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S1 Proof of equivalence between (6) and (7)

We prove that if the global minimizers of (6) and (7) are unique, they are

equivalent in the sense that if (γ̂, θ̂) solves (7) for φn, there exists a cn such

that (γ̂, θ̂) also solves (6) for cn; and vice versa.

First, we prove that if (γ̂, θ̂) is the global minimizer of (7), it also
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solves (6) with cn =
∑pn

j=1‖γ̂j − θ̂j‖2. Denote L(γ,θ) = −ln(γ) + p(θ; νn).

Suppose there exists (γ̃, θ̃) different from (γ̂, θ̂) such that

L(γ̃, θ̃) < L(γ̂, θ̂) and

pn∑
j=1

||γ̃j − θ̃j||2 ≤ cn.

Then, by definition,

L(γ̃, θ̃) + φn
√
qn

pn∑
j=1

||γ̃j − θ̃j||2 < L(γ̂, θ̂) + φn
√
qn

pn∑
j=1

||γ̂j − θ̂j||2,

which contradicts with the fact that (γ̂, θ̂) is the minimizer of (7).

Next, we prove that, for any given cn, if (γ̃, θ̃) is the solution to

(6), we can always find a φn such that (γ̃, θ̃) also solves (7). Suppose

(γ̌, θ̌) = arg minγ,θ L(γ,θ) is the minimizer of the unconstrained problem.

Let Cmax =
∑pn

j=1‖γ̌j − θ̌j‖2. Then, for any cn ≥ Cmax, (γ̌, θ̌) is also the

solution to (6). In this case, it’s easy to check that (γ̌, θ̌) also solves (7)

with φn = 0. For cn < Cmax, suppose the solution to (6) is given by (γ̃, θ̃).

Let Cφn =
∑pn

j=1‖γ̂
φn
j − θ̂

φn

j ‖2, where (γ̂φn , θ̂
φn

) is the solution to (7) for

φn. We prove that Cφn is a decreasing function of φn. In fact, suppose

(γ̂φ1 , θ̂
φ1

) and (γ̂φ2 , θ̂
φ2

) are solutions to (7) for φ1 and φ2 respectively and
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φ1 < φ2. By definition,

L(γ̂φ2 , θ̂
φ2

) + φ2

pn∑
j=1

‖γ̂φ2j − θ̂
φ2

j ‖2

≤ L(γ̂φ1 , θ̂
φ1

) + φ2

pn∑
j=1

‖γ̂φ1j − θ̂
φ1

j ‖2

= L(γ̂φ1 , θ̂
φ1

) + φ1

pn∑
j=1

‖γ̂φ1j − θ̂
φ1

j ‖2 + (φ2 − φ1)

pn∑
j=1

‖γ̂φ1j − θ̂
φ1

j ‖2

≤ L(γ̂φ2 , θ̂
φ2

) + φ1

pn∑
j=1

‖γ̂φ2j − θ̂
φ2

j ‖2 + (φ2 − φ1)

pn∑
j=1

‖γ̂φ1j − θ̂
φ1

j ‖2

Therefore, Cφ2 =
∑pn

j=1‖γ̂
φ2
j − θ̂

φ2

j ‖2 ≤
∑pn

j=1‖γ̂
φ1
j − θ̂

φ1

j ‖2 = Cφ1 . Then,

by the continuity of the objective function in (7) and the uniqueness of the

global minimizer, for every cn < Cmax, we can always find a φn such that

cn = Cφn . We prove that (γ̃, θ̃) solves (7) with such a φn. Otherwise, let

(γ̂, θ̂) be the solution. Then,

L(γ̂, θ̂) + φn

pn∑
j=1

‖γ̂j − θ̂j‖2 < L(γ̃, θ̃) + φn

pn∑
j=1

‖γ̃j − θ̃j‖2.

By definition,
∑pn

j=1‖γ̂j − θ̂j‖2 = cn. Therefore,

L(γ̂, θ̂) < L(γ̃, θ̃) + φn(

pn∑
j=1

‖γ̃j − θ̃j‖2 − cn) ≤ L(γ̃, θ̃).

This contradicts with the assumption that (γ̃, θ̃) is the global minimizer of
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(6).

S2 Proof of Lemma 1

As discussed in Remark 2, all following arguments are conditioned on the

event {ni ≤Mε}, which has probability at least 1− ε to hold. We have

Un,j(γ
∗) =

1

n

n∑
i=1

∫ τ

0

ni∑
v=1

Khn(t− tiv){Zij(tiv, t)− Enj(γ∗, t)}dΛi(t)

+
1

n

n∑
i=1

∫ τ

0

ni∑
v=1

Khn(t− tiv){Zij(tiv, t)− Enj(γ∗, t)}dMi(t)

:= I1 + I2.

The upper bound of I1 will be given in Lemma S1 in Section S4. For I2,

we have

I2 =
1

n

n∑
i=1

∫ τ

0

ni∑
v=1

Khn(t− tiv){Zij(tiv, t)− enj(γ∗, t)}dMi(t)

− 1

n

n∑
i=1

∫ τ

0

ni∑
v=1

Khn(t− tiv){Enj(γ∗, t)− enj(γ∗, t)}dMi(t)

:= J1n − J2n.

To bound J1n, since nJ1n is the sum of i.i.d random variables with mean

zero, which are bounded by O(h−1n ), it follows from the Hoeffding inequality
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that

P (|(nh2n)1/2J1n| > x) ≤ 2 exp(−Cx2). (S2.1)

To bound J2n, consider the event A = A1 ∩ A2, where

A1 :=

{
sup
t∈[0,τ ]

|S(0)
n (γ∗, t)− s(0)n (γ∗, t)| ≤ D(rnqncnd

1/2
n /n)1/2

}
,

A2 :=

{
sup
t∈[0,τ ]

|S(1)
n,j(γ

∗, t)− s(1)n,j(γ∗, t)| ≤ D(rnqncnd
1/2
n /n)1/2

}
.

By Lemma S2 in Section S4, P (A) ≥ 1 − 2 exp(−Crnqncnd1/2n h2nx
2). Con-

ditioning on A, we show that

sup
t∈[0,τ ]

|Enj(γ∗, t)− enj(γ∗, t)| = o(1). (S2.2)

In fact, we have

Enj(γ
∗, t)− enj(γ∗, t) =

S
(1)
n,j(γ

∗, t)

S
(0)
n (γ∗, t)

−
s
(1)
n,j(γ

∗, t)

s
(0)
n (γ∗, t)

=
1

S
(0)
n (γ∗, t)

{S(1)
n,j(γ

∗, t)− s(1)n,j(γ∗, t)}

+
s
(1)
n,j(γ

∗, t)

S
(0)
n (γ∗, t)s

(0)
n (γ∗, t)

{S(0)
n (γ∗, t)− s(0)n (γ∗, t)}.

