w|θ, z)

∏n
i=1Gǫ(dzi)p(θ)∫ ∫

. . .
∫
f(w|θ, z)

∏n
i=1Gǫ(dzi)p(θ)dθ

, (3.4)

where f(w|θ, z) = fX(w − τσz;θ).
The marginal posterior density of the parameter of interest, θ, is then given

by
∫
. . .

∫
π(θ, z|w)dz1 . . . dzn =

∫
. . .

∫
f(w|θ, z)

∏n
i=1Gǫ(dzi)p(θ)∫ ∫

. . .
∫
f(w|θ, z)

∏n
i=1Gǫ(dzi)p(θ)dθ

. (3.5)
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The posterior distribution (3.5) is identical to the one obtained by starting with

the data distribution (1.2) which, in the notation of this section, is

fW(w|θ) =

∫
. . .

∫
f(w|θ, z)

n∏

i=1

Gǫ(dzi),

and using the prior p(θ). In this case the posterior density of θ is given by

π(θ|w) =
fW(w|θ)p(θ)∫
fW(w|θ)p(θ)dθ

, (3.6)

which is the marginal posterior density of θ in (3.5). It follows that, in the case

that p(θ) is non-informative (proportional to a constant), the posterior mode

of θ in (3.6) is equivalent to the maximum likelihood estimate derived from

fW(w;θ,η) given in (1.2). This is the sense in which our Bayesian approach

is the natural Bayesian formulation of the frequentist approach based on model

(1.2).

By taking the Bayesian perspective (3.4), we obtain the posterior joint den-

sity of the parameters of interest θ and the errors Z1, . . . , Zn, thereby providing a

means of inference for both the parameter and the errors. Thus a very attractive

feature of the Bayesian approach is that it can be used to detect and estimate

outliers, and therefore implement outlier identification along with robust estima-

tion.

We use MCMC methods to estimate the posterior joint density of θ and the

unobserved errors Z1, . . . , Zn, and refer to the estimators so obtained as BMEM-

estimators, where BMEM stands for Bayesian measurement error model. Having

the posterior joint density of θ and the unobserved errors Z1, . . . , Zn means that

inference on θ will naturally reflect uncertainty due to outlier identification and

estimation. Thus the Bayesian approach offers a distinct advantage over outlier

identification and deletion followed by model fitting. The latter approach, while

popular and convenient, does not properly account for uncertainty related to

outlier detection and deletion. Our robust Bayesian approach treats gross errors

and the parameters of interest on an equal footing.

3.3. Simulation study of Bayesian estimators

An autoregressive, moving-average (ARMA) model with order (p, q) is de-

fined by

Xi − µ =

p∑

j=1

αj(Xi−j − µ) +

q∑

k=1

βkei−k + ei, (3.7)

where {ei} are i.i.d. with mean zero and finite variance δ2, selected to make

Var(Xi) = σ2 . When {ei} is normal, {Xi} has a N(µ, σ2) distribution. We



ROBUST TIME SERIES ANALYSIS VIA MEASUREMENT ERROR MODELING 1273

Table 2. Monte Carlo average and mean squared error of the posterior
means of σ and α1 for 100 replicate data sets presented in the manner of

(σ, α1). Data Type: 0%, 5%, 10%, 20%: AR(1) with 0%, 5%, 10%, 20%

contamination; AR(1)/N, AR(1)/L, AR(1)/C: AR(1) time series model with

normal, Laplace, Cauchy contamination, respectively.

True Value: (σ = 1, α1 = 0.75)

Data Type MLE AR(1)/N AR(1)/L AR(1)/C

(0%) Mean (0.91, 0.68) (0.94, 0.70) (0.90, 0.74) (0.99, 0.72)

MSE (0.04, 0.02) (0.03, 0.01) (0.03, 0.01) (0.02, 0.01)

(5%) Mean (2.39, 0.10) (1.92, 0.24) (1.48, 0.79) (1.06, 0.75)

MSE (2.25, 0.45) (1.03, 0.28) (0.28, 0.01) (0.03, 0.01)

(10%) Mean (2.73, 0.07) (2.19, 0.20) (1.83, 0.80) (1.24, 0.78)

MSE (3.26, 0.49) (1.59, 0.32) (0.76, 0.01) (0.10, 0.01)

(20%) Mean (4.12, -0.01) (3.35, 0.07) (3.10, 0.78) (2.80, 0.87)

MSE (10.23, 0.60) (5.85, 0.47) (4.62, 0.04) (3.61, 0.12)

assume that (3.7) is causal and invertible (Fuller (1996)). We are interested in

the BMEM-estimator for ARMA(p, q) models in the presence of additive outliers;

see Bustos and Yohai (1986).

