
Statistica Sinica 33 (2023), 1047-1068
doi:https://doi.org/10.5705/ss.202020.0480

OPTIMAL FUNCTION-ON-FUNCTION REGRESSION WITH

INTERACTION BETWEEN FUNCTIONAL PREDICTORS

Honghe Jin, Xiaoxiao Sun and Pang Du

University of Georgia, University of Arizona and

Virginia Polytechnic Institute and State University

Abstract: We consider a functional regression model in the framework of reproduc-

ing kernel Hilbert spaces, where the interaction effect of two functional predictors,

as well as their main effects, over the functional response is of interest. The re-

gression component of our model is expressed by one trivariate coefficient function,

the functional ANOVA decomposition of which yields the main and interaction ef-

fects. The trivariate coefficient function is estimated by optimizing a penalized least

squares objective with a roughness penalty on the function estimate. The estimation

procedure can be implemented easily using standard numerical tools. Asymptotic

results for the proposed model, with or without functional measurement errors, are

established under the reproducing kernel Hilbert space (RKHS) framework. Exten-

sive numerical studies show the advantages of the proposed method over existing

methods in terms of the prediction and estimation of the coefficient functions. An

application to the histone modifications and gene expressions of a liver cancer cell

line further demonstrates the better prediction accuracy of the proposed method

over that of its competitors.
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Function regression, measurement errors, minimax convergence rate, penalized least
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1. Introduction

Functional regression models, such as scalar-on-function, function-on-scalar,

and function-on-function regression models, have attracted much attention (Ram-

say and Silverman (2005); Ferraty and Vieu (2006)). In this article, we consider

a second-order function-on-function regression model. For 1 ≤ i ≤ n, the ith

response function Yi(·) is related to two independent functional predictors Xi(·)
and Zi(·) through

Yi(t) =

∫
Ix

∫
Iz

Xi(r)Zi(s)β(t, r, s) dsdr + εi(t), t ∈ Iy. (1.1)
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Here, β(·, ·, ·) : Iy×Ix×Iz → R is an unknown trivariate coefficient function, and

εi(·), independent of (Xi(·), Zi(·)), is an independent and identically distributed

(i.i.d.) random error function with zero mean and bounded covariance function.

We consider both the case without measurement errors when Xi(·) and Zi(·)
are observable, and the case with measurement errors. In the latter case, only

surrogate processes of Xi(·) and Zi(·), contaminated by measurement errors, are

observable. Without loss of generality, we assume that Iy, Ix, and Iz are the

interval [0, 1], with the notion that their generalization to distinct and general

compact intervals is trivial. Using a functional ANOVA decomposition, we show

that model (1.1) can be written as the following function-on-function regression

model:

Yi(t) =α(t) +

∫
Ix

Xi(r)βx(t, r)dr +

∫
Iz

Zi(s)βz(t, s)ds+∫
Ix

∫
Iz

Xi(r)Zi(s)βxz(t, r, s) dsdr + εi(t).

(1.2)

Here, α(·): Iy → R is the intercept function, βx(·, ·) is the coefficient function

corresponding to the main effect of Xi(·), βz(·, ·) is the coefficient function cor-

responding to the main effect of Zi(·), and βxz(·, ·, ·) is the coefficient function

corresponding to the interaction between Xi(·) and Zi(·). Certain side conditions

on βx, βz, and βxz, introduced later, are needed to ensure the model identifiabil-

ity. Our model is motivated by an epigenetics study on how the gene expression

level is regularized by the modifications of two histones near the gene for the liver

cancer cell line HepG2. The functional response is the normalized gene expression

levels of each gene over genome coordinates. The density levels of two histone

modifications over genome coordinates are the two functional predictors.

Functional regression models with a scalar response have been studied ex-

tensively. Two main approaches are the functional principal component analysis

(FPCA) approach (Yao, Müller and Wang (2005a,b); Cai and Hall (2006); Hall

and Horowitz (2007); Yao and Müller (2010)) and the roughness penalty approach

(Ramsay and Silverman (2005); Yuan and Cai (2010); Cai and Yuan (2012);

Du and Wang (2014); Usset, Staicu and Maity (2016)). Recently, function-

on-function regression models, especially those with a single functional predic-

tor, have received considerable attention. The FPCA approach for function-

on-function regression uses eigenfunctions in the Karhunen–Loève expansions of

the response and predictor functions to represent the bivariate coefficient func-

tion (Yao, Müller and Wang (2005a,b); Wu and Müller (2011); Crambes and Mas

(2013)). For the roughness penalty approach, Sun et al. (2018) extended the work
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of Cai and Yuan (2012) to model a functional response. The roughness penalty ap-

proach for function-on-function regression was also considered in Ramsay and Sil-

verman (2005) and Ivanescu et al. (2015). Other methods include the Nadaraya–

Watson approach (Ferraty, Van Keilegom and Vieu (2012)), Bayesian mixed

model approach (Meyer et al. (2015)), and marginal approach (Lian (2015)).

In addition to these linear models, various nonlinear function-on-function regres-

sion models with a single functional predictor have been developed. For exam-

ple, Reimherr, Sriperumbudur and Taoufik (2018) provide a function-on-function

extension of the scalar-on-function continuously additive model introduced by

Müller, Wu and Yao (2013). Matsui (2020) and Sun and Wang (2020) extended

the functional quadratic regression model in Yao and Müller (2010) to add a

quadratic term of X(s) as a second functional predictor.