Then, conditioning on A, condition 8 implies (S2.2).

Let M̄(t) =
∑n

i=1

∑ni

v=1Khn(t− tiv)Mi(t). Since Mi(t) = Ni(t)− Λi(t)
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is a martingale with compensator

Λi(t) =

∫ t

0

Yi(u) exp[{β∗(u)}TX i(u)]λ0(u)du,

so M̄(t) is also a martingale. We have |∆(M̄(t))| = O(h−1n ). Next, we

show that both ∆((nh2n)1/2J2n(t)) and 〈(nh2n)1/2J2n(t)〉 are bounded. For

∆((nh2n)1/2J2n(t)), we have

∆((nh2n)1/2J2n(t)) . (nh2n)−1/2

(
sup
t∈[0,τ ]

|Enj(γ∗, t)− enj(γ∗, t)|

)
. (nh2n)−1/2

= O(1),

where condition 7 and the fact that |∆(M̄(t))| = O(h−1n ) are used. Next,

we calculate the predictable quadratic variation of (nh2n)1/2J2n, denoted by

〈(nh2n)1/2J2n〉,

〈(nh2n)1/2J2n(t)〉 = n−1h2n

∫ t

0

{Eij(tiv, u)− enj(γ∗, u)}2d〈M̄(u)〉

≤ h2n

[
sup
t∈[0,τ ]

{Eij(tiv, u)− enj(γ∗, u)}

]2 ∫ t

0

S(0)
n (β∗, u)dΛ0(u)

= O(1),

where the last equality follows from (S2.2), condition 1 and the fact that

supt∈[0,τ ] |S
(0)
n (β∗, t)| . h−1n . Then, it follows from Lemma 2.1 of van de
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Geer (1995) that

P{|(nh2n)1/2J2n| > x|A} ≤ C3 exp(−C4x). (S2.3)

(S2.1), (S2.3) and Lemma S2 in Section S4 together imply that

P{|I2| ≤ D(nh2n)−1/2x}

≥ 1− P{|(nh2n)1/2J1n| > 0.5Dx} − P{|(nh2n)1/2J2n| > 0.5Dx|A} − P (Ac)

≥ 1− C1 exp(−C2x
2)− C3 exp(−C4x).

This result together with Lemma S1 prove the result after dropping high

order terms.

S3 Proof of Theorem 1

We prove the following two results:

[1] {j : γ̂j 6= 0} = {j : γ∗j 6= 0}.

[2] maxjl∈A |γ̂jl − γ∗jl | ≤Mνn
√
qn.

Then, [1] implies [a]. [2] together with condition 6 imply [b].

By optimization theory (Boyd and Vandenberghe, 2004), any vector γ
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satisfies the following KKT conditions is a solution to (5):

Un,j(γ) = νn
√
qnρ
′(‖γj‖2)‖γj‖−12 γj, if γj 6= 0, (S3.1)

‖Un,j(γ)‖∞ < νn
√
qnρ
′(0+), if γj = 0, (S3.2)

λmin(In,ÂÂ(γ)) > νnκ(ρ,γ), (S3.3)

where Â := {jl : γj 6= 0 and 1 ≤ l ≤ qn}.

We define the event A as

A = {ni ≤Mε} ∩ {‖Un(γ∗)‖∞ ≤ νn
√
qnρ
′(0+)/2}

∩
{

inf
γ∈B0

: λmin(In,AA(γ)) > Cmin/2

}
∩
{

sup
γ∈B0
‖In,AcA(γ)In,AA(γ)−1‖∞ <

1

2
(1− ζ)

ρ′(0+)

ρ′(dn/2)

}
.

By Lemmas 1, S5 in Section S4, and the union bound,

P (A) ≥ 1− ε− C1pnqn exp{−C2n
2h8n(νn

√
qn − πn)2}

− C3pnqn exp{−C4(nh
2
n)1/2(νn

√
qn − πn)}

− C5pnrnq
2
n exp{−C6nh

2
n(rnqn)−1}.

Next, we show that conditioning on event A, statements [1] and [2] hold.

[1] LetN denote the hypercube {γA ∈ Rrnqn : ‖γA−γ∗A‖∞ ≤Mνn
√
qn},
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where M is a sufficiently large constant. We show that within N , there ex-

ists a solution γ̂A to equation (S3.1). We define a function f : Rrnqn →

Rrnqn as

f(γA) = γA + 2In,AA(γ∗)−1{Un,A(γ)−∇Apνn(γ)}, (S3.4)

where γ ∈ Rpnqn such that γAc = 0,∇Apνn(γ) := νn
√
qnρ
′(‖γj‖2)‖γj‖−12 γj.

By the Taylor expansion,

Un,A(γ) = Un,A(γ∗)− 1

2
In,AA(γ̄)(γA − γ∗A),

where γ̄ lies on the line segment connecting γ and γ∗. Substituting it into

(S3.4) gives

f(γA)− γ∗A = {Irnqn − In,AA(γ∗)−1In,AA(γ̄)}(γA − γ∗A)

+ 2In,AA(γ∗)−1{Un,A(γ∗A)−∇Apνn(γ)},

where Irnqn is a rnqn× rnqn identity matrix. Without loss of generality, we

assume

‖Irnqn − In,AA(γ∗)−1In,AA(γ̄)‖∞ ≤ 1/2. (S3.5)
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Moreover, since dn ≥ 2‖γj − γ∗j‖∞, it follows that

‖γj − γ∗j‖2 ≤
√
qn‖γj − γ∗j‖∞ ≤ dn/2.

Hence,

‖γj‖2 ≥ ‖γ∗j‖2 − ‖γj − γ∗j‖2 ≥ dn/2.

By the concavity assumption of ρ(t), we have ρ′(‖γj‖2) ≤ ρ′(dn/2). There-

fore,

‖∇Apνn(γ)‖∞ ≤ νn
√
qnρ
′(dn/2).

