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A NOTE ON JEFFREYS-LINDLEY PARADOX
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Abstract: The Jeffreys-Lindley paradox, namely the fact that a point null hypothe-
sis will always be accepted when the variance of a conjugate prior goes to infinity,
has often been argued to imply prohibiting the use of improper priors in hypothesis
testing. We reevaluate this paradox by considering the role of the prior hypothesis
probabilities and obtain a noninformative answer which is equivalent decisionwise to
the classical p-value.
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1. Introduction

In hypothesis testing, it is well-known that Bayesian and frequentist answers
may drastically differ. For instance, Berger and Sellke (1987) and Berger and
Delampady (1987) have shown that the smallest posterior probability of a point
null hypothesis is usually much larger than the corresponding frequentist answer,
the p-value. Lindley (1957) shows that the disagreement may be dramatic, in the
following sense. Let £ ~ N(6,1) and the null hypothesis to test is Hp : § = 0.
If one uses conjugate priors, § ~ N (0,0?), with prior probability go for the null
hypothesis Hy, the posterior probability of Hyp,

1- 00 e—22/2(0%+1) 1 -1

00 e—z2/2 o2 +1

1+ , (1.1)

goes to 1 as 0% goes to infinity, whatever gp and z are.

This result is statistically paradoxical because, first, a large value of o some-
how corresponds to a noninformative setup and, therefore, answers from nonin-
formative priors seem to be useless in this problem. Secondly, it is usually the
case in estimation settings that the limit of conjugate estimators is equivalent
to a “classical” frequentist answer and this property does not seem to occur for
hypothesis testing. Obviously, the fact that (1.1) goes to 1 is not a mathematical
paradox since the prior sequence is giving less and less mass to any neighborhood
of 0 as o2 goes to infinity.
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Many authors have commented on this paradox, either to criticize the Bayesian
approach (Shafer (1982)) or to dismiss the use of improper priors for testing (Jef-
freys (1961) and DeGroot (1982)). According to Berger (1991), it shows that
a noninformative answer is not possible in this context and moreover, that it
is in accordance with Occam’s razor rule, i.e. that between two equally likely
explanations, we should always choose the simplest one if no additional argu-
ment supports the other one (Berger and Jeffreys (1991)). A recent and detailled
discussion of the Jeffreys-Lindley paradox is provided by Aitkin (1991).

However, recent decision-theoretic considerations of the testing problem in
Hwang et al. (1992) have shown that improper priors were definitely necessary.
For instance, in the Jeffreys-Lindley setup, the p-value p(z) = 2(1 — ®(|z])) is
inadmissible under squared-error loss,

(o (6) — p(2))?,

where II denotes the indicator function, but cannot be dominated by a proper
Bayes estimator, i.e. a true posterior probability. Furthermore, generalized Bayes
answers, i.e. solutions of the form

Q0p(z)
T (1.2)
eop(@)+ (1= o) [ pla—0O)m(6)de
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where ¢ is the standard normal density, m; is a o-finite measure. and gy the
prior probability of Hy, are also admissible under squared-error loss and form a
minimal complete class. Moreover, the least favorable answers — lower bounds on
the posterior probabilities of Hy — obtained in Berger and Sellke (1987) correspond
formally to noninformative procedures of the form (1.2), as shown by Robert and
Caron (1991). A

As pointed out by DeGroot (1982), the trouble with using improper priors
is that if one replaces the o-finite measure 7;(f) by the rescaled measure ¢y (6),
the constant ¢ can be chosen to give any desired answer. We will show in the
next section that, nonetheless, there exists a way to obtain the “proper” constant
c for the Jeffreys prior by considering again a sequence of conjugate priors. The
resulting noninformative answer is then no longer uniformly equal to 1 and, fur-
thermore, provides an estimator which is surprisingly close to the classical p-value
(for most decision purposes). Aitkin (1991) and Smith and Spiegelhalter (1980)
also propose alternative techniques to select the constant ¢ or remove the choice
of this constant. The next section presents these answers and compares them
with our solutions.
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2. Reweighting the Alternatives