Function-on-function regression models with multiple functional predictors

have been studied by numerous researchers. Ivanescu et al. (2015) considered

an additive linear model with a mix of a multivariate scalar variable and two

functional predictors. Scheipl, Staicu and Greven (2015) studied an additive

mixed-effect model that includes interactions between scalar variables with a

varying-coefficient function, smooth effect of scalar variables, and continuously

additive model of a functional predictor. However, neither study considered inter-

actions between two functional predictors or examined the theoretical properties

of their estimators. Luo and Qi (2017) introduced a signal compression approach

to additive function-on-function regression models. A selected number of leading

eigenfunctions in the Karhunen–Loève expansion of the centered regression mean

function are used to build up an approximate model, and thus reduce the prob-

lem to a principal component analysis type of constrained optimization. However,

these works all ignore the interaction effects between functional predictors, which

may result in biased estimations of the coefficient functions and incorrect con-

clusions. On the other hand, the scarcity of functional models incorporating

interactions may be attributed to the extra numerical and theoretical complexity

induced by the additional dimension in the corresponding coefficient function.

To the best of our knowledge, the only existing function-on-function regres-

sion model that includes interactions between functional predictors is the signal

compression approach (Luo and Qi (2019)), extended from Luo and Qi (2017).

The approach is based on a truncated Karhunen–Loève expansion of the centered

regression mean function, that is, the centered version of the double integral term

in (1.1). The coefficient functions are estimated as a linear combination of the

leading eigenfunctions in the truncated expansion using a constrained optimiza-

tion procedure. Owing to their choice of expanding the regression mean function,
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rather than the functional predictors or the response, the selected leading eigen-

functions in the signal compression approach can possibly provide a more effective

basis expansion system for the coefficient functions than that of the FPCA. Fur-

thermore, their approach adds an adaptive roughness penalty to the objective

functions to provide better control over the smoothness of the function estimates

than that of the FPCA. However, such improvements over the FPCA come with

a price. First, the computation becomes more complicated. The constrained non-

linear optimization procedure requires the tuning of a roughness parameter, as

well as specifying a truncation point of the Karhunen–Loève expansion. Second,

these improvements make it difficult to study the asymptotic properties of the

resulting estimates. Neither Luo and Qi (2017) nor Luo and Qi (2019) provide

a rigorous asymptotic theory. Given the involvement of both a truncation point

and a roughness penalty, it is not clear whether such a rigorous theoretical devel-

opment is even realistic for their approach. Lastly, even with such improvements,

our numerical experiments show that its performance is still not as good as the

RKHS-based method proposed in this paper.

In this paper, we propose a penalized least squares method for the non-

additive functional regression model (1.1). Under the RKHS framework, the

trivariate coefficient function in (1.1) naturally splits into component coefficient

functions through a functional ANOVA decomposition, including both the main

effects and the interaction of the functional predictors. The estimators of the

coefficient function and the component coefficient functions are obtained by op-

timizing a penalized least squares objective. The objective consists of the sum of

the integrated mean square errors, a roughness penalty, and a smoothing param-

eter balancing the two parts. The optimization only involves quadratic program-

ming, and can be solved using a standard Newton–Raphson procedure. For its

theoretical property, we show that the proposed method achieves the minimax

convergence rate in mean prediction for a function-on-function regression model.

In our simulation studies, we compare our method with those in Scheipl, Staicu

and Greven (2015) and Luo and Qi (2019). In general, our method exhibits the

best performance under a non-additive model setting such as (1.2), while being

competitive under the setting of additive models. In the application to an epi-

genetic study on human liver cancer cells, our method also shows the best cross-

validation prediction performance. In summary, the proposed method has the

following advantages: (1) Theoretically, it achieves the optimal rate in the mean

prediction for a function-on-function regression model, without or with functional

measurement errors; (2) Computationally, the penalized least squares optimiza-

tion is a quadratic programming problem and allows an easy implementation
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using standard optimization procedures; (3) Numerically, it demonstrates more

accurate performance in the coefficient function estimation and the mean pre-

diction, especially in the non-additive model setting; (4) The functional ANOVA

decomposition under the RKHS framework provides easy access to the main and

interaction effects of the functional predictors.

The rest of the article is organized as follows. Section 2 introduces the penal-

ized function-on-function regression model incorporating the interaction between

the functional predictors. An easily implementable estimation algorithm is pre-

sented in Section 3. The optimal convergence rate in the mean prediction is

presented in Section 4. Section 5 contains simulations that include comparisons

with other methods and a numerical demonstration of the functional ANOVA

decomposition. A real-data example is presented in Section 6. Section 7 con-

cludes the article. The proof of the main theorem and other technical details are

collected in the Supplementary Material.

2. Penalized Quadratic Function-on-Function Regression with Func-

tional Interaction

Let {(X(r), Z(s), Y (t)) : r ∈ Ix, s ∈ Iz, t ∈ Iy} be random processes defined

on the domains Ix, Iz, Iy ⊆ R, respectively. The observed data (Xi(r), Zi(s), Yi(t)),

for i = 1, . . . , n, are independent copies of the three random processes. We con-

sider the quadratic function-on-function regression model in (1.1) and decompose

β into the functional ANOVA form

β = βø + βt + βr + βs + βt,r + βt,s + βr,s + βt,r,s, (2.1)

where side conditions are imposed to ensure the estimability. The decomposition

(2.1) allows us to rewrite the regression function
∫
Ix

∫
Iz
Xi(r)Zi(s)β(t, r, s) dsdr

in (1.1). The collective term
∫
Ix

∫
Iz
Xi(r)Zi(s)(βø + βt + βr + βs + βr,s)dsdr

does not depend on r or s, and represents the intercept function in model (1.2).