Then, we obtain

‖f(γ)− γ∗A‖∞

≤ 1/2‖γ − γ∗A‖∞ + 2‖In,AA(γ∗)−1‖∞{‖Un,A(γ∗A)‖∞ + ‖∇Apνn(γ)‖∞}

≤ 1

2
Mνn

√
qn +

4

Cmin

{
ρ′(0+)

2
νn
√
qn + νn

√
qnρ
′(dn/2)

}
(i)

≤
(
M

2
+

6ρ′(0+)

Cmin

)
νn
√
qn

≤Mρ′(0+)νn
√
qn,

where in (i), we use the fact that ρ′(dn/2) ≤ ρ′(0+) due to the concavity

assumption in condition 11.

Therefore, f(N ) ⊂ N . It follows from the definition of dn that sign(γA) =
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sign(γ∗A) for any γA ∈ N . Therefore, f(γA) is a continuous function on the

convex and compact set N . By Brouwer’s fixed point theorem, there exists

a solution γ̂A ∈ N to the problem f(γA) = γA, which also solves (S3.1).

[2] We expand γ̂A to be γ̂ ∈ Rpnqn such that γ̂Ac = 0. We further show

that γ̂ satisfies (S3.2). Again, by the Taylor expansion of Un,Ac(γ̂) around

γ∗, we have

Un,Ac(γ̂) = Un,Ac(γ∗)− 1

2
In,AcA(γ̃)(γ̂A − γ∗A), (S3.6)

where γ̃ lies on the line segment connecting γ̂ and γ∗. Since f(γ̂A) = 0, it

holds that

γ̂A − γ∗A = 2In,AA(γ∗)−1{Un,A(γ̂)−∇Apνn(γ̂)}.

Substituting it into (S4.2) gives

Un,Ac(γ̂) = Un,Ac(γ∗)− In,AcA(γ̃)In,AA(γ∗)−1{Un,A(γ̂)−∇Apνn(γ̂)}

= Un,Ac(γ̂)− In,AcA(γ∗)In,AA(γ∗)−1{Un,A(γ̂)−∇Apνn(γ̂)}

+ {In,AcA(γ̃)− In,AcA(γ∗)}In,AA(γ∗)−1{Un,A(γ̂)−∇Apνn(γ̂)}.
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Therefore,

‖Un,Ac(γ̂)‖∞

≤ 1

4(1− ζ)
‖In,AcA(γ∗)In,AA(γ∗)−1‖∞{‖Un,A(γ̂)‖∞ + ‖∇Apνn(γ̂)‖∞}

+ ‖Un,Ac(γ∗)‖∞

<
1

2
νn
√
qnρ
′(0+) +

ρ′(0+)

4ρ′(dn/2)
{νn
√
qnρ
′(dn/2) + νn

√
qnρ
′(dn/2)}

<
1

2
νn
√
qnρ
′(0+) +

1

2
νn
√
qnρ
′(0+)

= νn
√
qnρ
′(0+).

Therefore, (S3.2) holds.

Finally, as we have shown, γ̂ ∈ B0 and Â = A. Then, by condition 11

and Lemma S5, conditioning on event A, (S3.3) also holds.

S4 Additional lemmas and their proofs

Lemma S1. Under conditions 1 to 8, there exist positive constants C1, C2

and D such that for any x > 0, with probability less than C1 exp(−C2nh
6
nx

2),
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it holds that

∣∣∣∣∣ 1n
n∑
i=1

∫ τ

0

ni∑
v=1

Khn(t− tiv){Zij(tiv, t)− Enj(γ∗, t)}dΛi(t)

∣∣∣∣∣
≥ D

[
{(rnqncnd1/2n /n)1/2}(1 + x) + h2n + rnq

−α
n

]
.

Proof of Lemma S1. Let

S̃(l)
n (β∗, t) = n−1

n∑
i=1

Yi(t){Zi(t, t)}⊗l exp[{β∗(t)}TX i(t)],

for l = 0, 1, 2, Ẽn(β∗, t) = S̃
(1)
n (β∗, t)/S̃

(0)
n (β∗, t) and Ẽnj(γ

∗, t) be the j-th

element of Ẽn(β∗, t). Note that,

n∑
i=1

∫ τ

0

λv(t){Zij(t, t)− Ẽnj(β∗, t)}dΛi(t) = 0.

Then,

1

n

n∑
i=1

∫ τ

0

ni∑
v=1

Khn(t− tiv){Zij(tiv, t)− Enj(γ∗, t)}dΛi(t)

=
1

n

n∑
i=1

∫ τ

0

ni∑
v=1

Khn(t− tiv)Zij(tiv, t)− λv(t)Zij(t, t)dΛi(t)

+
1

n

n∑
i=1

∫ τ

0

ni∑
v=1

Khn(t− tiv)Enj(γ∗, t)− λv(t)Ẽnj(β∗, t)dΛi(t)

:= I1 + I2.
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For I1, let Vi :=
∫ τ
0

∑ni

v=1Khn(t−tiv)Zij(tiv, t)−λv(t)Zij(t, t)dΛi(t). Denote

zij(s, t) = E{Zij(s, t)}. We first bound E(Vi).

E

{∫ τ

0

ni∑
v=1

Khn(t− tiv)Zij(tiv, t)dΛi(t)

}

= E

[∫ τ

0

{∫
Khn(t− s)zij(s, t)λv(s)ds

}
dΛi(t)

]
= E

[∫ τ

0

{∫
K(u)zij(t+ uhn, t)λv(t+ uhn)du

}
dΛi(t)

]
= E

{∫ τ

0

(∫
K(u)

[
zij(t)λv(t) + {zij(t)λv(t)}′uhn

+{zij(t)λv(t)}′′(uhn)2/2 + o(h2n)
]
du
)
dΛi(t)

}
= E

{∫ τ

0

Zij(t)λv(t)dΛi(t)

}
+ ch2n + o(h2n),

(S4.1)

where c is a constant. Hence, E[Vi] = O(h2n). Since Vi = O(h−1n ), by the

Hoeffding inequality,

P{|I1| ≥ Dh2n(1 + x)} ≤ P{|V̄ − E(V̄ )| ≥ Dh2nx} ≤ 2 exp(−Cnh6nx2).

(S4.2)
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For I2, we have

I2 =
1

n

n∑
i=1

∫ τ

0

{
ni∑
v=1

Khn(t− tiv)− λv(t)

}
Enj(γ

∗, t)dΛi(t)

+
1

n

n∑
i=1

∫ τ

0

λv(t)
{
Enj(γ

∗, t)− Ẽnj(β∗, t)
}
dΛi(t)

:= J1 + J2.