The fundamental argument underlying our reevaluation of the Jeffreys-Lindley
paradox is that the prior probability go of the null hypothesis Hy should depend
on the prior variance under the alternative hypothesis Hi, o%. Such a dependence
may seem absurd at first but consider that, from a Bayesian point of view, we
are actually testing Hp : 6 = 0 versus Hy : § ~ N(0,02). Therefore, the prior
probability of H; (and therefore of Hy) may vary with o2. Indeed, while taking
00 = 1/2 is seemingly the fairest (or the most objective) choice, it does not take
into account the fact that the alternative prior m; considers a larger set of pos-
sible values of 6 as o? increases, i.e. that the “effective support” of m; (say, the
99% HPD region) is getting larger as o2 goes to infinity. Larger values of o? do
not exclude smaller values of  but, on the contrary, increase the range of values
of § compatible with H;. In this sense, an increasing sequence of o? leads to a
sequence of imbedded alternative hypotheses. Therefore, the prior probability of
Hj should increase with ¢2. Such a dependency is also justified if we look at it
the other way: a restriction of the range of possible values for 6 under H; can
result from some observations which are incompatible with the previous range of
71 and which, therefore, partially argue against Hy. It is thus coherent to lower
the prior probability of H; when the range of 7; is decreasing. It is because go is
kept constant that the Jeffreys-Lindley paradox occurs; we have to prevent the
alternative prior mass from going to oo too quickly. Casella and Berger (1987)
noted that gg = 1/2 was “too large” but did not pursue the reasoning leading to
a prior dependent go.

A natural requirement on the sequence of priors is that they should give
sufficient weight to the range of values of § which actually caused Hy to be
tested, i.e. to the 8’s in a neighborhood of 0 which generate z’s which could also
originate from a N(0,1) distribution. Since, for o large enough and a arbitrary,
we have

r{(-2,0)U(0,a)) = (1 20)[®(a/0) — B(~a/0)
= (1~ 00) 2 p(0),

it seems reasonable to impose the following restriction on gg, thus denoted by
oo(0), to stress its dependency on o,

1-eof0) _,
o

b

where ¢ is a constant to be determined.
However, this constraint is too strong to hold when o goes to infinity, since the
prior probability of any fixed interval must go to 0. A more realistic requirement is
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therefore to choose go(¢) in such a way that the ratio of the prior probability of the
null hypothesis to the prior probability of the “reasonable” range, [—a,0)U(0, al,
remains constant as o goes to infinity, i.e.

(1= 00(0))[®(a/0) — ®(~a/0)] o oo(0). (2.1)
For o large enough, this condition leads to the following equation

1~ po(o)
o

x go(o). ) (2.2)

In order to completely determine the dependency of gg on o2, i.e. the pro-
portionality factor in the above relation, we consider that 0 should have the same
weight under both alternatives, namely that the densities are equal at 0,

1
2o

20(9) = (1 = go(0)) (2.3)
This implies that 0 is “indifferent” under both alternatives, whatever ¢ is. Note
that, under this constraint, go(c) goes to 0 when o2 goes to infinity. Such a
behavior was also observed by Bernardo ( 1980) when implementing the reference
prior approach in this setting. The posterior probability associated with (2.3) is

then i
/ 2
[1 + 020+ - /27r 60'2;1;2/2(0'2+1)J ’ (24)

(1+V2re?’ /7)1 (2.5)

when o2 goes to infinity. Note that gy in (2.3) converges to 1 when o2 goes to
0, as it should since Hy is then true a priori, while g = 1 /2 leads to a posterior
probability of 1/2 in (1.1).

A most interesting feature of (2.5) is that it also corresponds to the gener-
alized Bayes answer associated with the Jeffreys prior m; (0) =1 and go = 1/2,
ie.

which converges to

1
7(6) = S{TIo(6) + m (6))
(where IIy denotes the Dirac mass at 0), since (1.2) leads to

e“m2/2/\/§;
e==%/2/\/27 + 1

in this case. Therefore, when the prior probability of Hy depends on the prior
variance o2, the Jeffreys estimator is the limit of the conjugate answers, as it is for
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point estimation. Moreover, this result indicates that ¢ = 1 is the proper constant
in this case. The equiponderance device (2.3) thus allows the determination of
the effective constant for the Jeffreys prior.

Spiegelhalter and Smith (1982) and Aitkin (1991) obtained, respectively, a
corresponding constant for the normalization of the improper prior m by using
virtual observations or by using twice the actual observations. In fact, Aitkin
(1991) eliminates the problem of selecting a constant by replacing the Jeffreys
prior m; by the posterior distribution m;(6|z) which is a AM(z,1) distribution in
this case. The corresponding posterior probability of Hy is

(1+ e"”:'/?/\/i)_l, (2.6)

which leads to a constant ¢ = 1/4/2 for the Jeffreys prior. The main problem
with this ad hoc solution is that it does not belong to the Bayesian paradigm
because of the repeated use of the observations and that it lacks coherency as
pointed out in the discussion following the paper (see, e.g., Lindley (1991)).