The terms
∫
Ix

∫
Iz
Xi(r)Zi(s)βt,rdsdr and

∫
Ix

∫
Iz
Xi(r)Zi(s)βt,sdsdr are the main

effects of Xi(r) and Zi(s), respectively if we normalize Xi(r) and Zi(s) to make∫
Ix
Xi(r)dr =

∫
Iz
Zi(s)ds = 1. The interaction effect in (1.2) now corresponds to∫

Ix

∫
Iz
Xi(r)Zi(s)βt,r,sdsdr.

Suppose the coefficient function β in (1.1) is an unknown function in an

RKHSH, with the reproducing kernelK. We propose estimating β by minimizing
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the following penalized least squares:

1

n

n∑
i=1

∫
Iy

{Yi(t)−
∫
Ix

∫
Iz

β(t, r, s)Xi(r)Zi(s) dsdr}2 dt+ λJ(β), (2.2)

where the roughness penalty J(β) is a squared semi-norm on H quantifying the

roughness of β, and λ > 0 is the smoothing parameter balancing the trade-

off between the goodness of fit and the smoothness of β. In this study, we

consider a roughness penalty J(β), with the exact form and interpretation of its

components presented in the Supplementary Material. Note that the procedure

works similarly for other common penalties, such as those presented in Wahba

(1990) and Gu (2013).

The functional ANOVA decomposition (2.1) of β is derived from the de-

composition of the RKHS H. Based on the tensor sum decomposition, H can

be decomposed as H = H0 ⊕ H1, where H0 = {β ∈ H : J(β) = 0} with the

reproducing kernel K0, H1 is its orthogonal complement with the reproducing

kernel K1, and K = K0 +K1. Using the tensor product decomposition, one can

decompose H = Hy ⊗Hx ⊗Hz, where Hy, Hx, and Hz are marginal subspaces

of H for Y , X, and Z with reproducing kernels Ky, Kx, and Kz respectively,

and K(t1, r1, s1; t2, r2, s2) = Ky(t1, t2)Kx(r1, r2)Kz(s1, s2). We then have the

following tensor sum decompositions of the marginal subspaces Hy = Hy0 ⊕H
y
1,

Hx = Hx0⊕Hx1 , and Hz = Hz0⊕Hz1, with the reproducing kernels Ky = Ky
0 +Ky

1 ,

Kx = Kx
0 + Kx

1 , and Kz = Kz
0 + Kz

1 , respectively. Combining the tensor sum

and the tensor product decomposition, we have

H = (Hy0 ⊕H
y
1)⊗ (Hx0 ⊕Hx1)⊗ (Hz0 ⊕Hz1)

= (Hy0 ⊗H
x
0 ⊗Hz0)⊕ (Hy0 ⊗H

x
1 ⊗Hz0)⊕ (Hy0 ⊗H

x
0 ⊗Hz1)

⊕ (Hy0 ⊗H
x
1 ⊗Hz1)⊕ (Hy1 ⊗H

x
0 ⊗Hz0)⊕ (Hy1 ⊗H

x
1 ⊗Hz0)

⊕ (Hy1 ⊗H
x
0 ⊗Hz1)⊕ (Hy1 ⊗H

x
1 ⊗Hz1)

= H0 ⊕H1,

(2.3)

where H0 = Hy0 ⊗ Hx0 ⊗ Hz0, and H1 collects the remaining terms in (2.3). The

corresponding kernels, denoted by K0 and K1, are defined as K0 = Ky
0K

x
0K

z
0 and

K1 = Ky
0K

x
1K

z
0 +Ky

0K
x
0K

z
1 +Ky

0K
x
1K

z
1 +Ky

1K
x
0K

z
0 +Ky

1K
x
1K

z
0 +Ky

1K
x
0K

z
1

+Ky
1K

x
1K

z
1 .

With the aid of the tensor product and tensor sum decompositions, we now

represent the coefficient function β using the basis functions of Hy, Hx, and Hz.
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Let the basis functions be {ψyj , j = 1, . . . , Ny}, {ψxj , j = 1, . . . , Nx}, and {ψzj , j =