Similarly as (S4.2), it can be shown that

P{|J1| ≥ Dh2n(1 + x)} ≤ 2 exp(−Cnh6nx2). (S4.3)

Next, we bound J2 by

|J2| . sup
t∈[0,τ ]

|Enj(γ∗, t)− Ẽnj(β∗, t)|.

Recall that

Enj(γ
∗, t) = S(1)

n (γ∗, t)/S(0)
n (γ∗, t) and Ẽnj(β

∗, t) = S̃(1)
n (β∗, t)/S̃(0)

n (β∗, t),
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where

S(l)
n (γ∗, t) = n−1

n∑
i=1

ni∑
v=1

Khn(t− tiv)Yi(t){Zi(tiv, t)}⊗l exp{(γ∗)TZi(tiv, t)}

S̃(l)
n (β∗, t) = n−1

n∑
i=1

Yi(t){Zi(t, t)}⊗l exp[{β∗(t)}TX i(t)].

In addition, we define Ē(γ∗, t) = S̄
(1)
n (γ∗, t)/S̄

(0)
n (γ∗, t), where

S̄(l)
n (γ∗, t) := n−1

n∑
i=1

Yi(t){Zi(t, t)}⊗l exp{(γ∗)TZi(t, t)}.

Let s
(l)
n (γ∗, t) = E{S(l)

n (γ∗, t)}, s̃(l)(β∗, t) = E{S̃(l)
n (β∗, t)} and s̄(l)(γ∗, t) =

E{S̄(l)
n (γ∗, t)}. We have

Enj(γ
∗, t)− Ẽnj(β∗, t) = Enj(γ

∗, t)−
s
(1)
n,j(γ

∗, t)

s
(0)
n (γ∗, t)︸ ︷︷ ︸

L1

+
s̃
(1)
j (β∗, t)

s̃(0)(β∗, t)
− Ẽnj(β∗, t)︸ ︷︷ ︸
L2

+
s
(1)
n,j(γ

∗, t)

s
(0)
n (γ∗, t)

−
s̃
(1)
j (β∗, t)

s̃(0)(β∗, t)︸ ︷︷ ︸
L3

.

For L1, we have

L1 =
1

S
(0)
n (γ∗, t)

{S(1)
n,j(γ

∗, t)− s(1)n,j(γ∗, t)}

−
s
(1)
n,j(γ

∗, t)

S
(0)
n (γ∗, t)s

(0)
n (γ∗, t)

{S(0)
n (γ∗, t)− s(0)n (γ∗, t)}.
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By Lemma S2, with probability no less than 1 − exp(−Crnqncnd1/2n h2nx
2),

we have

sup
t∈[0,τ ]

|L1| . (rnqncnd
1/2
n /n)1/2(1 + x). (S4.4)

Similarly, by Lemma S3, with probability no less than 1 − exp(−Crnx2),

we have

sup
t∈[0,τ ]

|L2| . (rn/n)1/2(1 + x). (S4.5)

For L3, we have

L3 =
1

λv(t)s̃(0)(γ∗, t)
{s(1)n,j(γ∗, t)− λv(t)s̃

(1)
j (γ∗, t)}

−
s
(1)
n,j(γ

∗, t)

λv(t)s̃(0)(β
∗, t)s

(0)
n (γ∗, t)

{s(0)n (γ∗, t)− λv(t)s̃(0)j (γ∗, t)}.
(S4.6)

By the same calculation as in (S4.1), we have

s(0)n (γ∗, t)− λv(t)s̄(0)(γ∗, t) = O(h2n), (S4.7)

s
(1)
n,j(γ

∗, t)− λv(t)s̄(1)j (γ∗, t) = O(h2n). (S4.8)
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Moreover,

|s̄(0)(γ∗, t)− s̃(0)(β∗, t)|

≤
∣∣E{Yi(t) exp[(γ∗)TZi(t, t)− {β∗(t)}TX i(t)]

}∣∣
(i)

. E
∣∣(γ∗)TZi(t, t)− {β∗(t)}TX i(t)

∣∣
= E

∣∣∣∣∣
rn∑
j=1

{
β∗j (t)− (γ∗j)

Tφ(t)
}
Xij(t)

∣∣∣∣∣
.

∣∣∣∣∣
rn∑
j=1

{
β∗j (t)− (γ∗j)

Tφ(t)
}∣∣∣∣∣ (ii). rnq

−α
n ,

(S4.9)

where (i) follows from condition 2 and (ii) follows from condition 6. Simi-

larly, |s̄(1)j (γ∗, t)− s̃(1)j (β∗, t)| . rnq
−α
n . Therefore,

s(0)n (γ∗, t)− λv(t)s̃(0)(γ∗, t) = O(h2n + rnq
−α
n ),

s
(1)
n,j(γ

∗, t)− λv(t)s̃(1)j (γ∗, t) = O(h2n + rnq
−α
n ).

Then, it follows from (S4.6) that

sup
t∈[0,τ ]

|L3| . h2n + rnq
−α
n . (S4.10)
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Equations (S4.4), (S4.5) and (S4.10) together imply that

P
(
|J2| ≥ D{(rnqncnd1/2n /n)1/2(1 + x) + h2n + rnq

−α
n }
)

≤ C1 exp(−C2rnqncnd
1/2
n h2nx

2).

(S4.11)

Finally, the result follows from (S4.2), (S4.3) and (S4.11).

Lemma S2. Under conditions 1 to 8, there exist positive constants C and

D such that, for any x > 0,

P

{
sup

γ∈B0,t∈[0,τ ]
|S(0)
n (γ, t)− s(0)n (γ, t)| ≥ D(rnqncnd

1/2
n /n)1/2(1 + x)

}

≤ exp(−Crnqncnd1/2n h2nx
2),

P

{
sup

γ∈B0,t∈[0,τ ]
|S(1)
n,j(γ, t)− s

(1)
n,j(γ, t)| ≥ D(rnqncnd

1/2
n /n)1/2(1 + x)

}

≤ exp(−Crnqncnd1/2n h2nx
2),

P

{
sup

γ∈B0,t∈[0,τ ]
|S(2)
n,ij(γ, t)− s

(2)
n,ij(γ, t)| ≥ D(rnqncnd

1/2
n /n)1/2(1 + x)

}

≤ exp(−Crnqncnd1/2n h2nx
2),

where cn = rnq
2
nh
−1
n ∨ h−2n .