We burned in m = 5, 000 points and used M = 10, 000 points after burn-in

as the Markov chain samples used to obtain posterior distribution summaries.

We used the posterior distribution mean as the parameter estimate.

We calculated the ARMA model maximum likelihood estimator (MLE) to

compare to the BMEM-estimators. For the sporadic, gross-error model prior,

we used the (ǫ, τ) values that were calculated for the location-scale model with

i.i.d. data corresponding to 90% efficiency. We also used the scale correction

factors calculated for the independent and identically distributed data to achieve

approximate consistency at the central normal model.

Data were generated from ARMA(p, q) time series models contaminated by

a fixed number κ (κ=0, 0.05n, 0.1n and 0.2n) of points, where the sample size

n = 50, and the contamination points were generated from χ2
8 or −χ2

8 with

probability 1/2. We investigated the performance of the robust estimators for

the AR(1) model (p = 1, q = 0) with α1 = −0.5, 0, 0.25, 0.5, and 0.75; the AR(2)

model (p = 2, q = 0) with α1 = 0.6 and α2 = 0.3, α1 = −0.6 and α2 = 0.3,

α1 = 0.3 and α2 = −0.6, and α1 = −0.3 and α2 = −0.6; and the MA(1) model

(p = 0, q = 1) with β1 = 0.5 and β1 = 0.8. Due to space considerations, we do

not display all results. Table 2 displays results of the simulation for the AR(1)

model with α1 = 0.75, while Table 3 displays results of the simulation for the

MA(1) model with β1 = 0.8. The number of simulated data sets was 100. We

present Monte Carlo averages of the estimators and their mean squared errors

(MSE).
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Table 3. Monte Carlo average and mean squared error of the posterior means
of σ and α1 for 100 replicate data sets presented in the manner of (σ, α1).

Data Type: 0%, 5%, 10%, 20%: MA(1) with 0%, 5%, 10%, 20% contamina-

tion; MA(1)/C: MA(1) time series model with Cauchy contamination.

True Value: (σ = 1, α1 = 0.8)

Data Type MLE MA(1)/C

(0%) Mean (0.99, 0.80) (0.99,0.80)

MSE (0.01, 0.01) (0.01, 0.00)

(5%) Mean (2.36, 0.10) (1.04, 0.77)
MSE (2.14, 0.52) (0.02, 0.01)

(10%) Mean (2.98, 0.04) (1.07, 0.75)

MSE (4.28, 0.61) (0.02, 0.01)

(20%) Mean (4.02, 0.04) (1.29, 0.66)
MSE (9.53, 0.60) (0.14, 0.04)

Table 2 displays results for the AR(1) model with α1 = 0.75. The BMEM-

estimators generally perform better than the maximum likelihood estimator for

the contaminated data, although they tend to break down at the highest level of

contamination (20% contamination, 10 points). However, the Cauchy BMEM-

estimators are less biased and show better performance for moderate levels of

contamination.

In all the simulations for AR processes, including those not reported here,

the Cauchy BMEM-estimators exhibited greatest resistance to outliers when con-

tamination is no more than 10%. However, all of the BMEM-estimators break

down when contamination is as high as 20%. Due to the generally better perfor-

mance of the Cauchy BMEM-estimator, we focused on it in the simulation study

of MA(1) models.

Table 3 displays results of the simulation for the MA(1) model with β1 =

0.8. The superiority of the Cauchy BMEM-estimators over maximum likelihood

estimators is greater than that in the cases of AR(1) and AR(2) models. The

Cauchy BMEM-estimator does not break down, even with contamination as high

as 20%.