1, . . . , Nz} for Hy0, Hx0 , and Hz0, respectively, and φyi (t) =
∫
Iy
Ky

1 (t, u)Yi(u) du,

φxi (r) =
∫
Ix
Kx

1 (r, u)Xi(u) du, and φzi (s) =
∫
Iz
Kz

1 (s, u)Zi(u) du, for i = 1, . . . , n,

forHy1,Hx1 , andHz1, respectively, whereNy = dim(Hy0), Nx = dim(Hx0), andNz =

dim(Hz0). Let ψy = (ψy1 , . . . , ψ
y
Ny

)T , ψx = (ψx1 , . . . , ψ
x
Nx

)T , ψz = (ψz1 , . . . , ψ
z
Nz

)T ,

φy = (φy1, . . . , φ
y
n)T , φx = (φx1 , . . . , φ

x
n)T , and φz = (φz1, . . . , φ

z
n)T . The coefficient

function estimate β̂ is of the form

β̂(t, r, s) = {dTy ψy(t)+cTy φ
y(t)}{dTxψx(r)+cTxφ

x(r)}{dTz ψz(s)+cTz φ
z(s)}, (2.4)

where dy, cy,dx, cx,dz, and cz are coefficient vectors. The major advantage of

this representation is that although we only include the quadratic term in the

quadratic function-on-function regression model, we can still study the main ef-

fects of X and Z on different subspaces in (2.3). For instance, the main effects

of X and Z are estimated on Hx1 ⊗Hz0 ⊗H
y
0 and Hx0 ⊗Hz1 ⊗H

y
0, respectively.

3. Estimation

Based on the representation of β in (2.4), we transform the penalized least

squares (2.2) into a form that can be easily optimized using standard numerical

procedures. Plugging (2.4) into (2.2), we have∫
Ix

∫
Iz

X(r)Z(s)β(t, r, s)drds =

∫
Ix

∫
Iz

X(r)Z(s)dTψ(t, r, s)drds

+

∫
Ix

∫
Iz

X(r)Z(s)cTφ(t, r, s)drds,

(3.1)

where ψ = (ψ1, . . . , ψN )T = (ψy1ψ
x
1ψ

z
1 , . . ., ψ

y
Ny
ψxNxψ

z
Nz

)T , φ = (φ1, . . . , φM )T =

(φy1ψ
x
1ψ

z
1 , . . . , φ

y
nφxnφ

z
n)T , and d and c are the corresponding coefficient vectors.

Different selections of kernel functions usually yield different basis functions ψ

and φ. We use the tensor product cubic spline as an example, where we have

Ny = Nx = Nz = 2, and the basis functions ψ∗1(r) = 1, ψ∗2(r) = r − 0.5, with ∗
running through the index set {y, x, z}. Similarly, the basis functions φ are some

scaled version of Bernoulli polynomials; see, for example, Gu (2013). Then, the

dimension of the null space H0 is N = NyNxNz = 8, and the number of basis

functions in H1 is M = (n+Ny)(n+Nx)(n+Nz)−NyNxNz = n3 + 6n2 + 12n.

The integral in (2.2) can be computed using a Gaussian quadrature; see, for

example, Abramowitz and Stegun (1970), with weights (w1, . . . , wT ) and knots

(t1, . . . , tT ):
∫
Iy
η(t) dt =

∑
j wjη(tj). Let W be a diagonal matrix repeating

diag(w1, . . . , wT ) n times, S be an nT × N matrix with the ((i − 1)T + j, k)th
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entry
∫
Ix

∫
Iz
Xi(r)Zi(s)ψk(tj , r, s)drds, and R be an nT × M matrix with the

((i− 1)T + j, l)th entry
∫
Ix

∫
Iz
Xi(r)Zi(s)φl(tj , r, s)drds, where i = 1, . . . , n, j =

1, . . . , T , k = 1, . . . , N , and l = 1, . . . ,M . Let Σ be an M × M matrix with

the (i, j)th entry 〈φi(t, r, s), φj(t, r, s)〉H1
. Then, the objective function (2.2) is

reduced to

min
d, c

1

n
(Yw − Swd−Rwc)T (Yw − Swd−Rwc) + λcTΣc,

where Yw = W 1/2Y , Sw = W 1/2S, Rw = W 1/2R. We use the generalized cross-

validation (GCV) method to select the smoothing parameter λ (Wahba (1975)).

4. Optimal Rate for Mean Prediction

In this section, we show that our penalized least squares estimator achieves

the minimax rate of convergence for the mean prediction of a quadratic function-

on-function regression model. The result is shown for the model with functional

measurement errors, and is also valid for the model without functional measure-

ment errors as a corollary. The complete proof, including all the lemmas, is

collected in the Supplementary Material S3.

4.1. Notation and excess risk

We start by defining some notation and the excess risk. Recall that the

reproducing kernel K of H can be viewed as the kernel function of a positive–

definite and compact linear operator LK , defined by

LK(f)(t1, s1, r1) =

∫ ∫ ∫
K(t1, s1, r1; t2, s2, r2)f(t2, s2, r2)dt2ds2dr2.

It is easy to show that LK1/2(L2) = H(K) and

〈f, g〉H = 〈LK−1/2f, LK−1/2g〉L2
= 〈f, LK−1g〉L2

. (4.1)

Because one can move between the H and L2 inner products, as in (4.1), we

work with L2 instead of H for the minimization problem (2.2). Following the

functional measurement errors setup in Jadhav and Ma (2020), we assume the

observable surrogate processes are Ui and Vi, such that Ui(·) = Xi(·) + τi(·)
and Vi(·) = Zi(·) + υi(·), where τi(·) and υi(·) are functional measurement error

processes independent of Xi, Zi, and the random error processes εi. Let β0 be

the true coefficient function, and β̂nλ be the estimator as the minimizer of (2.2)

when there exist functional measurement errors. Then, there exist f0, f̂ ∈ L2
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such that β0 = LK1/2f0 and β̂nλ = LK1/2 f̂λ. For a given reproducing kernel

