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Supplementary Material

This note presents outlines of the proofs of the main results in Section 2.2 and
Section 3.1 on the qualitative robustness properties of score functions of the new robust
estimators. When the kernel of the sporadic, gross-error model has polynomial or
exponential tails, the proofs use arguments similar to those used by Hwang & Stefanski
(1994) to establish properties of regression curves in the presence of measurement error.
When the kernel is Gaussian, the proofs use standard calculus arguments.

A. Independent-Data Model
Under model (2.1) and (2.2), the score function (2.4)

Bwiber) = o {f(w:6.m))

(1) fx,(w;0) +€(0/08) [ fx,(t;0)g(k(w))/(r0) dt
(1 =€) fuc, (w3 0) + € [ fx,(t:0)g(k(w))/ (7o) dt

(A-1)

where fy,(w; 8) = (9/90) f.. (w;0) and k(w) = (w—t)/(ro). The robustness properties
(redescending, bounded, unbounded) of 1 (w; 0, ¢€,7) can be deduced from the expres-
sion above under certain regularity conditions and assumptions on the tail behavior of

g(+). First re-express ¢ (w;0,¢,7) as

(1 — 7o fx,(w; 0)/g(w/(70)) +€(9/38) [ fx,(t:0)g(k(w))/g(w/(r0))dt
(1 —rofy,(w;0)/g(w/(ro)) + € [ fx,(t;0)g(k(w))/g(w/ (7o) dt

It follows from Assumptions (T1) and (T2) that

PY(w;0,€,7) =

fri(w;0)

i fx,i (w; )
lw|—o0 g(w/(T0))

oo g(w/(ra))

, and
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Thus the behavior of ¥(w;0,¢,7) for large w is determined by the tail behavior of
g(h(w))/g(w/(r0)), which in turn is dictated by the tail behavior of g(-).
As |w| — oo, the o-component of the score function is

e (0000 1 (1:0) <>>/< 0)dt} Jg(w/(ro))/(ro)
e Yolwiier) = lm T .6 0)g(k(w) [g(w) (ro) dt |

Polynomial-Like Tails. When g(-) has polynomial like tails, (T3) holds, i.e.,
lim g(w+b)/g(w
|w|—o00 /

Thus when the interchange of limits, integration and differentiation is justified,

k k(w
lim / Foto)2FW) a2 / Fo o) 2EW) g
Jw|—o0 g(w/(r0)) fw|—o0 Op 9(w/(70))
It follows that when g(-) has polynomial-like tails, limj, o ¥, (w;0,¢,7) = 0, ie.,
¥, (w; 0, ¢,7) redescends to zero.

Assume that g(w) ~ w™P for some p > 1 as |w| — oo. Then, in general,

i (9/00){g((w —1)/(70))/(r0)} _p—1

oo g(w/(10))/(r0) o

It follows that

i O/ON [, (t:0)g9((w — 1)/(70))/(ro)dt} /g(w/(70))/(ro) _ p—1
w0 [ fx.(t:0)g((w — 1)/ (r0)) [g(w/(r0))dt o

Similarly, as w goes to —oo, the limit is also (p — 1)/o.

Exponential-Like Tails. When g(-) has polynomial like tails, (T4) holds, i.e.,

lim g(w+b /g =exp(cib) and lim g(w+b /g = exp(cob)
w—00

wW——00

for some constants ¢; < 0 and ¢ > 0. So for exponential-like tails,

lim [ fy, (¢ G)M dt = /fx (t;0) exp(—cit/(10)) dt,

w—00 g(w/(10))

and wLHP Ix,(t;0) (@(i/((w) dt = /fx (t;0) exp(—cot/(T0)) dt, (A-2)

assuming that the limits exist and are interchangeable with integration. If in addition,

the limits can be interchanged with differentiation, then

w—00

lim 1/)H(w 0,¢,7) = E%ln{mf(—cl/(TJ);H)}
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and

lim ¢u(w;0,6,7') = %ln{mf(—CQ/(TU);O)}>

w——00
where m¢(-; ) is the moment generating function of fy, (-; @), assumed to exist for all
real values of its argument.