Proof of Lemma S2. Let

Wn = sup
γ∈B0,t∈[0,τ ]

|S(0)
n (γ, t)− s(0)n (γ, t)|.
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We prove the upper bound for Wn. The other two cases can be shown

similarly. Let F = {
∑ni

v=1Khn(t − tiv)Y (t) exp{γTZ(tiv, t)} : γ ∈ B0, t ∈

[0, τ ]}. We calculate the bracketing number of the function class F .

∣∣∣∣∣
ni∑
v=1

Khn(t1 − tiv)Y (t1) exp{γT1Z(tiv, t1)}

−
ni∑
v=1

Khn(t2 − tiv)Y (t2) exp{γT2Z(tiv, t2)}

∣∣∣∣∣
≤

ni∑
v=1

Khn(t1 − tiv)
∣∣Y (t1) exp{γT1Z(tiv, t1)} − Y (t2) exp{γT2Z(tiv, t2)}

∣∣
+

ni∑
v=1

|Khn(t1 − tiv)−Khn(t2 − tiv)| |Y (t2) exp{γT2Z(tiv, t2)}|

:= I1 + I2.

For I1, let d1j = γT1,jφ(t) and d2j = γT2,jφ(t), we have

∣∣Y (t1) exp{γT1Z(tiv, t1)} − Y (t2) exp{γT2Z(tiv, t2)}
∣∣

. |γT1Z(tiv, t1)− γT2Z(tiv, t2)|+ |Y (t1)− Y (t2)|

≤ |(γ1 − γ2)
TZ(tiv, t1)|+ |γT2 {Z(tiv, t1)−Z(tiv, t2)}|+ |Y (t1)− Y (t2)|

≤

∣∣∣∣∣
rn∑
j=1

(d1j − d2j)Xj(tiv)

∣∣∣∣∣+ |γT2 [X(tiv)⊗ {φ(t1)− φ(t2)}]|+ |Y (t1)− Y (t2)|

. rnqn‖γ1 − γ2‖∞ + rnq
2
n|t1 − t2|+ |Y (t1)− Y (t2)|

Since Khn(t − tiv) = O(h−1n ) and ni = O(1), we have I1 . rnq
2
nh
−1
n (‖γ1 −
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γ2‖∞ + |t1 − t2|) + h−1n |Y (t1) − Y (t2)|. For I2, by conditions 2 and 4, we

have I2 . h−2n |t1 − t2|. Denote θ1 = (γ1, t1)
T and θ2 = (γ2, t2)

T . Then, we

have

I1 + I2 . cn{‖θ1 − θ2‖2 + |Y (t1)− Y (t2)|},

where cn = rnq
2
nh
−1
n ∨ h−2n . When ‖θ1 − θ2‖2 ≤ ε2/c2n,

|fθ1 − fθ2| ≤ ε2/cn + cn|Y (t1)− Y (t2)|,

where fθj
:=
∑ni

v=1Khn(tj − tiv)Y (tj) exp{γTj Z(tiv, tj)}. The L2(P )-size of

the above bracket is

2ε2/cn + 2cn{E|Y (t1)− Y (t2)|2}1/2 = 2ε2/cn + 2cn

{∫ t2

t1

dFT̃ (t)

}1/2

≤ 2ε2/cn + 2ε . ε.

Then, to cover F , we need as many brackets as we need balls of radius

ε2/(2c2n) to cover Θ, where Θ = B0 ⊗ [0, τ ]. Hence, the bracketing entropy

of F (see Example 19.7 of Van der Vaart (2000)) is

logN[](ε,F , L2(P )) . rnqn log(c2ndn/ε
2).

The class F has an envelope function F with ||F ||P,2 = O(h−1n ). Therefore,
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by the maximal inequality (Corollary 19.35 of Van der Vaart (2000)), we

have

E(Wn) . n−1/2
∫ ||F ||P,2

0

√
rnqn log(c2ndn/ε

2)dε . (rnqncnd
1/2
n /n)1/2.

Then, by the functional Hoeffding inequality (Massart and Picard, 2007),

for any x > 0, we have

P{Wn ≥ D(rnqncnd
1/2
n /n)1/2(1 + x)}

≤ P{Wn − E(Wn) ≥ D(rnqncnd
1/2
n /n)1/2x}

≤ exp(−Crnqncnd1/2n h2nx
2).

Lemma S3. Under conditions 1 to 8, there exist positive constants C and

D such that for any x > 0,

P

{
sup
t∈[0,τ ]

|S̃(0)
n (β∗, t)− s̃(0)(β∗, t)| ≥ D(rn/n)1/2(1 + x)

}
≤ exp(−Crnx2).

P

{
sup
t∈[0,τ ]

|S̃(1)
n,j(β

∗, t)− s̃(1)j (β∗, t)| ≥ D(rn/n)1/2(1 + x)

}
≤ exp(−Crnx2).

P

{
sup
t∈[0,τ ]

|S̃(2)
n,ij(β

∗, t)− s̃(2)ij (β∗, t)| ≥ D(rn/n)1/2(1 + x)

}
≤ exp(−Crnx2).
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P

{
sup
t∈[0,τ ]

|S̄(0)
n (γ∗, t)− s̄(0)(γ∗, t)| ≥ D(rnqn/n)1/2(1 + x)

}
≤ exp(−Crnqnx2).

P

{
sup
t∈[0,τ ]

|S̄(1)
n,j(γ

∗, t)− s̄(1)j (γ∗, t)| ≥ D(rnqn/n)1/2(1 + x)

}
≤ exp(−Crnqnx2).

P

{
sup
t∈[0,τ ]

|S̄(2)
n,ij(γ

∗, t)− s̄(2)ij (γ∗, t)| ≥ D(rnqn/n)1/2(1 + x)

}
≤ exp(−Crnqnx2).

Proof of Lemma S3. We prove the result for S̃
(0)
n (β∗, t). The other cases

can be shown similarly. Let

Wn = sup
t∈[0,τ ]

|S̃(0)
n (β∗, t)− s̃(0)(β∗, t)|.