The method proposed in Spiegelhalter and Smith (1982) can be considered as
determining the constant ¢ for which the most favorable observation, i.e. z = 0,
would give a Bayes factor of 1. In this case, it is ¢ = +/27, which gives the
posterior probability (for go = 1/2)

(1+ ez2/2)”1; (2.7)

this quantity also corresponds to the lower bound of Berger and Sellke (1987) and
approximately to the answer associated with an uniform prior on [-1.25,1.25].
It thus seems difficult to advocate the use of this precise proper prior as a non-
informative prior. Similarly, Smith and Spiegelhalter (1980) point out that the
elimination of the Jeffreys-Lindley paradox relies on a sufficient weighting of a
neighborhood of § = 0 under Hj; however, they propose the specific proper pri-
ors, N(0,1) and U|_1 ¢61.9¢) Which lead, respectively, to the drastically different
posterior probabilities

(1 + 612/4/\/_2—)—1 and (1 + em2/26“3/4)_1.

(For instance, for z = 1.96, the first probability is 0.35 and the second one 0.24,
to be compared with the much lower values of Table 1.)

3. The Resulting Noninformative Answer

The dependency of gp on o2 thus avoids the undesirable convergence to 1 and
provides an estimator which can be considered as a noninformative answer and
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a Bayesian counterpart to the p-value. However, the validity of our derivation
may be questioned, since the limiting prior resulting from (2.3) also has some
undesirable features. Actually, for every ¢ > 0, one has

([—e€]) = 20(0) + (1 — 00(0))[®(e/0) — B(~¢/0)),

where @ is the standard normal cdf. Given (2.3), we get

7([—e,€]) = [721_7; + &(c/o) — ‘I)(—E/U)J (1 N 1 )—1

2o

= Tl—z—ﬂ—;(l +V2r0]®(e /o) — @(—e/a)]),
which converges to 0 as 0% goes to infinity. Therefore, the limiting prior gives no
positive probability to any neighborhood of 0, and this behavior seems to be quite
unreasonable. But this is usually the case with improper priors: they cannot be
handled in the same way as subjective priors and, as pointed out by DeGroot
(1982), they should not be regarded as representing ignorance. This feature of
Improper priors is present in most statistical problems and, therefore, should not
prevent us from considering (2.5) as a possible noninformative answer.

Table 1. Comparison of answers for the normal point null test.

z 0 168 196 258
Least favorable 0.5 0.196 0.128 0.035
Bayesian answer
Posterior Bayes 0.5 0.256 0.172 0.048
probability(Aitkin (1991))

Noninformative 0.285 0.089 0.055 0.014
answer
p-value 1 0.093 0.05 0.01

Let us turn now to the behavior of the estimator (2.5). First, it is strictly
smaller than the lower bound (2.7) of the Bayesian estimators obtained by Berger
and Sellke (1987). Again, it may seem paradoxical that the noninformative an-
swer does not belong to the range of the Bayesian answers but, contrary to point
estimation, testing settings allow for discontinuities between proper and improper
priors. Moreover, the bound (2.7) was obtained for gy = 1/2, while gy depends on
o? in our case. The difference between (2.5) and (2.7) also shows that, although
(2.7) appears as the least favorable Bayesian answer, it still corresponds to an
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informative setting and, therefore, that the use of an informative (i.e. proper)
prior makes a significant difference in the answer to a testing problem, even
though (2.7) is formally identical to the posterior probability associated with the
improper prior

ITo(8) + V27 A(6),

where A(6) denotes the Lebesgue measure on R. This feature definitely sepa-
rates testing from usual estimation problems but does not necessarily imply that
improper priors should not be used.

Table 1 provides some numerical values of the noninformative estimator (2.5)
for some values of z. In addition to the above mentioned discrepancy with the
least favorable answer, an interesting feature of Table 1 is the closeness of (2.5)
and the p-value, p(z), when z is large. Indeed, when the p-value is between
0.10 and 0.01, (2.5) produces essentially the same numerical values. In other
words, for the range of z’s for which the exact value of p(z) really matters, the
noninformative approach leads to the same decision as the p-value. (Actually, Hy
will usually be accepted for an answer larger than 0.10 and rejected for an answer
smaller than 0.01.) Therefore, decisionwise, the two approaches are somehow
equivalent.

Obviously, this equivalence does not “rehabilitate” the p-value since the nu-
merous undesirable features pointed out in the previously mentioned papers still
exist and a noninformative answer is not necessarily a “good” answer. On the
contrary, we could argue that the similarity we have exhibited in this paper rather
points out the need for additional (prior) information. Moreover, the closeness
of (2.5) and p(z) only occurs on a small (although crucial) range of values of z,
and (2.5) is admissible under squared error loss, while p(z) is not (see Hwang et
al. (1992)). However, it may also explain why the p-value has survived for such
a long period despite its multiple drawbacks. The coincidence of the classical
answer with a noninformative answer actually holds in other settings, as shown
by Robert and Caron (1991) (who also consider an alternative noninformative
approach leading to the same conclusion).
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