Following (T4)

_ c1th _
lim lim g(w+h) —g(w) = lim ¢ 1
h—0 w—00 hg(w) h—0  h

=C1.

Assume that the iterative limits are interchangeable, which holds for the Laplace dis-

tribution. Then

lim lim g(w +h) — g(w) = lim lim g(w +h) — g(w) = lim M

w—o0 h—0 hg(w) h—0 w—o0 hg(w) w—o0 g w) ’

where ¢ denotes the first derivative. It follows that

CGwb) . Gw+b)gwtd)
D) e gw D) gy Plad)

and thus, because ¢; < 0, also that

L /00 a(w = 0)/o) (o)}

1
—;k(w)cl exp(cy) — p exp(c;) = 00,

DT G ek
where ¢; = —c1t/(70). Therefore
L @/00) (] S (:0)0((w — 1)/ (o)) (7o)t} [g(w/ (7o) (re)
w00 [ f(t:0)g((w — 1)/ (10))/g(w/(70))dt '

The proof for w — —oc is similar.

Gaussian Contamination. When ¢(-) is standard normal, general results like those
above are not possible as the tail behavior of the score function depends on the under-
lying model. When the central model in (A-1) is a Gaussian location-scale model, and

g(-) in (A-1) is standard normal, the score function for location is
(w = {1~ Ip(a(w))/0” + cp(bw)/(T0* +0*)*")
(1= e)¢(a(w))/o + ep(b(w))/V7?0? + o2 ’
where a(w) = (w — p)/o and b(w) = (w — p)/V7%0% 4+ 2. Divide the numerator and

denominator by ¢(b(w)). Because

i Slaw)) _ .
w|—o0 (b(w)) jwl—oo  P(b(w))
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it follows that v, (w; 8, €, 7) diverges linearly with asymptotic slope = 1/(0? 4+ 720?).
The score function for scale is

o) — W n/e )1 - 96a(w)) + edew)ofe(w))/ (ot /7T
o (1 = e)p(a(w))/o + edip(c(w))/(oV/ T2 + 1) ’

where a(w) = (w — ) /o, c(w) = (w— pr3) /(o772 + 1), di = exp {p?(1? — 1)/(202)}

and e(w) = c(w)?0? + p?(1 — 7%) — 02, Divide the numerator and denominator by

¢(c(w)). Because

g (o p)e(a(w))
B s N St o

it follows that 4, (w; 0, €, 7) diverges quadratically with coefficient 1/(037%(1 + 72)).

=0,

B. Correlated-Data Model
The theoretical robustness results derived for independent and identically distributed

data in Section 2.2 can be directly extended to the case where X1, ..., X, are correlated.

Define .
1 w; —
an(w; @) =€ [ -+ | f(¢;0) {—g( ! Z>dt2},
/ / 21_[1 TO TO

q(w; 0) = h(w;0) — an(w; 0),

and

where h(w;0) is the contaminated density under the contamination model (2.1) and

(2.2). With these definitions, the likelihood score function becomes

Pwi0,er) = o Inhw:6)
 q(w;0) + an(w; 0)
 q(w;0) + a,(w; 6)’

where ¢(w; 0) = (0/00)q(w;0) and a,(w;0) = (0/00)a,(w; ). Define
pn(w) = % 11 (%) ;
i=1
and write
4(w; 6)/pn(w) + an(w; 6)/pn(w)

q(w; 0)/pn(w) + an(w; 0) /pn(w)’
In Section B.1 we show that if f is multivariate normal and g has polynomial-like tails

Y(w;0,€6,7) = (B-1)

or exponential-like tails , then

(B-2)

min |w;|—o00

q(w;G)‘ ‘cj(w;9)‘ _

i ‘pdw) pu()
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Therefore the behavior of the score function is determined by the tail behavior of

an(w; 0)/pp(w) and a,(w;0)/p,(w). Note that

e /f”’ﬁ{ e i}

n(w;0) _ (9/08)an(w;6)

pn(w) pn(w)
Throughout the section we assume that limits, differentiation, and integration are in-

and

terchangeable, thus the tail behavior of a,(w;®0)/p,(w) and a,(w;0)/p,(w) depends
on the tail behavior of []!" ; g((w; — t;)/70)/g(w; /T0).