K and a covariance function C of U(r)V (s), we further define the new kernel

function T as

T ((t1, r1, s1), (t2, r2, s2)) =∫ ∫ ∫ ∫ ∫
K1/2 ((t1, r1, s1), (w, u1, v1))C ((u1, v1), (u2, v2))

K1/2 ((w, u2, v2), (t2, r2, s2)) du1dv1du2dv2dw,

which, by the spectral theorem, has the decomposition
∑∞

k=1 ρkζk(t1, s1, r1)

ζk(t2, s2, r2). Then, we have LK1/2CK1/2(ζk) = ρkζk, for k = 1, 2, . . . , where

LK1/2CK1/2(f) = LK1/2(LC(LK1/2(f))). We are interested in recovering the func-

tional ηβ(·, ·, t) : L2 × L2 → R, where ηβ(U, V, t) =
∫
Ix

∫
Iz
U(r)V (s)β(t, r, s)drds.

Let (Un+1, Vn+1, Yn+1) be a new observation that has the same distribution as,

and is independent of (Ui, Vi, Yi), for i = 1, . . . , n. The prediction accuracy can

be measured by the excess risk

Emn (β̂nλ) =

∫
Iy

E∗
{
ηβ̂nλ(Un+1, Vn+1, t)− ηβ0

(Un+1, Vn+1, t)
}2
dt

= 〈T 1/2(f̂ − f0), T 1/2(f̂ − f0)〉L2
=
∥∥∥T 1/2(f̂ − f0)

∥∥∥2

L2

,

where E∗ represents the expectation taken over (Un+1, Vn+1, Yn+1) only.

4.2. Asymptotic results

We now show that the proposed method achieves the minimax rate of con-

vergence for the mean prediction in terms of the excess risk Emn (·). We make the

following assumptions.

label=(C1) The reproducing kernel K is symmetric, positive definite, and square

integrable.

lbbel=(C2) Assume that there exists a constant c > 0 for any f ∈ L2([0, 1]3)

such that ∫
E
{∫ ∫

U(s)V (r)f(t, r, s)dsdr

}4

dt

≤ c
∫ [

E
{∫ ∫

U(s)V (r)f(t, r, s)dsdr

}2
]2

dt.
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lcbel=(C3) Assume the eigenvalues {ρk : k ≥ 1} of the linear operator LK1/2CK1/2

satisfy ρk � k−2ω, for some constants 0 < ω <∞.

ldbel=(C4) For all i = 1, . . . , n, there exists a constant M > 0 such that E(εi(t)
2)

≤M <∞.

lebel=(C5) For all 1 ≤ i ≤ n and k ≥ 1, we assume that 〈Xiυi, LK1/2ζk〉2L2
≤

ρk, 〈τiZi, LK1/2ζk〉2L2
≤ ρk, and 〈τiυi, LK1/2ζk〉2L2

≤ ρk.

Assumption a guarantees the spectral decomposition of the kernel via Mer-

cer’s theorem. Assumption b is a common assumption in the asymptotic analysis

of functional linear models (Cai and Yuan (2012)). It assumes that the fourth

moment is bounded by a constant multiplying the square of the second moment.

We only make the assumptions for the observed surrogate variables, because it

is realistic to verify them. The convergence rate in Theorem 1 is determined by

the decay rate of the kernel function T , which is assumed in Assumption c. The

kernel function T is the interaction between the reproducing kernel K and the

covariance function C of the two functional predictors. If K and C are perfectly

aligned, it is easy to show that the constant r in the rate depends jointly on the

decay rates of K and C. In our setting, r is jointly determined by K and C, as

well as the alignment between K and C, in a complicated way. Assumption d

assumes that the variance of the error terms is bounded. Assumption e ensures

that the signal-to-noise ratios (SNRs) of the functional predictors against the

functional measurement errors are sufficiently large to recover the true predictor

functions.

Theorem 1. If Assumptions a to e hold,

lim
A→∞

lim
n→∞

sup
β∈H(K)

P{Emn ≥ An−2ω/(2ω+1)} = 0,

provided that λ � n−2ω/(2ω+1).

The rate n−2ω/(2ω+1) in Theorem 1 matches the minimax lower bound of

the convergence rate for the prediction risk under a general function-on-function

regression model, as established in Theorem 3 of Sun et al. (2018). Therefore,

the rate of the prediction risk for our penalized least squares estimator is the

minimax rate.

The model without measurement errors can be considered as a special case

with zero measurement errors, and its asymptotic result can be proved similarly

to Theorem 1, with slightly weaker assumptions. Therefore, we present the result

as Corollary 1, with the proof omitted.
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label=(C2′) Assume that there exists a constant c > 0, for any f ∈ L2([0, 1]3),

such that ∫
E
{∫ ∫

X(s)Z(r)f(t, r, s)dsdr

}4

dt

≤ c
∫ [

E
{∫ ∫

X(s)Z(r)f(t, r, s)dsdr

}2
]2

dt.

Corollary 1. Let En be the excess risk for the model without functional measure-

ment errors. If Assumptions (C1), (C2′), (C3), and (C4) hold,

lim
A→∞

lim
n→∞

sup
β∈H(K)

P{En ≥ An−2ω/(2ω+1)} = 0,

provided that λ � n−2ω/(2ω+1).

5. Numerical Experiments

In this section, we study the numerical performance of the proposed ap-

proach by means of simulations. We first compare the proposed method with

two other existing methods, and then demonstrate how the functional ANOVA

works between models (1.1) and (1.2).