Denote F = {Y (t) exp[{β∗(t)}TX(t)] : t ∈ [0, τ ]}. We calculate the brack-

eting number of the function class F .

|Y (t1) exp[{β∗(t1)}TX(t1)]− Y (t2) exp[{β∗(t2)}TX(t2)]|

. |Y (t1)− Y (t2)|+ | exp[{β∗(t1)}TX(t1)]− exp[{β∗(t2)}TX(t2)]|

. |Y (t1)− Y (t2)|+ |{β∗(t1)}TX(t1)− {β∗(t2)}TX(t2)|

. |Y (t1)− Y (t2)|+
rn∑
j=1

|β∗j (t1)− β∗j (t2)|+
rn∑
j=1

|Xj(t1)−Xj(t2)|.

We use brackets of the form [I[ti,∞), I[ti−1,∞)] with FT̃ (ti−)−FT̃ (ti−1−) < ε2

to cover {Y (t), t ∈ [0, τ ]}, which forms a grid of points 0 = t0 < t1 < · · · <

tk = τ . The L2-size of these brackets is ε. By the continuity assumption
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of β∗j (t) in condition 6, to cover {β∗j (t) : t ∈ [0, τ ]}, we need as many

ε-brackets as we need balls of radius ε/2 to cover [0, τ ]. In addition, by

continuity assumption in condition 5, to cover {Xj(t) : t ∈ [0, τ ]}, we also

need as many brackets as we need balls of radius ε/2 to cover [0, τ ]. Then,

the bracketing entropy of F is given by

logN[](ε,F , L2(p)) . rn log(ε−1).

Moreover, the envelop function F of F has ||F ||P,2 = O(1). Then, by the

maximal inequality

E(Wn) . n−1/2
∫ 1

0

√
rn log(ε−1)dε = O{(rn/n)1/2}.

Then, it follows from the functional Hoeffding inequality that for any x > 0,

P
{
Wn ≥ D(rn/n)1/2(1 + x)

}
≤ P

{
Wn − E[Wn] ≥ D(rn/n)1/2x

}
≤ exp(−Crnx2).

Lemma S4. Under conditions 1 to 8, there exist positive constants C1, C2
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and D, such that for any x > 0,

P

(
sup
γ∈B0
|In,ij(γ)− Σij(γ)| ≥ D{(rnqncnd1/2n /n)1/2(1 + x) + h2n}

)
≤ C1 exp(−C2rnqncnd

1/2
n h2nx

2).

Proof of Lemma S4. Note that

In,ij(γ, t)− Σij(γ, t)

=

∫ τ

0

{S(2)
n,ij(γ, t)− λv(t)s̄

(2)
ij (γ, t)}dΛ0(t)

−
∫ τ

0

{
S
(1)
n,i (γ, t)S

(1)
n,j(γ, t)

S
(0)
n (γ, t)

−
s̄
(1)
i (γ, t)s̄

(1)
j (γ, t)

s̄(0)(γ, t)
λv(t)

}
dΛ0(t)

:= J1(γ)−
∫ τ

0

j2,n(γ, t)dΛ0(t).

For the term J1(γ), we have

|J1(γ)| ≤ sup
t∈[0,τ ]

|S(2)
n,ij(γ, t)− λv(t)s̄

(2)
ij (γ, t)| · Λ0(τ). (S4.12)

Similar as in (S4.7) and (S4.8), we have

s
(2)
n,ij(γ, t)− λv(t)s̄

(2)
ij (γ, t) = O(h2n).
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This together with Lemma S2 imply that

P
(

sup
γ∈B0,t∈[0,τ ]

|S(2)
n,ij(γ, t)− λv(t)s̄

(2)
ij (γ, t)|

≥ D2{(rnqncnd1/2n /n)1/2(1 + x) + h2n}
)

≤ exp(−C1rnqncnd
1/2
n h2nx

2).

(S4.13)

Then, by (S4.12), we have

P

(
sup
γ∈B0
|J1(γ)| ≥ D1{(rnqncnd1/2n /n)1/2(1 + x) + h2n}

)
≤ exp(−C1rnqncnd

1/2
n h2nx

2).

(S4.14)

For the second term, we write j2,n(γ, t) as

j2,n(γ, t)

=
S
(1)
n,i (γ, t)

S
(0)
n (γ, t)

{S(1)
n,j(γ, t)− λv(t)s̄

(1)
j (γ, t)}

+
λv(t)s̄

(1)
j (γ, t)

S
(0)
n (γ, t)

{S(1)
n,i (γ, t)− λv(t)s̄

(1)
i (γ, t)}

−
λv(t)s̄

(1)
i (γ, t)s̄

(1)
j (γ, t)

S
(0)
n (γ, t)s̄(0)(γ, t)

{S(0)
n (γ, t)− λv(t)s̄(0)(γ, t)}.

Since λv(t), S
(1)
n,i (γ, t), s̄

(1)
j (γ, t) are all bounded and S

(0)
n (γ, t) and s̄(0)(γ, t)
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are bounded away from zero, it follows that

sup
γ∈B0
|J2(γ)|

. sup
γ∈B0,t∈[0,τ ]

|j2,n(γ, t)|

. sup
γ∈B0,t∈[0,τ ]

|S(1)
n,j(γ, t)− λv(t)s̄

(1)
j (γ, t)|

+ sup
γ∈B0,t∈[0,τ ]

|S(0)
n (γ, t)− λv(t)s̄(0)(γ, t)|.

Similar as (S4.13), we have

P

(
sup
γ∈B0
|J2(γ)| ≥ D2{(rnqncnd1/2n /n)1/2(1 + x) + h2n}

)
≤ exp(−C2rnqncnd

1/2
n h2nx

2).

(S4.15)

(S4.14) and (S4.15) together complete the proof.

Lemma S5. Under conditions 1 to 11, there exist positive constants C1,

C2, C3, C4 and Cmin such that,

P

{
inf
β∈B0

λmin(In,AA(γ)) ≤ Cmin

2

}
≤ C1r

2
nq

2
n exp{−C2nh

2
n}, (S4.16)
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and

P

{
sup
γ∈B0
‖In,AcA(γ)In,AA(γ)−1‖∞ ≥

1

2
(1− ζ)

ρ′(0+)

ρ′(dn/2)

}
≤ C3pnrnq

2
n exp{−C4nh

2
n(rnqn)−1}.

(S4.17)

Proof of Lemma S5. By Weyl’s inequality,

|λmin(In,AA(γ))− λmin(ΣAA(γ))| ≤ ‖In,AA(γ)−ΣAA(γ)‖2

≤ ‖In,AA(γ)−ΣAA(γ)‖1.