Polynomial-Like Tails. For the case of polynomial—like tails,

sl [ [ reo {20 )
= [ [swoll wz@m{g“;”zw:f%”) i}

- /"'/f(t;f))iﬂlldti

= 1 (B-3)

Equations (B-1), (B-2) and (B-3) lead to

lim 1/19(0) (w;0,¢,7)

min |w;|—o0

el B0, [ [reoll { AT

= lim

where 6,) denotes all parameters except o. In hght of (B-3) and the assumption that

limits, integration and differentiation are interchangeable it follows that

S / /ft 1l { e (wz/T)a/)m) dtz}

- (w; —t;)/70)
= 1 (t;0) dt;
60(0) mmiurzn—n)o/ /f ]‘—11: { ’LUZ/TJ }

= 0.

Therefore

lim 1/)0(0) (w;0,¢,7) =0.

min |w;|—o00
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Since the gross error model (2.1) includes o, we need to treat the ¢ component of

the score function differently, which is written as

lim ¢, (w;0,¢,7)

min |w;|—o0

[ (0/90) (8 0) TTLy (i — 1) r) ro} dis
T, g(wi/ro)/o (B-4)

where

%H{g i~ ) /m)}

=1

- H{ tj)/TU)}ﬁg((wz' —ti)/70)
= | s TO oo TO
In Section A we have shown that

i olw =1)/(70))/(r0)}/07 _p-1
|w]—o0 glw/To)/T0 P

with g(w) ~ w™P. It follows that
o (0/00) TTi ol — ti/r0) /o)

min |w;|—o0 H?zl g(wi/TU)/TO'
R - 9((w; —t;)/70)\ (9/00) [Tii{g(wi — ti/70)/7T0}
- z; min\lwi|—>oo };J; { g(wj/TU) } g(wi/TU)/TJ

, o
=1
n(p—1)

g

After suitable interchange of limits, differentiation and integration,

lim ¢, (w;0,¢,7)

min |u;|—o0

e e (@000 Tl ti/r0) 7o)
N / /f( 7O)min|1w%\~>oo H?:lg(ui/TU)/TO' dt

:/ /fte np=b 4

o
So the Cauchy error contamination model (p = 2) yields a redescending score function

except for scale estimation, which is bounded by n/o.
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Exponential-Like Tails. For the case of exponential-like tails, we allow g(w) to have

different tails as w — oo and w — —o0:

g(w +b) g(w+b)

lim = exp(c1b), lim = exp(c2b),
w=oo  g(w) w——oc  g(w)
for some constants ¢; and ca. Set N to be any subset of N = {1,...,n}, and let N

be the set difference N — Ni. Then

_wliniem/ /ftOle[l{ wz/m/m) dti}
- wo) TT tim = 00/m0) rr ol —t)/ro)
[ I

1 o 1L o(w;/70)
. C1
= /f(t,@)exp 5 Z i Zt dt. (B-5)
It follows that
li Vg, (w;6 )_81{ (v;0)}
v n e, O\ OT) = g UGB

wj — —oc0,j € Na

where v, = —ci /70 for k € Ni, vj = —cy/70 for j € Ny and my(-,0) is the moment
generating function of f(-,0), assumed to exist. So the error contamination model with
the exponential-like tails results in a bounded score function except for o.