We simulated data according to model (1.1) under three scenarios with dif-

ferent coefficient functions, as specified below:

Scenario 1: β(t, r, s) = (r − 0.5)2 exp(t)− t{(s− 0.5)2 − 0.3s}

Scenario 2: β(t, r, s) = sin(t) cos(πr3) + cos(t) sin(2πs)

Scenario 3: β(t, r, s) = exp(−t){s2 + r2 cos(πs)}.

When t is fixed, the coefficient function β is additive in r and s in Scenarios

1 and 2, but contains an interaction term between r and s in Scenario 3. For

each scenario, the functional predictors Xi and Zi were generated from Xi(r) =∑50
k=1(−1)k+1k−1Wikϑ1(r, k) and Zi(s) =

∑50
k=1(−1)k+1k−1Wikϑ2(s, k), where

the constants Wik were generated from the uniform distribution U(−
√

3,
√

3),

ϑ1(r, k) = 1 if k = 1, and ϑ1(r, k) =
√

2 cos{(k − 1)πr} otherwise, and ϑ2(s, k) =

s2 if k = 1, and ϑ2(s, k) = (1− cos((k − 1)πs))/{(k − 1)π}2 otherwise. We

generated n = 50 samples, each with 20 time points on the interval [0, 1]. The

random errors ε(t) were from a normal distribution with a zero mean and a

constant variance σ2. The SNRs
∑

i

∫
E{η2

i (t)} dt/
∑

i

∫
E{ε2i (t)} dt were set to

1, 5, and 10 in each scenario, where ηi(t) =
∫ 1

0

∫ 1
0 Xi(r)Zi(s)β(t, r, s) drds.
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Table 1. The averages (standard deviations) of the MISEs (×10−3) under the three
scenarios. The best result is shown in boldface.

SNR QFFR pffr FRegSig

Scenario 1
1 2.529( 1.480) 1.096( 1.023) 4.736(14.83)
5 1.288( 0.510) 0.357( 0.287) 0.815( 1.468)

10 0.747( 0.419) 0.157( 0.163) 0.327( 0.758)

Scenario 2
1 0.208( 0.148) 5.565( 16.44) 1.641( 1.951)
5 0.469( 0.291) 375.7( 190.7) 3.414(30.87)

10 0.225( 0.361) 382.7( 398.0) 1.652( 1.741)

Scenario 3
1 0.613( 1.026) 5.066( 7.862) 2.149(43.98)
5 0.0398(0.0669) 0.376( 1.063) 0.603( 0.819)

10 0.0198(0.0316) 0.286( 0.462) 0.831( 1.253)

5.1. Comparisons with other methods

We compare our method, QFFR, with two function-on-function regression

models for multiple functional predictors, namely the additive function-on-function

regression method of Scheipl, Staicu and Greven (2015), denoted by pffr, and the

signal compression function-on-function regression method of Luo and Qi (2019),

denoted by FRegSig. For pffr and FRegSig, we used their respective R packages

in all the simulations in this section and the real-data analysis in the next section.

The prediction accuracy was quantified by the mean integrated squared error

MISE= (1/n̆)
∑n̆

i=1

∫ 1
0 {ηi(t) − η̂i(t)}

2 dt, where n̆ is the sample size of the test

data, and η̂i(t) =
∫ 1

0

∫ 1
0 Xi(r)Zi(s)β̂(t, r, s) drds. We repeated the simulation 100

times for the test data of size n̆ = 50. The prediction performance of QFFR,

pffr, and FRegSig in terms of the MISE is summarized in Table 1. We also show

the true coefficient functions and their estimates from the three methods when t

is fixed at 0.48 in Figure 1. As expected, the MISEs in Table 1 decrease as the

SNR increases for each method in each scenario, except for the pffr in Scenario

2. Specifically, in Scenario 1, where the true model is additive, pffr performs

best with the smallest MISEs in all the scenarios. This is not surprising, because

pffr is designed for the additive model, whereas the interaction terms in QFFR

could lead to a slight overfitting problem. Note too that the difference between

the MISEs of the two methods is small. Figure 1 confirms that QFFR does a

decent job in terms of estimation and is comparable to pffr, but that the FRegSig

estimate is a little off. For Scenario 2, the true model is also additive, but pffr

clearly had difficulty in this scenario. The pffr estimate shown in Figure 1 for

Scenario 2 is completely off the target, as shown in Table 1. The sinusoidal

functions might be challenging for pffr. On the other hand, the proposed QFFR

method had the best performance, both numerically and visually. In Scenario 3,
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Figure 1. Perspective plots of the true coefficient functions β(t, r, s) (left panels) and
their estimates by QFFR, pffr, and FRegSig at t = 0.48 for the three scenarios.

the true model was non-additive. Thus, pffr was not expected to perform well,

because it assumed an additive structure. Despite this, pffr still outperformed

FRegSig when the SNRs were high. On the other hand, QFFR was clearly the

best, both numerically and visually, in this non-additive scenario.