By condition 9,

inf
γ∈B0

λmin(ΣAA(γ)) = 1/{ sup
γ∈B0

λmax(ΣAA(γ))} ≥ 1/( sup
γ∈B0
‖ΣAA(γ)‖∞)

≥ 1/M.

(S4.18)



S4. ADDITIONAL LEMMAS AND THEIR PROOFS

We denote Cmin := 1/M . Then, it follows from Lemma S4 that

P

{
sup
γ∈B0
|λmin(In,AA(γ))− λmin(ΣAA(γ))| ≥ Cmin

2

}
≤ P

{
sup
γ∈B0
‖In,AA(γ)−ΣAA(γ)‖∞ ≥

Cmin

2

}
≤ P

{
sup
γ∈B0

max
i∈A

∑
j∈A

|In,ij(γ)− Σij(γ)| ≥ Cmin

2

}

≤ r2nq
2
nP

{
sup
γ∈B0
|In,ij(γ)− Σij(γ)| ≥ Cmin

2

}
≤ C1r

2
nq

2
n exp{−C2(nh

2
n ∨ rnqncnd1/2n h2n)}

= C1r
2
nq

2
n exp{−C2nh

2
n}.

(S4.19)

This result together with (S4.18) imply (S4.16).

To prove (S4.17), observe that

In,AcA(γ)In,AA(γ)−1 −ΣAcA(γ)ΣAA(γ)−1

= {In,AcA(γ)−ΣAcA(γ)}In,AA(γ)−1

−ΣAcA(γ)ΣAA(γ)−1{In,AA(γ)−ΣAA(γ)}In,AA(γ)−1

:= J1(γ) + J2(γ).

(S4.20)
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For J1(γ), it follows from Lemma S4 that

P

{
sup
γ∈B0
‖In,AcA(γ)−ΣAcA(γ)‖∞ ≥

(1− ζ)Cmin

8
√
rnqn

}
≤ P

{
sup
γ∈B0

max
i∈Ac

∑
j∈A

|In,ij(γ)− Σij(γ)| ≥ (1− ζ)Cmin

8
√
rnqn

}

≤
∑

i∈Acj∈A

P

{
sup
γ∈B0
|In,ij(γ)− Σij(γ)| ≥ (1− ζ)Cmin

8
√
rnqn

}

≤ C3(pn − rn)rnq
2
n exp{−C4nh

2
n(rnqn)−1}.

(S4.21)

By definition, ‖In,AA(γ)−1‖∞ ≤
√
rnqn‖In,AA(γ)−1‖2. Then, we have

P

{
sup
γ∈B0
‖In,AA(γ)−1‖∞ ≥

2
√
rnqn

Cmin

}
≤ P

{
inf
γ∈B0

λmin(In,AA(γ)) ≤ Cmin

2

}
≤ C1r

2
nq

2
n exp{−C2nh

2
n}.

(S4.22)

Therefore, by the union bound, (S4.21) and (S4.22) together imply that

P

{
sup
γ∈B0
|J1(γ)| ≥ (1− ζ)ρ′(0+)

4ρ′(dn/2)

}
≤ P

{
sup
γ∈B0
|J1(γ)| ≥ 1− ζ

4

}
≤ C1r

2
nq

2
n exp{−C2nh

2
n}+ C3(pn − rn)rnq

2
n exp{−C4nh

2
n(rnqn)−1},

(S4.23)

since ρ′(0+)/ρ′(dn/2) ≥ 1 by the concavity assumption in condition 11.
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Similar as (S4.21), we have

P

{
sup
γ∈B0
‖In,AA(γ)−ΣAA(γ)‖∞ ≥

Cmin

8
√
rnqn

}
≤ C3r

2
nq

2
n exp{−C4nh

2
n(rnqn)−1}.

This together with (S4.22) imply that

P

{
sup
γ∈B0
|J2(γ)| ≥ (1− ζ)ρ′(0+)

4ρ′(dn/2)

}
≤ C1r

2
nq

2
n exp{−C2nh

2
n}+ C3r

2
nq

2
n exp{−C4nh

2
n(rnqn)−1}.

(S4.24)

Finally, it follows from (S4.20), (S4.23) and (S4.24) that

P

{
‖In,AcA(γ)In,AA(γ)−1 −ΣAcA(γ)ΣAA(γ)−1‖∞ ≥

(1− ζ)ρ′(0+)

2ρ′(dn/2)

}
≤ C3pnrnq

2
n exp{−C4nh

2
n(rnqn)−1}.

This together with condition 10 complete the proof.

S5 Additional simulation results

Figure S1 shows the running time of the proposed method with `0-regularization

penalty based on λ with length of 10 and fixed α and h. Overall, the

computation time increased linearly with the number of covariates. When

pn = 1000 and n = 200, the running time is 634 seconds, with a total of
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pnqn = 5000 parameters.
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Figure S1: Running time in seconds of the proposed `0Net for various sample sizes and number
of covariates

Table S1 summarizes the comparison results by using different kernel

functions for both settings of β(t). Epanechnikov and Gaussian kernels

were considered. The simulation results are very similar between these two

kernels. Both show our proposed approach has a smaller SSE, much better

FP and comparable TP to either group LASSO or network regularization.

Table S2 summarizes the performance of bandwidth selection. It can be
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Table S1: Comparison of estimation and selection performance of the proposed DB-
hazard using different kernel functions under various penalty functions.

Epanechnikov Gaussian
gLasso† gNet‡ `0Net∗ gLasso gNet `0Net

Setting (a)
n = 100, pn = 1000

SSE1 8.34 6.25 4.57 8.23 6.13 4.26
TP2 7.7 8.0 8.0 7.7 8.0 8.0
FP3 33.2 127.2 1.6 38.4 125.5 1.7

n = 200, pn = 1000
SSE 5.04 4.17 2.83 5.01 4.04 2.68
TP 8.0 8.0 8.0 8.0 8.0 8.0
FP 57.1 149.0 1.7 61.1 151.8 1.0

Setting (b)
n = 100, pn = 1000

SSE 14.14 13.91 12.59 14.00 13.78 12.42
TP 2.1 3.3 3.5 2.4 3.5 3.6
FP 14.8 38.9 5.2 16.8 44.0 5.0

n = 200, pn = 1000
SSE 10.43 10.02 8.06 10.50 9.79 7.74
TP 5.9 7.1 7.4 5.9 7.3 7.4
FP 48.2 133.6 1.0 44.1 142.8 0.9
†: group Lasso; ‡: group Lasso with a Laplacian penalty; ∗: `0-regularization penalty (10)

[1]:sum of squared error; [2]:number of true positive; [3]:number of false positive.
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seen from the table that the two kernel functions had similar performance.