Both maximum likelihood estimates and robust estimates for location pa-

rameters are unbiased under all the situations. As in the case that data are i.i.d.,

the robust estimates for the scale parameter σ are divided by a correction factor

in order to achieve consistency at the non-contaminated model. Although we

used the correction factors calculated for location-scale models with i.i.d. data,

the robust scale estimates are mostly close to 1 (true value) or as good as maxi-

mum likelihood estimates for the clean data, suggesting that the strategy of using

the correction factor and tuning parameters calculated for the independent and

identically distributed case is reasonable.
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Figure 2. The Cauchy BMEM-estimates of the gross errors against the true

values for the AR(1) model with α1 = 0 and 10% contamination (κ = 5).

Figure 3. Monthly interest rates of an Austrian bank during 91 months. Top

plot: observed data for the monthly interest rates; bottom plot: the Cauchy

BMEM-estimates of the gross errors.

A useful feature of the Bayesian approach is the information provided by

the posterior distribution of the sporadic, gross errors, Z1, . . . , Zn. We expect

most of these to be essentially equal to zero, with only contaminated observations

giving rise to significantly-non-zero estimated Zi. We illustrate this in Figure 2,
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Table 4. Parameter estimates obtained by fitting an AR(1) model to the

data of monthly interest rates. AR(1)/N, AR(1)/L, AR(1)/C: AR(1) time

series model with normal, Laplace, Cauchy contamination; Künsch: range
of Künsch’s estimates for various tuning parameters.

data Estimation Method

MLE AR(1)/N AR(1)/L AR(1)/C Künsch

real data µ 9.19 9.01 9.10 9.13 (9.11 : 9.18)

δ 0.443 0.143 0.119 0.169 (0.133 : 0.154)

α1 0.789 0.959 0.889 0.911 (0.958 : 0.959)

adjusted data µ 9.12 9.08 9.10 9.13 (9.17 : 9.23)
δ 0.212 0.127 0.104 0.162 (0.125 : 0.137)

α1 0.923 0.920 0.884 0.907 (0.958 : 0.965)

displaying a representative plot of the Cauchy BMEM-estimates τ σ̂Ẑi against

the true gross errors, τσZi, i = 1, . . . , 50, in the model (2.1) for a single AR(1)

data set from the simulation with α1 = 0 and five contamination points. The

solid line is the 45 degree line. The Cauchy BMEM-estimates of the gross errors

lie very close to the 45 degree line, indicating that the Cauchy BMEM-estimator

estimates the true errors very well for this data set. In all of our simulation

studies we kept track of the median correlation between the BMEM-estimates of

the errors and their true values. These were all close to 1. In other words, Figure

2 is representative of the quality of the Bayesian estimators of Z1, . . . , Zn. Thus

the BMEM-estimators of Z1, . . . , Zn are very useful for identifying outliers, as is

also evident in the examples that follow.

4. Example

4.1. Example I: Austrian interest rates

We calculated the MLE and our new robust estimator for the time series

consisting of 91 monthly interest rates of an Austrian bank, displayed in Figure 3.

The data were analyzed previously by Künsch (1984), who suggested that the

underlying model is AR(1), and that the data contain three large outliers at

months 18, 28 and 29.

Table 4 presents our estimators and Künsch’s estimators for µ, α1, and the

innovation standard deviation δ = σ
√

1 − α2
1. For Künsch’s method, the tuning

parameters were chosen to achieve acceptable efficiencies, and we report the esti-

mates in the format (lowerbound:upperbound) for various tuning parameters as

done by Künsch. We replaced the three outliers by 9.85, as suggested by Künsch,

and call these the adjusted data. We then calculated the various estimators on

the adjusted data. The BMEM-estimates are quite close for the unadjusted and

adjusted data sets, demonstrating the BMEM-estimators resistance to outliers.
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TAble 5. Parameter estimates obtained by fitting an ARMA(1,2)-process

to the data of saving rates. Six interventions: Pankratz’s approach with six

outliers identified and adjusted; one intervention: Pankratz’s approach with
the 82nd outlier identified and adjusted; IGM: de Luna and Genton’s estima-

tor based on the indirect inference and the GM-estimator; ARMA(1,2)/C:

the Cauchy BMEM-estimator with the central ARMA(1,2) model; Bayes

intervals: the 2.5% and 97.5% quantiles of the sample posterior distribution

from the MCMC output are given in parentheses.