To assess the effect of the error distributions, we performed the same simu-

lations using heavy-tailed error distributions. In particular, we considered errors

from t-distributions with different SNRs. The results, collected in the Supple-

mentary Material, show similar patterns to the findings with normally distributed

errors. We also conducted a simulation study to illustrate the finite-sample prop-

erties of the proposed estimator. The SNR was set as five in Scenarios 1 to 3,

and the sample size varied from 20 to 1,000. The results (log(MISE)) of the pro-

posed method QFFR and pffr and FRegSig are shown in Figure 2. The proposed

method converges as the sample size increases. We observed similar patterns for

FRegSig in the three scenarios. The method pffr performed best in Scenario 1,

but failed to converge in Scenarios 2 and 3.

In summary, QFFR is a competitive method in the scenarios of additive

models, and the best method in the non-additive scenario. While FRegSig de-
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Figure 2. MISEs of the three methods in (a) Scenario 1, (b) Scenario 2, and (c) Scenario
3

livers satisfactory performance in all the scenarios, it is much less accurate than

QFFR. Because all three methods employ roughness penalties on the function

estimates, a possible reason for the lower accuracy of FRegSig might be that its

principal component type of optimization is numerically more challenging than

the penalized least squares used in the other two methods.

5.2. Functional measurement errors

In this section, we show the estimation results when the covariate functions

contain normal distributed errors under the same experiment setting. In partic-

ular, we first generated Xi(r) and Zi(s) as before. Then, we added the measure-

ment errors and applied the methods for the comparison with Ui(r) = Xi(r)+τi(r)

and Vi(s) = Zi(s) + υi(s), where τi(rj) ∼ N(0, τ2) and υi(sk) ∼ N(0, υ2), for

i = 1, . . . , n, j = 1, . . . , J , and k = 1, . . . ,K. The response function Yi was gen-

erated using (1.1). In the simulation, we set the SNR of the response to 10 and

the SNR of the covariates

SNRXZ =

∑
i

∫
E{X2

i (r)} dr∑
i τ

2
i

=

∑
i

∫
E{Z2

i (s)} ds∑
i υ

2
i

to 2, 5, and 10.

In Table 2, we present the MISEs of the three methods, namely QFFR,

pffr, and FRegSig, with their standard deviations under the three scenarios. The

distributions of the MISEs in Table 2 are similar to those in Table 1. We expected

the MISEs to decrease as the SNRXZ increased. The proposed method QFFR

performed best in Scenarios 2 and 3. Comparing the results in the scenarios

with and without measurement errors, the MISEs increase significantly under
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Table 2. The averages (standard deviations) of the MISEs (×10−3) under the three
scenarios with measurement errors. The best result is shown in boldface.

SNRXZ QFFR pffr FRegSig

Scenario 1
2 9.123(2.001) 4.551(1.221) 10.757(6.830)
5 1.488(0.475) 1.205(0.332) 3.075(2.500)

10 0.998(0.502) 0.875(0.267) 1.588(0.917)

Scenario 2
2 3.822(0.971) 7.355(3.487) 9.956(6.751)
5 1.074(0.291) 4.357(1.335) 2.462(1.490)

10 0.569(0.401) 97.35(78.00) 1.998(0.812)

Scenario 3
2 4.332(2.083) 4.353(2.105) 8.414(3.025)
5 0.475(0.241) 3.257(2.809) 2.782(0.723)

10 0.180(0.099) 4.201(0.462) 1.055(0.801)

the scenarios with measurement errors. However, when the SNRXZ is sufficiently

large, for example, SNRXZ = 10, the prediction performance is close to that

when there were no measurement errors.

5.3. Functional ANOVA demonstration

We now demonstrate numerically that model (1.1) can be transformed to

model (1.2) using the functional ANOVA. To show the transformation, we used

the non-additive model from Scenario 3 when there are no measurement errors,

and set the SNR to two. Following the functional ANOVA decomposition in (2.1),

we estimated the main and interaction coefficient functions in the corresponding

function spaces in (2.3). For instance, the main effect coefficient function for the

functional predictor X(t) was estimated in the function subspace Hy1 ⊗Hx1 ⊗Hz0
by using the kernel Ky

1K
x
1K

z
0 . The details of the kernels and the inner prod-

ucts are listed in the Supplementary Material S2. Then, fitting model (1.2) is

equivalent to estimating the coefficient vectors corresponding to the basis func-

tions in the subspaces. The three-component coefficient functions for the main

and interaction effects in model (1.2) of β(t, r, s) = exp(−t){s2 + r2 cos(πs)} are

shown in the first row of Figure 3, and the fitted ones are shown in the second

row. To present the results graphically, we set t = 0.48 for the three-dimensional

function βt,r,s. Clearly, the proposed method can successfully recover all the true

component coefficient functions using the functional ANOVA.

6. Application: Epigenetic Study for Liver Cancer Cells

In this section, we examine how two types of histone modifications, H3K4me2

and H3K9me3, affect the gene expression in the human liver cancer cell line

(HepG2) (The ENCODE Project Consortium (2012)). We calculated the values
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Figure 3. The functional ANOVA of coefficient functions. The first row shows the
decomposition of the true function, and those in the second row are the fitted coefficient
functions.

Table 3. The leave-one-out cross-validation scores for QFFR, pffr, and FRegSig in the
liver cancer cell line data. The best result on each metric is shown in boldface.