Our selected bandwidths by both kernel functions are very close to the

“Best” bandwidth, indicating satisfactory performance of our data-driven

procedure.

Table S2: Performance of the bandwidth selection procedure for DB-hazard using dif-
ferent kernel functions.

Epanechnikov Gaussian
Selected Best1 Selected Best

Setting (a)
n = 100, pn = 1000

Bandwidth 0.056 0.085 0.061 0.066
SSE2 4.57 3.89 4.26 3.91

n = 200, pn = 1000
Bandwidth 0.059 0.086 0.065 0.077
SSE 2.83 2.19 2.68 2.29

Setting (b)
n = 100, pn = 1000

Bandwidth 0.055 0.113 0.057 0.110
SSE 12.59 11.31 12.42 11.36

n = 200, pn = 1000
Bandwidth 0.061 0.104 0.062 0.085
SSE 8.06 6.90 7.74 6.91
[1]: defined as the bandwidth leading to the smallest SSE; [2]: sum of squared errors.

Table S3 summarizes the impact of various numbers of basis func-

tions. Quadratic B-splines with 5, 7 and 10 interior knots, corresponding to

qn = 8, 10, 13, respectively, were considered. We observed an increase in

SSE and the number of identified variables as the number of basis functions

increased. Note that βj(t) is a linear combination of basis functions. To ob-

tain βj(t) = 0, all the elements in the coefficient vector γj = (γj1, · · · , γjqn)T
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have to be zero. Thus, the trend is expected that it is more likely to obtain

non-zero estimates with more basis functions. After increasing n = 100 to

200, the performance improved, which may suggest we need more sample

sizes when describing a more complicated function βj(t) with more basis

functions.

Table S3: Comparison of estimation and selection performance of the proposed DB-
hazard using various numbers of knots under various penalty functions.

Setting (a) Setting (b)
gLasso† gNet‡ `0Net∗ gLasso gNet `0Net

n = 100, pn = 1000, qn = 8
SSE1 9.83 8.07 6.69 14.47 14.38 13.85
TP2 7.8 8.0 8.0 2.0 3.0 2.7
FP3 98.9 327.9 14.9 48.1 115.6 34.5

n = 100, pn = 1000, qn = 10
SSE 10.43 8.94 7.88 14.59 14.55 14.25
TP 7.9 8.0 8.0 1.9 3.3 2.4
FP 93.7 339.8 23.2 50.2 160.8 39.7

n = 100, pn = 1000, qn = 13
SSE 11.04 10.41 9.69 14.73 14.73 14.50
TP 7.9 8.0 8.0 2.6 3.8 2.8
FP 169.7 900.8 52.0 96.3 258.0 70.4

n = 200, pn = 1000, qn = 8
SSE 6.61 5.43 4.12 12.07 11.49 9.91
TP 8.0 8.0 8.0 5.0 6.7 6.9
FP 149.4 416.6 6.6 125.9 329.9 10.8

n = 200, pn = 1000, qn = 10
SSE 7.31 6.05 5.05 12.63 12.33 11.04
TP 8.0 8.0 8.0 5.1 6.3 6.5
FP 149.9 458.3 10.4 103.7 311.2 22.8

n = 200, pn = 1000, qn = 13
SSE 8.05 7.59 6.74 13.31 13.18 12.31
TP 8.0 8.0 8.0 5.9 6.6 6.2
FP 262.2 917.8 18.4 199.8 584.3 40.4
†: group Lasso; ‡: group Lasso with a Laplacian penalty; ∗: `0-regularization penalty (10)

[1]:sum of squared error; [2]:number of true positive; [3]:number of false positive.
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Table S4: Estimates of time-dependent sensitivity (SEN), specificity (SPE), positive
predictive value (PPV), negative predictive value (NPV) and area under curve (AUC)
using our kernel smoothing method based on longitudinal data, the LVCF method and
the model based on baseline data.

Year SEN SPE PPV NPV AUC

DB-hazard
2 0.959 0.736 0.220 0.996 0.902
4 0.886 0.817 0.555 0.965 0.910
6 1.000 0.873 0.540 1.000 0.924

LVCF
2 0.499 0.873 0.234 0.957 0.708
4 0.658 0.832 0.502 0.904 0.736
6 0.900 0.651 0.278 0.978 0.735

Baseline
2 0.958 0.739 0.222 0.996 0.864
4 0.914 0.740 0.476 0.971 0.878
6 0.900 0.810 0.414 0.982 0.849

S6 Additional information for real data analysis

Table S4 summarizes the area under the ROC curve (AUC), time-dependent

sensitivity (SEN), specificity (SPE), positive predictive value (PPV), and

negative predictive value (NPV) at a given time where the threshold is

obtained by optimizing Youden’s index.

Figure S2 plots the number of subjects with available clinical mea-

sures (time-to-diagnosis outcome) and longitudinal imaging measurements

at several follow up time (allowing a window of 6 month), which shows

sparse measurements of imaging biomarkers at times (e.g., 18 month after

baseline).

Figure S3 shows the heatmaps of the 136 features measured at the
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Figure S2: Number of subjects with clinical assessment of the time-to-diagnosis outcome
and neuroimaging biomarker measures at several follow up time in PREDICT-HD study.

baseline and at the last visit for 142 subjects who were diagnosed with HD

during the study (converters) and 390 subjects who remained free of HD

diagnosis (non-converters).

Figure S4 shows the heatmaps of the selected features, where they are

seen to better distinguish converters from non-converts than other non-

selected noise features in Figure S3.

Figure S5 shows the estimated effect profiles of top 6 measures selected

by DB-hazard.
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Figure S3: Heatmaps of all feature variables on subjects with at least two neuroimaging
biomarker measures. “Converter”: Subjects who were diagnosed of HD during the follow up;
”Non-converter”: subjects who did not receive diagnosis during follow up.
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Figure S4: Heatmaps of feature variables selected by DB-hazard on subjects with at least two
neuroimaging biomarker measures. “Converter”: Subjects who were diagnosed of HD during
the follow up; ”Non-converter”: subjects who did not receive diagnosis during follow up.
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Figure S5: Estimated effects of six most informative markers identified by DB-hazard
and their confidence intervals.
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