Estimation Method α1 β2 µ δ2

MLE 0.74 0.34 6.11 0.44

six interventions 0.80 0.38 6.16 0.23

one intervention 0.81 0.25 6.07 0.34

IGM 0.82 0.40 6.15 0.34
ARMA(1,2)/C 0.82 0.27 5.90 0.34

Bayes intervals (0.69, 0.94) (0.02, 0.49) (4.78, 6.93) (0.25, 0.46)

Künsch’s estimates for α1 are larger than maximum likelihood estimates and the

BMEM-estimates. The fact that the BMEM-estimates are closer to the maxi-

mum likelihood estimate of α1 for the adjusted data supports their use.

Figure 3 displays the data and the gross error estimates, τ σ̂Ẑ, obtained via

the Cauchy contamination model. Outliers are indicated by τ σ̂Ẑ components

that are far from zero. The three outliers identified by Künsch are clearly appar-

ent from the index plot of τ σ̂Ẑ.

4.2. Example II: US saving rates

We applied the Cauchy BMEM-estimator to the time series on saving rates

(saving as percent of income) in the United States from the start of 1955 to the

end of 1979. The series has been analyzed in Pankratz (1991, Chap. 8) using an

outlier detection procedure. de Luna and Genton (2001) used this time series to

illustrate their robust estimation method, which combines the indirect inference

method with the generalized M-estimator.

Pankratz (1991) recommended an ARMA(1,2) model with β1 = 0, and iden-

tified six purported outliers (observations 82, 43, 62, 55, 89, 100). But it has

also been recognized that the outlier detection procedure was too sensitive and

led to a deflated estimate of the scale parameter. The 82nd observation was

exceptionally large due to Congress having passed a law granting a one-time tax

rebate. Pankratz thus fitted the ARMA(1,2) model with only the 82nd observa-

tion adjusted.

Table 5 presents the Cauchy BMEM-estimates, Pankratz’s estimates, and

de Luna and Genton’s indirect generalized M-estimates (IGM). For the Cauchy

BMEM-estimator, we burned in 5, 000 points and drew an additional 5, 000 points
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Figure 4. Saving rates in the United States from the first quarter of 1955 to

the fourth quarter of 1979. Top plot: the observed data for the saving rates;
bottom plot: the Cauchy BMEM-estimates of the gross errors.

as a sample for the posterior distribution. The Cauchy BMEM-estimates are

fairly close to Pankratz’s estimates when only the 82nd observation is adjusted

in the model.

Figure 4 displays the plot of the data and the gross error estimates. The

Cauchy BMEM-estimates found one exceptionally large outlier at the 82nd ob-

servation, which explains why the Cauchy BMEM-estimates are close to the

Pankratz’s estimates with only 82nd observation adjusted. The Cauchy BMEM-

estimator also identified three other significantly-non-zero errors at the 76th, 89th

and 100th observations. In contrast to Pankratz’s outlier identification, the 76th

observation was detected by the Cauchy BMEM-estimator as an outlier but not

by Pankratz, while Pankratz’s other three purported outliers (43rd, 62nd, 55th)

were not identified by the Cauchy BMEM-estimator.

5. Summary

The sporadic, gross error measurement error model (2.2) provides a natural

means of robustifying many statistical models. Desired levels of robustness are

attained by a suitable choice of the kernel, with heavier-tailed kernels resulting

in greater qualitative robustness. With i.i.d. data, simple Monte Carlo averaging

provides a viable means of estimating the robustified model likelihood, whereas

for time series data, MCMC methods are required. In either case, the model

can be generally applied as it is only necessary to generate observations from
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the sporadic gross error model kernel density. The simulation results presented

herein are representative of more extensive simulation studies reported in the first

author’s PhD thesis (Wang (2005)) establishing the method as a viable alterna-

tive for i.i.d. location-scale modeling, and a generally more useful competitor

to existing robust methods for time series data. The method is more general

than portrayed herein, and can be readily adapted to regression modeling with

independent data and to certain non-time series, dependent-data models.

Computer programs for calculating the estimators described in this paper

are available upon request from the first author. The Appendix is provided as

an online supplement at the following URL:

http://www.stat.sinica.edu.tw/statistica.
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