In light of (B-5), showing the score function of ¢ is unbounded is equivalent to
showing that

L L J(0/08)1(8:6) T {g(wi — tif0) 7o} d;
bk e [T, g(wi/70) 70

w; — —00,j € Ny

9

is unbounded. It is direct to show that,

lim S J(©0/06)f (& 0) ] {g(wi —ti/To)/T0} dt;
[T o(u /7)o

uj — —00,j € Na

= lim / /ftGwaG

wy, — 0o,k € Ny

wj — —o0,j € Ng

where

i) {g((wf - Wm)} (0/00){g((wi — t:)/r0) 70}

pr g(w;/T0o) g(w;/To)/TO
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In Section B we have shown that

L al(w —0)/(r0))/ (o)} Do
vt T glw/(7a))/ (7o)

It follows that

lim [ [(0/00)f(t;0) 11 {g(w; — t;/7T0)/T0} dt; o
wy, — o0, k € Ny IIi2, g(wi/T0)/T0

w; — —00,j € Ny

B1. Proof for Equation (B-2)
The contaminated density h(w;@) can be written as

n

h(w;0) = /---/f(w1—Tozl,...,wn—Tozn;O)HGe(sz)

s=1

= Z(l — )" el cj(w; 9),

=0

where
co(w;0) = f(w;8),

n
1w, = Wiy ..., Ws—1,Us — TOZ5, Usf1y---,Un; g(zs Zs,s
(w; 0) f( 0)g(zs) d
t=1

and so on up to
cn(w; 0) = Z / e /f(w1 — TOZ1y ey Wey ooy Wy — TOZp; 0) H{g(zj) dz;}.
t=1 j#s
Then
q(w;0) = h(w;0) — ap(w;0)
n—1
= (1—e)"Iedecj(w; ).

j=0
It follows that showing (B-2) is equivalent to showing that
cj('w;B)‘ ¢i(w; 0)
Pn(w) Pn(w)

lim
min |w¢|—o0

‘:Q j=0,1,...,n—1.

Assume that f ~ MVN(u,Q), where g = (p1,..., )7 , then

oy 1 (w — )" (w —p)
100:9) = G- 3 J
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Since Q7! is positive definite,
(w— )" (w — p) > Ay |lw - pl,

where A1y is the smallest eigenvalue of Q7', and ||w — p[|* = Y27_; (ws — p)?. In the

s=1

case that g has polynomial-like tails or exponential-like tails,

i exp{—Aqy(ws — 1)?/2} | (8/00) exp{—Aq)(ws — p)*/2}
im =0, s=1,...,n.
[ws|—oc 9(ws/70) 9(ws/70)
Therefore
lim co(w;B)‘ co(w;B)‘ _0

min |ws|—00 pn(w) pn(w)

Ignoring the constant,
a(w;0) < Y HeXp {—5/\(1)(’% — 1) }
s=1 j#t
1
X /exp {—5)\(1)(103 — TOZg — ,u)2} 9(zs) dzs. (B-6)

Let vs = wg — 4 — 7024, then

fexp {_A(l)(ws —TO0Zs — ﬂ)2/2} 9(2s) dzs

oo 9(z)/70) o
Cum Jexp {=Xa)v2/2} g((ws — p — vs)/T0) [T0 dzs
Jus|—o00 9(zs)/7a)/T0
= im exp { —A(qyv? 9w,
= i S e A 2 T )

—p—v)jra)
S

— [ {-appdse) im HLEZNTT) g,

which is a constant when g has polynomial-like tails or exponential-like tails. It follows

that

lim Cl(w;9)' é1(w;9)‘ _o.
min |ws|—00 pn(w) pn('w)
For j = 2,...,n — 1, a similar proof works. The only difference is that the term in

the right hand side of (B-6) is more complicated. For example, when j = 2, (B-6) is
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replaced by
ca(w; 6)

< zn:zn: 11 eXP{_%)‘(l)(wj —M)2}

t=1 s=1 j£s,t

X //GXP{—%)\(l)(ws —T0Zs —M)Q} {_%A(l)(wt —T0% —M)Q} T {9(z)) dz}-

Jj=t,s