1st Qu. Median Mean (SD) 3rd Qu.
QFFR 0.462 0.503 0.487 (0.077) 0.522

pffr 0.417 0.515 0.577 (0.227) 0.742
FRegSig 0.405 0.565 0.559 (0.382) 0.761

of the fold change over the control for the histone modifications levels on the

promoter region, that is, 1000 bp upstream or downstream of where a gene’s

transcription begins. To study the liver cancer tumorigenesis, we selected 2, 475

liver cancer related genes (Lee et al. (2011)). There were 2, 142 genes left after

filtering out those genes with low histone modifications and gene expression levels.

We removed genes when the maximum expression value or maximum histone

density level was zero. The tight clustering method was applied to the gene

expression, H3K4me2, and H3K9me3 levels (Tseng and Wong (2005)). A tight

cluster that contained 59 genes with similar expression patterns was selected.

The selected gene names can be found in the Supplementary Material S5. The

resulting data are displayed in Figure 4.

We applied pffr, FRegSig, and the proposed method QFFR to the data. Be-
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Figure 5. Fitted coefficient functions by (a) QFFR, (b) pffr, and (c) FRegSig.

cause we were interested in studying how histone modifications regulate gene

activities on the promoter region, we used the gene expression levels as the func-

tional response and the density levels of the two histone modifications as the

functional predictors. Our proposed method QFFR performed better than the

other two methods in terms of the prediction accuracy, measured using the leave-

one-out cross-validation score, as shown in Table 3. The cross-validation score

is defined by
∑n

i=1

∫
{Yi(t)− Ŷ −i(t)}2 dt/

∑n
i=1

∫
{Yi(t)}2 dt, where Ŷ −i(t) is the

predicted value from the model fitted after deleting the ith gene in the training

data.

In Figure 5, we show the coefficient functions estimated by QFFR, pffr, and

FRegSig. Each slice represents the estimated coefficient function at a fixed region

of genes. The figure shows how H3K9me3 and H3K4me2 regulate (positively or

negatively) gene activities over the promoter region. The coefficient function fit-
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ted by pffr displays a clear pattern of additive effects by H3K4me2 and H3K9me3.

That is, the predicted gene expression level is a simple addition of the separate

effects from the two types of histone modifications; see panel (b) of Figure 5.

Both FRegSig and QFFR recover the interaction effect of similar patterns be-

tween H3K4me2 and H3K9me3 successfully. However, the interaction effect from

our model is more significant than that in FRegSig. For example, according to

FRegSig, the two histone modifications had only negative effects on the gene ac-

tivities at slices from 0 to 0.2 along the gene axis; see panel (c) of Figure 5. On

the other hand, the QFFR coefficient estimate reveals more dynamic changes in

these slices; see panel (a) of Figure 5. Based on the results in Table 3, QFFR

may have estimated the interaction effect more accurately than did FRegSig.

In Figure 6, we show the functional ANOVA decomposition of the coefficient

function β̂ estimated by QFFR. In panels (a) and (b), we show the main effects

of the two types of histone modifications, namely, H3K4me2 and H3K9me3, re-

spectively. The histone modifications have varied modification effects on the gene

expression over the promoter regions. The regulation effects are increasing from

the start to the end points of the promoter region; see Panel (a). The regulation

patterns for H3K9me3 are clearly different from the patterns for H3K4me2; see

Panel (b). When they work jointly, the H3K9me3 regulation effect is more active

at the end point of the promoter region for H3K4me2 compared with its effect at

the start point of the promoter region; see Panel (c).
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7. Conclusion

In this paper, we propose a penalized least squares method to estimate the co-

efficient function in a quadratic function-on-function regression model, including

the interaction between the functional predictors. Using the functional ANOVA

decomposition under an RKHS framework, the trivariate coefficient function can

naturally split into the main and interaction effects of the functional predictors,

the separate estimates of which are readily available from the trivariate coeffi-

cient function estimate. We prove theoretically that the estimator for the model

with or without functional measurement errors achieves the optimal convergence

rate in the mean prediction. Simulation studies demonstrate that the proposed

method has numerical advantages over existing methods. An application to liver

cancer cell line data shows how two histone modifications at the promoter region

jointly regulate gene activities.

The proposed QFFR method allows easy extensions in several aspects. For

example, separate penalties on different components of the trivariate coefficient

function can be enforced by introducing multiple smoothing parameters in the

roughness penalty; see, for example, Section 2.4 in Gu (2013). In addition, the

model here contains only two functional predictors, but it can be extended eas-

ily to models with more than two functional predictors, although the compu-

tation will become more complicated if three-way or higher-order interactions

are included. Furthermore, the method can be extended to model a categorical

response function, such as binary or count response functions.

The number of sampling points per curve is an interesting topic in functional

regression models (Cai and Yuan (2011); Zhang and Wang (2016)). In this study,

we focus on the case when curves are densely sampled such that the asymptotic

property of the estimator is the same as the case when the curves are completely

known. However, when the curves are sparsely sampled, with sampling points

randomly dispersed across the curve domain, a common approach is to use the

principal component analysis through conditional expectation (PACE) method

of Yao, Müller and Wang (2005a) to first perform presmoothing of the curves;

see, for example, Sun et al. (2018).

Supplementary Material

In the online Supplementary Material, we introduce an example of the rough-

ness penalty in S1 and the corresponding reproducing kernels in S2. S3 provides

the proof of Theorem 1. The simulation results with random errors from heavy-

tailed distributions are shown in S4. In S5, we list the gene names in the real-data
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example. A link to the R code of the proposed method can be found in S6.
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